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CReMeS: A CORBA Compliant Reflective Memory based Real-time
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Abstract

We present CReMeS, a CORBA-compliant design
and implementation of a new real-time communication
service. The CReMeS architecture is based on Mi-
dART’s Real-Time Channel-based Reflective Memory
(RT-CRM) which (a) supports the separation of QoS
specification between producer and consumer of data and
(b) employs a user-level scheduling scheme for commu-
nicating real-time tasks. Although RT-CRM provides
for predictable and scalable asynchronous communica-
tion infrastructure for applications, it is not a standard
middleware. The desire to make its service widely avail-
able motivated us to develop CReMeS by adapting RT-
CRM for CORBA environments. As a result, CReMeS
provides for efficient, predictable, and scalable commu-
nication between information producers and consumers.
Since CReMeS provides a CORBA interface to appli-
cations and demands no changes to the ORB layer and
the language mapping layer, it can run on non real-time
Off-The-Shelf ORBs and enables applications on these
ORBs to have scalable and end-to-end predictable asyn-
chronous communication facility. In addition, an appli-
cation designer can select whether to use an out-of-band
channel or the ORB GIOP/IIOP for data communica-
tion. This permits a trade-off between performance, pre-
dictability and reliability. Experimental results demon-
strate that our architecture can achieve better perfor-
mance and predictability than o real-time implementa-
tion of the CORBA FEvent Service when the out-of-band
channel is employed for data communication; it delivers
better predictability with comparable performance when
the ORB GIOP/IIOP is used.

1 Introduction

The need to reduce the time and effort required
to deploy and maintain distributed real-time applica-
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tions has necessitated a move towards using off-the-shelf
(OTS) distributed object computing middleware based
on open standards. The Common Object Request
Broker Architecture (CORBA) [10] specified by Object
Management Group (OMG) is beginning to gain ac-
ceptance as such a standard middleware platform for
use even in distributed real-time applications. How-
ever, when using CORBA as part of a distributed real-
time architecture problems arise due to its communica-
tion primitives being based on method invocations and
from its lack of support for expressing and handling tim-
ing constraints[19, 20, 23]. To provide support for QoS
requirements of real-time applications, especially those
that need communication beyond method invocations, a
Real-Time Event Service [7,17] has been designed by ex-
tending CORBA’s event channel abstraction [11]. The
CORBA Event Service model was originally intended
for event dispatching and thus it is only appropriate
for applications where asynchronous exchange of small
size data message is all that is required. Also since all
asynchronous communication traffic is supposed to go
through the event channel, the event channel can be-
come a bottleneck. However, if this bottleneck is
avoided by using multiple event channels, the real-time
scheduler associated with one event channel may not
be aware of messages being exchanged by other event
channels and their resource requirements and hence ad-
mission control becomes a problem. Therefore, the RT
Event Service alone may have difficulty in providing sat-
isfactory end-to-end QoS. Furthermore, a large class of
distributed real-time applications, such as process con-
trol, factory automation, and telecommunications [22],
require predictable communication services capable of
handling both small (e.g., remote operation invocations
and event notification) and large messages (e.g., au-
dio/video). A new CORBA service that allows an appli-
cation to use the same programming model for different
data types is not only desirable, but it can also reduce
the complexity of developing these types of applications.

To address the above deficiencies, we propose
CReMeS (a CORBA Compliant Reflective Memory
based Real-Time Communication Service):



e CReMeS’ efficiency derives from its use the
Real-Time Channel-based Reflective Memory (RT-
CRM) abstraction [21] used in MidART [6] as
the architectural basis for communication between
nodes.

e CReMeS provides for end-to-end predictability by
utilizing MidART’s admission control at both the
supplier and consumer nodes, and the user-level
scheduling scheme for communicating distributed
real-time tasks [22].

e CReMeS is scalable since the scheduler in one node
handles the communication traffic relating only to
that node, as opposed to the scheduler in the Real-
Time Event Service which handles all the traffic
connecting to the event channel.

e CReMeS’ flexibility arises from the fact that appli-
cation designers can
(a) separately specify the QoS requirements for
suppliers and consumers, thus allowing different
timing properties to be met independently.

(b) use a CORBA interface to applications, thus ob-
viating any need for changes to the ORB layer and
the language mapping layer. Thus, it can run on
non real-time OTS (Off-The-Shelf) ORBs and en-
ables applications on these ORBs to have scalable
and end-to-end predictable asynchronous commu-
nication facility.

