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1 An Idiosyncratic Journey Beyond Mean Field Theory

Jonathan S. Yedidia

1.1 Introduction

In this chapter I will try to clarify the relationships between different
ways of deriving or correcting mean field theory. The December 1999
NIPS workshop on “Advanced Mean Field Methods” succeeded nicely
in bringing together physicists and computer scientists, who nowadays
often work on precisely the same problems, but come to these problems
with different perspectives, methods, names and notations. Some of
this chapter is therefore devoted to presenting translations between the
language of the physicist and the language of the computer scientist,
although I am sure that my original training as a physicist will show
through.

I will only cover methods that I have personally used, so this chapter
does not attempt to be a thorough survey of its subject. Readers
interested in more background on the statistical physics of disordered
systems (particularly with regard to the technique of averaging over
disorder using the replica method) might also want to consult references
(19), (28), and (31), while those interested in the computer science
literature on graphical models might consult references (23), (11) and
(7).

The connecting thread between the different methods described here
is the Gibbs free energy. After introducing the inference problem we are
interested in analyzing, I will define the Gibbs free energy, and describe
how to derive a mean field approximation to it using a variational ap-
proach. I will then explain how one might re-derive and correct the mean
field and TAP free energies using high temperature expansions with con-
strained one-node beliefs. I will explore the relationships between the
high-temperature expansion approach, the Bethe approximation, and
the belief propagation algorithm, and point out in particular the equiv-
alence of the Bethe approximation and belief propagation. Finally, I will
describe Kikuchi approximations to the Gibbs Free energy and adver-
tise new belief propagation algorithms that efficiently compute beliefs
equivalent to those obtained from the Kikuchi free energy.
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1.2 Inference

We begin by describing the problem we will focus on. In the appealing
computer science jargon, this is the problem of “inference.” We are given
some complicated probabilistic system, which we model by a pair-wise
Markov network of N nodes. We label the state of node i by z;, and
write the joint probability distribution function as

P(.’El,.’L'z, ...,.’L'N) = %Hwij(x,-,xj) H'l,bl(x,) (11)
(i5) i

Here 9;;(x;, z;) is the “compatibility” matrix between connected nodes i
and j, 1;(x;) is called the “evidence” for node i, and Z is a normalization
constant called the “partition function” by physicists. The notation (ij)
means that the sum is over connected nodes.

Such models have many applications, in fields as diverse as computer
vision, error-correcting codes, medical diagnosis, and condensed matter
physics. It may help your intuition to think of the medical diagnosis ap-
plication. In such an application, the nodes could represent symptoms
and diseases that a patient may have, and the links v;;(z;, ;) could
represent the statistical dependencies between the symptoms and dis-
eases. Note that the links ¢;;(2;, ;) would not normally change from
one patient to the next. On the other hand, for each patient, we would
obtain a different set of evidence 1;(x;), which would correspond to our
knowledge of the symptoms for that specific patient. We would like to
use the model to infer the probability that the patient has a specific
disease—that is, we want to compute a marginal probability like p;(x;),
which is the probability that the patient has the disease denoted by node
i.

I will just give a very rough idea of how such a model might be useful
for other applications. In a computer vision application, we might be
interested in inferring the shape of an object from the evidence provided
by the pixel values of the image. In an error-correcting code, we might be
interested in inferring (decoding) the most likely interpretation of a noisy
message, where the Markov network itself enforces the error-correcting
code. In condensed matter physics, we might want to infer (predict) the
response of a magnetic system to the “evidence” of an inhomogeneous
magnetic field. For the rest of the chapter, however, I will not make



MIT Press Math6X9/2000/06/14:18:53 Page 3

An Idiosyncratic Journey Beyond Mean Field Theory 3

specific interpretations of the meanings of the nodes, and focus on the
mathematics of the problem.

