EVENT    Prof. Na Li of Harvard University to Deliver Keynote at MERL's Virtual Open House 2024

Date released: October 22, 2024


  •  EVENT    Prof. Na Li of Harvard University to Deliver Keynote at MERL's Virtual Open House 2024
  • Date & Time:

    Tuesday, November 19, 2024; 1:30-2:10pm

  • Location:

    Virtual Event

  • Description:

    MERL is excited to announce the featured keynote speaker for our Virtual Open House (VOH) 2024: Prof. Na Li from Harvard University.

    Our VOH this year will take place on November 19th, 1:00pm - 4:30pm (EST). Prof. Li’s talk is scheduled for 1:30-2:10pm (EST). For details and agenda of the event, please visit: https://merl.com/events/voh24

    Join us to learn more about who we are, what we do, and discuss our internship, post-doc, and full-time employment opportunities. To register, go to: https://mailchi.mp/merl/voh24

    Title: Representation-based Learning and Control for Dynamical Systems
    Abstract: The explosive growth of machine learning and data-driven methodologies have revolutionized numerous fields. Yet, the translation of these successes to the domain of dynamical physical systems remains a significant challenge. Closing the loop from data to actions in these systems faces many difficulties, stemming from the need for sample efficiency and computational feasibility, along with many other requirements such as verifiability, robustness, and safety. In this talk, we bridge this gap by introducing innovative representations to develop nonlinear stochastic control and reinforcement learning methods. Key in the representation is to represent the stochastic, nonlinear dynamics linearly onto a nonlinear feature space. We present a comprehensive framework to develop control and learning strategies which achieve efficiency, safety, robustness, and scalability with provable performance. We also show how the representation could be used to close the sim-to-real gap. Lastly, we will briefly present some concrete real-world applications, discussing how domain knowledge is applied in practice to further close the loop from data to actions.

  • Speaker:

    Prof. Na Li
    Harvard University

    Dr. Na Li is a Winokur Family Professor of Electrical Engineering and Applied Mathematics at Harvard University and a visiting researcher in Mitsubishi Electric Research laboratories (MERL). She received her Bachelor's degree in Mathematics from Zhejiang University in 2007 and Ph.D. degree in Control and Dynamical systems from California Institute of Technology in 2013. She was a postdoctoral associate at the Massachusetts Institute of Technology 2013-2014. She has held a variety of short-term visiting appointments including the Simons Institute for the Theory of Computing, MIT, and Google Brain. Her research lies in the control, learning, and optimization of networked systems, including theory development, algorithm design, and applications to real-world cyber-physical societal system. She has been an associate editor for IEEE Transactions on Automatic Control, Systems & Control Letters, IEEE Control Systems Letters, and served on the organizing committee for a few conferences. She received the NSF career award, AFSOR Young Investigator Award, ONR Young Investigator Award, Donald P. Eckman Award, McDonald Mentoring Award, IFAC Distinguished Lecture, and IFAC Manfred Thoma Medal, along with other awards.