(c) use an out-of-band channel or the ORB GIOP
(General Inter-ORB Protocol) and IIOP (Internet
Inter-ORB Protocol) for data communication. This
permits a trade-off between performance and relia-
bility.

There are two ways of incorporating new function-
ality into CORBA. The first consists of integrating the
functionality into the ORB core and/or the language
mapping layer. But this method loses portability (be-
cause the implementation is ORB-dependent) and in-
teroperability (because both clients and servers have to
use the same ORB implementation). The second is a
Service approach [4] which does not require modifica-
tion of the ORB core and language mapping layer. In
this service approach, the module implementing the new
functionality is defined by only an IDL interface and
thus is independent of the ORB and language mapping.
The latter, service-based, approach is CORBA compli-
ant and hence is desirable.

While a CORBA compliant adaptation of MidART’s
RT-CRM is desirable — since it is portable and inter-
operable, and thus can run on any ORBs — it is not triv-
ial to achieve. One of the major challenges comes from
the need to achieve object location transparency while
still keeping the efficient shared memory based mech-
anism that is optimal for intra-node communication.

Other challenges include the design of interfaces and
adaptation of communication paths of MidART while
not losing the performance advantages of MidART.

Keeping the goals of achieving performance, pre-
dictability, and scalability in mind, we have designed
and implemented a prototype of the CReMeS archi-
tecture using OmniORB2 version 3.0.0 [16], an open
source ORB, on Windows NT 4.0. Experimental re-
sults demonstrate that our architecture can achieve bet-
ter performance (as measured by latency), predictability
(as measured by jitter and the ability to provide QoS
guarantees) and scalability (measured in terms of the
number of clients or size of messages handled) than a
real-time implementation of the CORBA Event Service
when an out-of-band channel is employed. It displays
superior predictability and scalability while delivering
comparable performance when the standard two-way
synchronous communication of the ORB GIOP /IIOP is
used for data streams. This makes our solution adapt to
the needed reliability and performance requirements for
building performance-sensitive real-time applications in
CORBA environments.

This paper is organized as follows: Section 2 pro-
vides a brief description of CORBA, and a critique of
its real-time capability. In Section 3, we present a de-
scription of RT-CRM in the context of MidART. The
design and implementation details of CReMeS is pre-
sented in Section 4. The experimental performance re-
sults of CReMeS implementation are described in Sec-
tion 5. Related work is reviewed in Section 6. We con-
cluded the paper in Section 7.

2 Overview of CORBA

CORBA, a middleware standard specified by OMG
(Object Management Group)[10], defines how objects
in heterogeneous distributed environments can be de-
scribed and can interact with each other. The main
component of CORBA is the Object Request Broker
(ORB), basically a software bus responsible for locating
objects and delivering clients’ requests to server objects.
An ORB provides object location and object implemen-
tation transparency in addition to communication in-
frastructure. CORBA Services, another component of
CORBA, are general-purpose high level distributed ser-
vices on top of ORB to provide convenient functional-
ity to applications. The interface to CORBA Services
is defined by OMG. Adopted OMG Object Services,
collectively called CORBAservices (COS) include the
naming service — which allows clients to find objects
based on names, and the event service — which supports
asynchronous events (data) delivery through appropri-
ate event channel implementations. In order to support
a general ORB interoperability, CORBA specifies GIOP
which is the implementation of GIOP over TCP/IP.



“Request/Response” type of operation invocations
supported by CORBA are usually implemented by
a synchronous two-way communication model where
clients synchronously wait for response from a server
once they invoke operations on server objects. While
this type of synchronous two-way communication model
is useful in general, for industrial control and multime-
dia applications timely delivery of message and contin-
uous media data delivery are necessary and so the time
taken by a client to wait for server response may cause
unacceptable delays.

For these reasons, CORBA’s Event Service was de-
fined to provide asynchronous communication facil-
ity for CORBA applications by decoupling between
suppliers of (event) data and consumers of (event)
data. CORBA’s Event Service can provide anony-
mous, and one-to-many or many-to-many communica-
tion among suppliers and consumers and make connec-
tion configuration possible at run-time. The recently
adopted CORBA Messaging Specification [12] intro-
duced the type-safe Asynchronous Method Invocation
(AMI) model and is aimed at one-to-one communication
but is not flexible enough to be configured at run-time
even though AMI invocations can specify QoS require-
ments.

2.1 Use of CORBA in Real-Time Environ-
ments

Current CORBA specifications lack several real-time
features such as the standard interfaces through which
real-time applications can specify their QoS require-
ments to the ORB, and configure and control ORB
resources appropriately for the achievement of desired
real-time QoS. Some of these deficiencies have been al-
leviated with the recent introduction of CORBA Mes-
saging QoS policy specification [12] and Real-Time
CORBA specification [13]. These specifications are
aimed at soft real-time applications. There is still no
standard way for clients to indicate timing requirements
like latency and jitter of their requests. Furthermore,
compared to low-level programming approaches, current
ORB implementations incur significant run-time over-
heads affecting both throughput and latency, and ad-
ditional unpredictability [19]. These weaknesses have
been studied extensively [19, 20, 23] and have lead to
the development of real-time ORB support. TAO [19]
is a high performance ORB (TAO) whose key compo-
nents include a real-time I/O system, real-time inter-
ORB protocol engine, real-time object adapter, real-
time scheduling and dispatching mechanism, an opti-
mized IDL compiler which generates efficient and pre-
dictable stubs and skeletons. An alternative approach of
Wolfe et. al. [23] involves extending the current ORB
(as opposed to designing a new Real-Time ORB like
TAO) to deal with real-time needs. To this end, they

have developed a Real-Time manager and object ser-
vices such as global time service, real-time event ser-
vice, global priority service, and real-time scheduling to
equip current ORB with real-time capability. It should
be noted that even these RT-ORBs cannot get rid of all
of unpredictability because they don’t have complete
control of the resources that they need.

An alternative to above extensions to the ORB is to
build a higher level CORBA service to provide required
QoS to applications. One such service, is the RT Event
Service [7, 17], developed to extend COS Event Service
into real-time application domain. RT Event Service
extends CORBA Event Service by supporting periodic
rate-based event processing and efficient event filtering
and correlation. Even though the Real-Time Event Ser-
vice provides the above additional features and good
performance under light load conditions, it is not scal-
able nor predictable under heavy load conditions. These
drawbacks of the Event Service are mainly due to fun-
damental architectural coupling of each event channel
with all of its associated suppliers and consumers. Our
proposed CReMeS addresses these shortcomings.

3 Real-Time Channel-based Reflective
Memory (RT-CRM)

Since CReMeS is based on MidART’s Real-Time
Channel-based Reflective Memory (RT-CRM), in this
section, we discuss the relevant aspects of RT-CRM.
RT-CRM was proposed as a service in the MidART
middleware. Figure 1 shows the high level architec-
ture of RT-CRM. RT-CRM is a software-based reflective
memory — it provides data reflection with guaranteed
timeliness. Data reflection is defined as the memory-to-
memory data transfer among application host memories
in a networked environment.

Writer’s Node Reader’s Node
Reflective Reflective
Memory area Q Memory area
[ ]
[ ] \
DPA Network
DRA Threads ,
Threads Reader’s
Writer's Thread Thread

Figure 1. RT-CRM High Level Architecture

Data reflection is accomplished by a Data Push
Agent (DPA) residing on the writer’s node and shar-
ing the writer’s memory area. This agent represents the
reader’s QoS and data reflection requirements. A vir-
tual channel is established between the agent and the



reader’s memory area, through which the writer’s data
is actively transmitted and written into the reader’s lo-
cal memory area by a Data Receive Agent (DRA). RT-
CRM provides efficient and flexible asynchronous com-
munication. The run-time communication model of a
channel-based reflective memory is defined by the data
sending and data reception semantics. Data sending can
be either Push-on-Write or Periodic Push, while data
reception can be either blocking or non-blocking. Since
DPA and DRA are separate threads of control from the
application threads, the data sending and data recep-
tion semantics are entirely definable and parameterized
by the subscriber. The combination of the data push
and reception semantics lead to several general models
of communications commonly found in distributed real-
time applications [22].

4 CReMeS Architecture for CORBA
environments
CReMeS implements MidART’s RT-CRM as a ser-
vice for the CORBA environment. In this section, we
describe the principal design issues and our implemen-
tation experience of CReMeS.
4.1 Design considerations and options
We had three design goals:
1. Maintaining compatibility with MidART’s current
usage.
2. Avoiding any performance loss compared to using
MidART without CORBA.
3. Providing the application with CORBA develop-
ment semantics.

We now elaborate on how we achieve these design goals
in CReMeS.

CReMeS retains compatibility with MidART’s origi-
nal API and their semantics. In MidART, the interface
to the RT-CRM service is provided through a library of
APT similar to memory read-write syntax. In CReMeS,
the interface to the RT-CRM service is constructed as
a CORBA object which is defined by IDL and exposed
to applications. This CORBA object is called the RT-
CRM Interface Object (RIO). Inside the RIO servant
(i.e., the entity implementing the CORBA object [10]),
a mapping to the reflective memory is provided. RIO
methods have the same invocation semantics as Mi-
dART’s original API. Thus by invoking methods of RIO,
an application can set up and use a RT-CRM service.
The RIO interface allows applications to specify real-
time requirements in terms of deadlines, reader periods,
writer periods, and guarantee/non-guarantee mode, and
to choose Push-on-Write or Periodic Push mode of com-
munication. This interface is intuitive and much simpler
to use than other CORBA communication services such
as the RT Event Service.

The procedures to use a RT-CRM service in CORBA
environments is similar to those in MidART explained
in [25]. The only exception is that an application (writer
or reader) now needs to obtain the object reference to
RIO before the application can actually invoke any of
the methods.

As for the second goal, there are many design con-
siderations, but two important ones are the location of
RIO and the communication path between the reflective
memories.

The location of RIO affects the performance of the
communication service. There are two options for the
location. One is to locate RIO in an address space dif-
ferent from that of the application, and the other is to
locate the object in the same address space as that of
the application.

If RIO is located in an address space different from
the application which manages the reflective memory,
one natural choice of path for data stream transfer be-
tween an application (writer or reader) and the associ-
ated reflective memory is the ORB GIOP/IIOP path.
In this design choice, even asynchronous one-way data
transfer needs to pass through the ORB GIOP/IIOP
path twice — once at the writer’s end and again at
the reader’s end — before reaching its final destination.
This not only incurs overhead but also increases the
jitter. From our initial experimental results obtained
with this design choice, the potential for poor perfor-
mance (increased latency and high jitter) was obvious,
especially when transmitting data of large size. In or-
der to achieve performance similar to that of MidART,
we need to adopt the shared memory mechanism em-
ployed in MidART for data stream transfer between
the writer /reader and the reflective memory that it is
attached to. In MidART, through the shared memory
mechanism, a writer (or reader) can ask for data to be
copied directly into (from) the reflective memory in the
same node without additional overheads (such as go-
ing through IP loopback or additional memory copies).
However, if the servant is located in an address space
different from the application, it is difficult to make use
of the shared memory mechanism, especially if we want
to keep the same interface semantics as MidART’s li-
brary APL

Thus, the best choice for the location of the RIO is
the application’s address space. Inside the servant of
the RIO, a shared memory mechanism for data stream
transfer between an application and reflective memory is
provided. This data transfer path does not incur much
of the ORB GIOP/IIOP overheads since in most of cur-
rently existing OTS ORBs (including omniORB2 [16]),
object invocation on an object in the same address space
(called “collocated object”) is optimized to be a virtual
function call.



Let us now examine the issue of the communication
path between reflective memories. Since the ORB pro-
vides a communication infrastructure, one can replace
every communication path (including data reflection be-
tween reflective memories) in the implementation of RT-
CRM by the ORB GIOP/IIOP path. While the ORB
GIOP/IIOP provides reliable communication, it incurs
overhead at both the GIOP/IIOP layer and TCP layer
which GIOP/IIOP is based on. From our experimental
results, we found that in order to achieve performance
similar to that of MidART but under CReMeS we need
to use a separate data channel for data reflection be-
tween two reflective memories which does not make use
of the ORB GIOP/IIOP path. To this end, we make
use of a separate UDP channel for this path. It should
be pointed out that we employ the ORB GIOP /IIOP
for setting up a RT-CRM service since a reliable com-
munication path is desirable in this case.

This approach of adopting separate communica-
tion paths in CORBA environments is also seen in
CORBA audio/video service specification [14]. There,
for the configuration and control of streams, it uses the
GIOP/IIOP of the ORB. Once the streams are config-
ured for an audio/video service, a different communica-
tion channel, such as UDP, is used for data stream trans-
mission. However, there exists a trade-off between gain-
ing performance by adoption of a separate UDP channel
and losing reliability by not using the ORB IIOP.

In order to achieve the third design goal, the de-
sign consideration that we faced can be described as
follows. In CORBA environments, the location of the
target CORBA object is supposed to be transparent
to a client. A client usually contacts a naming server
and obtains the object references to the target CORBA
object. How can we achieve location transparency of
the RIO if the (target) CORBA object is located in
the same address space as the client? Our solution to
this conundrum is to place the (target) RIO in the (dy-
namic) library to be linked with the application. When
the library is initialized, the servant of the RIO is in-
stantiated inside the library, registered into the ORB,
and the object reference to the CORBA object is cre-
ated and registered into a naming server. The library
to be linked with the application at compile-time has
information about the servant of RIO, but the location
information is hidden from the application. An appli-
cation is given the IDL of the interface at compile-time
(and also the library to be linked), and then it contacts
the naming server at run-time and obtains the object
reference of the CORBA object. One copy of RIO is
created for each application process and registered with
a unique name. The uniqueness of the name is achieved
by using process identifier as a part of the name.

Thus, applications using CReMeS have the same us-
age semantics as typical CORBA applications.

4.2 Components of CReMeS

CReMeS is composed of three basic modules: the
RT-CRM Server, a Library and the RT-CRM Service
Coordinator.

The RT-CRM Server is responsible for managing re-
flective memories, scheduling messages and dispatch-
ing them to the other RT-CRM Servers. It contains
a scheduler, a dispatcher, and an admission control
module. The scheduler employs dual priority user-level
scheduling scheme [2] in order to integrate non real-time
data as well as real-time data by providing fair band-
width for non real-time data in such a way that real-
time communication is not affected. The detailed struc-
tures of scheduler, dispatcher, and admission control are
the same as those in MidART (for details, the read-
ers should refer to [22]). The RT-CRM Server exposes
two CORBA objects, “Lib_Comm” and “CRM_Comm”.
Through the interface of “Lib_Comm” CORBA object,
the library can deliver setup messages to the RT-CRM
Server. “CRM_Comm” CORBA object provides an in-
terface to the RT-CRM Server through which the other
RT-CRM Servers can deliver setup messages when nec-
essary. The RT-CRM server runs as a process in a node,
one copy per node.

The library supports mapping to RT-CRM for appli-
cations (producers or consumers). An important com-
ponent of the library is the servant of RIO discussed
in the previous subsection. The library has the neces-
sary support to allow RIO to setup the shared memory
area between an application and the RT-CRM Server.
Also, the library is responsible for locating and calling
the interface of the CORBA object “Lib_Comm” that
allows the transfer of data between an application and
the RT-CRM Server.

RT-CRM Service Coordinator provides a set of ad-
ministrative services including registration, and location
of RT-CRM services for the entire system. It contains
the necessary information that allows the RT-CRM
Server to locate and establish connections between the
reader and writer of a reflective memory. It is imple-
mented as a single process and exposes one CORBA
object (“Glob_Comm”) to RT-CRM Servers.

4.3 CReMeS Communication Structure

In CReMeS, three different kinds of communication
paths are supported.

1. A path to setup a RT-CRM service: All com-
munications for setup pass through the ORB
GIOP/IIOP path. The three modules (the library,
the RT-CRM Server and the RT-CRM Coordina-
tor) use this communication path to set up a RT-
CRM service.



2. A path for data stream communication between an
application (producer or consumer) and the asso-
ciated reflective memory (in the same node): Pro-
ducers write to their reflective memory through the
shared memory mechanism. Similarly, making use
of the shared memory mechanism, consumers read
from the reflective memories in the RT-CRM Server
in the consumer’s node.

3. A path for data stream communication between
producer’s reflective memory and consumer’s re-
flective memory: Data streams written into the re-
flective memory are scheduled and dispatched by
the scheduler and dispatcher within the RT-CRM
Server, and are copied or “reflected” into the re-
flective memory in the RT-CRM Server in the con-
sumer nodes through a UDP channel (or the ORB
GIOP/IIOP path).

5 Experiments and Performance Evalu-
ation

We have done extensive experimentation to evaluate
the real-time properties of CReMeS and its ability to
integrate real-time and non-real-time tasks. We begin
with an overview of the experimental setup and a de-
scription of the metrics used in the evaluation, and then
turn to the performance results.

5.1 Experimental Hardware and Software

All of the experiments were carried out on Pentium
IT PCs with Windows NT 4.0 operating systems over
100BaseT Fast Ethernet. We have isolated the network
segment from the rest of the LAN while running all the
experiments. The two PCs we used in the experiments
have processor speeds of 333MHz and 266MHz respec-
tively. The faster machine is equipped with 128MB of
RAM and the slower machine has 64MB of RAM.

We ran the experiments described in this section on
two real-time communication services, CReMeS and the
Real-Time Event Service v1.9 which is included in the
distribution of TAO v1.1.

The current implementation of CReMeS uses a ro-
bust, high-performance ORB, omniORB2 v3.0.0, devel-
oped by AT&T [16]. This ORB implements the specifi-
cation 2.3 of the Common Object request Broker Archi-
tecture (CORBA). It supports the C++ language bind-
ing, is fully multi-threaded and comes with a COS Nam-
ing Service. We evaluated the CReMeS architecture un-
der its two data communication mechanisms: one using
an out-of-band channel (UDP) and the other using ORB
GIOP/IIOP.

TAOQO’s Real-Time Event Service is an object-oriented,
real-time implementation of the CORBA Event Service
intended to decouple suppliers and consumers and allow
asynchronous event delivery in a predictable manner.
RT Event Service runs on top of TAO, a real-time ORB

endsystem that provides end-to-end quality of service
guarantees [7]. It is important to note that TAO and
its implementation of the Event Service can be config-
ured in a variety of ways to optimize performance. The
results presented in this section were obtained for the
optimized version of TAO and the RT- Event Service.

5.2 Metrics and Experimental Setup

We evaluate the benefits of our real-time communica-
tion service as well as TAO’s RT Event Service by mea-
suring their performance and predictability as a function
of load. For this purpose, we measure the latency and
jitter introduced by the communication service under
different load conditions. In addition, we also deter-
mine how well the communication service scales with
respect to the sizes of messages using the service.

We used a simple distributed application that we be-
lieve is indicative of the type of real-time load that is
likely to be present in a distributed industrial control
system [9]. In this application, a producer of sensor
data (representing a data acquisition device, such as a
remote terminal unit or programmable logic controller)
gathers data from sensors at regular intervals and sends
it to an operator workstation; the operator workstation
processes the data arriving from the sensors and displays
the results on the screen. In all of our experiments, this
consuming process does not perform any processing of
the data.

The producer and the consumer processes ran on two
nodes connected via an isolated network. In one node,
the producer application can be configured to run 1 to N
threads, each thread representing a different device. In
the other node, the consumer application creates 1 to N
entities to receive the messages. Each producer thread,
Py to Py, sends messages through the communication
service to its corresponding consumer entity, Co to C,
in the other node. In our experiments, we vary the
size of message, the production rate of messages and
the number of producer/consumer pairs to evaluate the
real-time properties of the communication channel in
question.

5.3 Latency and Jitter Measurements

High latency overheads introduced by the communi-
cation service have a negative impact in meeting dead-
lines. However, high variance in the latency has a more
detrimental effect for real-time applications that require
end-to-end predictability.

In this experiment the producer creates n threads for
each run. Producer thread Py sends a message to its
corresponding consumer Cy every 50 msec and it is as-
signed the highest priority. The other producers, P; to
P,, send a message to their corresponding consumers,
C1 to C,,, every 100 msec and are assigned a lower pri-
ority than Py. Both producer and consumer first create
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their application threads and set up the necessary asso-
ciations by contacting the communication service. All
threads block on a signal until all of the associations be-
tween producers and consumers have been accepted and
established by the communication service. The highest
priority thread, Py, is responsible for releasing all other
threads. Once the signal to run is given, threads are dis-
patched according to their priority and the communica-
tion service is responsible for the scheduling of messages
between the two nodes.

Each producer of data includes in its message a times-
tamp. Upon receiving the message, a consumer returns
this timestamp to producer via a separate UDP channel
in order to determine the round trip latency of each mes-
sage. Jitter is determined by calculating the standard
deviation of the latency for a particular run. In each
run the highest priority producer sends 4000 messages
and the lower priority producers send 2000 messages.
We vary the load in the experimental set up by increas-
ing the number of low priority producer/consumer pairs
from 0 to 50 and the size of the messages from 1KB
to 8KB. Each message is a sequence of values of type
CORBA::Octet.

Figures 2 and 3 show the average latency produced
by the high priority producer/consumer pair for each
of the communication services evaluated (CReMeS us-
ing the out band channel, CReMeS-ORB using om-
niORB2 and TAO RT-Event Service) for message
sizes of 1KB and 8KB respectively. The jitter results
for the high priority producer/consumer pair with 8KB
messages for all the communications services are shown
in Figure 4. Due to space limitations, we do not present
the jitter results for messages of size 1IKB. However, it is
important to note that the jitter observed for all three
communications services under all load conditions is less
than 0.2 msec for the high priority thread and less than
1 msec for the low priority threads.

Figures 5 and 6 show the average latency produced
by one of the low priority producer/consumer pairs for
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each of the communication services for message sizes of
1KB and 8KB respectively. The jitter results for low
priority thread with 8KB size messages are shown in
Figure 7.

Overall, CReMeS performs better than the rest of the

services tested:

o CReMeS has a lower latency, under most load con-
ditions, for both the high priority and the low pri-
ority producer/consumer pairs than the other ser-
vices.

e Perhaps, more importantly the variance in latency
for CReMeS is quite low and remains stable as the
load increases.

As Figure 2 shows, for CReMeS, latency values for
the high priority producer range from 0.88 msec
with no low priority producers to 0.99 msec (a 12%
increase) with 50 low priority producers for 1KB.
It ranges from 1.8 to 2.6 msecs (a 42% increase) for
messages of size 8KB.

e For all load conditions the jitter observed for the
high priority thread when using CReMeS is less
than the one observed using the RT-Event Service
and similar to CReMeS-ORB.

Figure 4 shows that jitter for the high priority pro-
ducer/consumer pair ranges from 0.025 to 0.3 msec
for 8KB messages.

e The jitter for the low priority producer/consumer
pair is higher than the one recorded for the high
priority pair. However, as Figure 7 shows, the jit-
ter variations for 8KB messages for the low pri-
ority pair are smaller for CReMeS than the ones
produced by other services.

The low variation in jitter for both high priority and
low priority producer/consumers pairs observed with
CReMeS for different loads is an indication of the high
level of predictability and scalability that CReMeS is ca-
pable of providing. A predictable and scalable service is
useful to an application designer, since it allows him /her
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to determine a realistic bound for the worst case execu-
tion time incurred by the communication service. Fig-
ure 8 and Figure 9 clearly illustrate the above point.

Figure 8 shows a trace of the latency measurements
taken for the high priority producer/consumer pair
when 40 low priority producers are active and sending
messages of 8KB. Figure 9 shows a similar trace for the
same load, but instead of using CReMeS as the commu-
nication service TAO’s RT-Event Channel is used. Fig-
ure 10 presents the average latency for the high priority
thread with 40 low priority threads for each communica-
tion as a function of the size of the message. Similarly,
in Figure 11 the average latency for one of the 40 low pri-
ority threads for the same load, 40 threads, is shown for
the same messages sizes. Clearly, CReMeS is the only
communication service that scales, in terms of message
size, for both high and low priority producers.

Turning to the specifics of the performance of the
other threads, TAO’s RT Event Service results indicate
that this service is capable of providing predictable per-
formance only for small messages or a small number of
producer/consumer pairs. Figure 2 shows that the la-
tency for the high priority producer increases 20%, from
1.9 to 2.3 msec, for 1KB size messages. An increase in
latency of 93%, from 3.1 msec to 6.1 msec, is observed in
Figure 3 for the high priority producer/consumer pair
with 8KB messages as the number of low priority pro-
ducers increases from 0 to 50. The percentage of in-
crease in latency for both messages sizes is higher than
the increase recorded for both CReMeS and CReMeS-
ORB. Similarly, the latency for the low priority pro-
ducer shows a similar increase of 17% and 128% for
1KB and 8KB message sizes respectively.

The jitter results for the RT Event Service also
show a similar trend, however the increase is more pro-
nounced for the high priority producer/consumer pair,
as shown in Figure 4. The jitter for the low prior-
ity producer/consumer pair, shown in Figure 7, in-
creases considerably once the number of low priority
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producer/consumer pairs is greater than 10, but remains
constant, ranging from 1.8 msec to 2 msec from then on.

These results indicate that TAO RT Event Service
scales poorly on our test platform. However, our ex-
perimental results show that the RT Event Service per-
formance is acceptable when the size of the message is
low and the amount of traffic passing through the event
channel is moderate.

CReMeS-ORB provides similar latency and jitter as
CReMeS for the high priority producer/consumer pair
as CReMeS and similar to TAO’s RT Event Channel
for the low priority pair. Overall, CReMeS-ORB consis-
tently provides lower latency than the RT Event Chan-
nel for most of the loads evaluated, as shown in Figures
2, 5, 3 and 6. However, the results presented in Figure
7, indicate that this communication service introduces
more jitter for the low priority producer/consumer than
the other two services for most of the load conditions.
One possible reason for this is that CReMeS-ORB uses
the two-way synchronous request, instead of the one-
way operations used by RT Event Service. As with the
RT Event Service, this variation in jitter once the load
increases does not bode well for systems that require
predictable QoS.

6 Related Work

ARMADAJ1] is a middleware supporting fault-
tolerance and end-to-end guarantee for embedded real-
time distributed applications, but unlike CReMeS, is
not constructed on a standard interface. Rajkumar
et.al [18] propose the Real-Time publisher/subscriber
model. This model is similar to event service and the
RT-CRM communication paradigm used in CReMeS
in that they all provide anonymous and group com-
munication. But one key difference between the RT-
CRM communication paradigm and many of the cur-
rent publisher-subscriber communications models is
that RT-CRM effectively achieves the decoupling of the
writer /publisher’s quality of service (QoS) characteris-
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tics from the reader /subscriber’s QoS requirement. This
decoupling allows much more flexibility in constructing
distributed and/or concurrent real-time applications.
What this means is that RT-CRM is not simply a mul-
ticast or unicast data transport protocol. It is not re-
stricted to transmit the data to the receivers/readers
immediately after the data is made available by a writer.
In contrast, it provides application designers the facil-
ity to specify how and when the data should be sent
according to the application’s specific needs.

Recently, OMG adopted a Notification Service [15]
which extends the COS Event Service by adding event
filtering, and event delivery QoS to event service func-
tionalities. However, this Notification Service will have
the same limitation as COS Event Service since it em-
ploys the same event channel architecture as COS Event
Service does.

In [8], TMOSM (TMO Support Middleware) is de-
veloped as a TMO(Time-triggered Message-triggered
Object) execution engine in CORBA environments.
TMOSM is adapted from original TMO execution en-
gine to be used in CORBA environments just as our
CReMeS is adapted from original MidART. Finally, our
work has goals similar to that of the DARPA Quorum
program and associated projects [5, 24] which are aimed
at enabling or enforcing QoS capabilities for CORBA.
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7 Conclusions

In this paper, we have described our experience with
the design, implementation, and evaluation of CReMeS,
a CORBA compliant communication service based on
the concept of a Real-Time Channel-based Reflective
Memory abstraction. CReMeS was designed as an alter-
native communication mechanism to the Event Service
in order to provide adequate end-to-end QoS.

We have designed and implemented this service and
have tested our implementation under various load con-
ditions. Our experimental results demonstrate that our
architecture can achieve better performance (measured
by latency), predictability (measured by jitter) and scal-
ability (measured in terms of number of clients or size of
messages handled) than a real-time implementation of
the CORBA Event Service when an out-band-channel is
employed. These results are important for applications
that required asynchronous communication of large size
data. It is to be noted that these results were obtained
even though CReMeS was implemented on top of an
ORB which has not been optimized for real-time appli-
cations. If CReMeS ran on top of real-time ORB and/or
real-time operating systems, we expect the predictabil-
ity of the communication services to improve even fur-
ther.

We designed a variation of CReMeS to use the ORB



as the communication channel for the reflective memo-
ries, instead of UDP. Our results indicate that CReMeS-
ORB consistently provides lower latency than the RT
Event Service. We plan to conduct further experiments
and modifications in this architecture to improve its per-
formance. For some applications this variation may be
desirable since it enhances the reliability of the commu-
nication because of ORB’s use of TCP.

As part of our future work, we will focus on the
dispatching mechanism for the RT-CRM Server mod-
ule. Currently, CReMeS employs a single dispatching
thread. In [22], we have shown that a single dispatcher
thread can minimize priority inversion, enable priority
tracking and helps in dealing with limited operating sys-
tem priority levels. However, this mechanism works well
when the sending thread is not blocked after passing
a message to the network layer. This is not the case
in our current implementation of CReMeS-ORB, which
may account for the difference in performance between
CReMeS-ORB and the RT Event Service under heavy
load conditions. One of the future direction is to include
a multi-threaded dispatching mechanism in CReMeS-
ORB that works in unison with our current implemen-
tation of a dual priority user level scheduler.
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