For some networks—small ones or networks that have the topology of
a chain or tree-we can compute any desired marginal probabilities ex-
actly, either by explicitly summing over all possible states of the system
or by using dynamic programming methods (we will return to the dy-
namic programming methods, which are also called “belief propagation”
algorithms, later in the chapter.) Otherwise, however, we must settle for
approximations. If we want to make a distinction between the exact
marginal probabilities and approximate ones (something physicists do
not usually bother doing explicitly), then we can call the approximation
of the exact marginal probability p;(z;) the “belief” b;(z;), and similarly
we call the approximation of the exact two-node marginal probability
Dij(x;, z;) the belief b;;(x;, z;). The mathematical problem we will focus
on for the rest of this chapter is as follows: given some arbitrary Markov
network defined as in equation (1.1), compute as accurately as possible
any desired beliefs.

1.3 Some Models from Statistical Physics

In statistical mechanics, we start with Boltzmann’s law for computing
joint probability functions:

1
P(z1,%2,....,xN) = Z exp(—E(z1, 22, ....,zn)/T) (1.2)

where F is the energy of the system and T is the temperature. We can
re-write equation (1.1) in this way if we define

B(w1, 25, on) = — 3 Jij(wi,z5) = Y hilxs) (1.3)
(i5) i

where the “bond strength” function J;;(z;, x;) is defined by v;; (z;, z;) =

exp(Jij(zi, z;)/T) and the “magnetic field” h;(z;) is defined by ;(x;)

exp(h;(z;)/T).

Before turning to approximation methods, let us pause to con-
sider some more general and some more specific models. Turning first
to more specific models, we can obtain the Ising model by restrict-
ing each node i to have two states s; = 1 (for the Ising case, we
follow the physics convention and label the states by s; instead of
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z;), and insisting that the compatibility matrices v;; have the form
1/11'1' _ ( exp(Jij/T) exp(—Jij/T)

exp(—Ji;/T) exp(Jij/T)
the form ¢; = (exp(h;/T);exp(—h;)/T). In that case, we can write the
energy as

E= _ZJijSisj —Zhisi. (1.4)

) @

) while the evidence vectors have

If we further restrict the J;; to be uniform and positive, we obtain the
ferromagnetic Ising model, while if we assume the J;; are chosen from
a random distribution, we obtain an Ising spin glass. For these models,
the magnetic field h; is usually, but not always, assumed to be uniform.

We can create more general models by introducing tensors like
Yijk (s, 25, Tx) in equation (1.1) or equivalently tensors like Jijx (24, 25, k)
in the energy. One can of course introduce tensors of even higher order.
In the extreme limit, one can consider a model where E(xy, x2,...,ZN) =
Ji2..n (21, %2, ...,xN). If the z; are binary and the entries of this J tensor
are chosen randomly from a Gaussian distribution, we obtain Derrida’s
Random Energy Model (4).

So far, we have been implicitly assuming that the nodes in the
Markov network live on a fixed lattice and that each node can be in
a discrete state x;. In fact, there is nothing to stop us from taking the
x; to be continuous variables, or we can generalize to vectors 7;, where
7; can be interpreted as the position of the ith particle in the system.
Looking at it this way, we see that equation (1.3) can be interpreted as
an energy function for particles interacting by arbitrary two-body forces
in arbitrary one-body potentials.

1.4 The Gibbs Free Energy

Statistical physicists often use the following algorithm when they con-
sider some new model of a physical system:

1. Write down the energy function.

2. Construct an approximate Gibbs free energy.

3. Solve the stationary conditions of the approximate Gibbs free energy.
4

. Write paper.
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To use this algorithm successfully, one needs to understand what a
Gibbs free energy is, and how one might successfully approximate it. We
will explore this subject from numerous points of view.

The ezact Gibbs free energy Geyqct can be thought of as a math-
ematical construction designed so that when you minimize it, you will
recover Boltzmann’s law. Gegocr is a function of the full joint probability
function P(z1,z2,...,zn) and is defined by

Gezact(P(z1,22,...,zN)) =U - TS (1.5)
where U is the average (or “internal”) energy:

U= Z P(z1,22, ..., zN)E(21,22, ... TN) (1.6)

L1,L2y000yT

and S is the entropy:

S=- Z P(z1,22,....,zN) In P(x1, 22, ..., ZN). (1.7

T1,T2,..., &N

If we minimize Gegaet With respect to P(z1, 2, ...,2n) (one needs
to remember to add a Lagrange multiplier to enforce the constraint
> er.ze,...on P(T1,Z2,.;2n) = 1), we do indeed recover Boltzmann’s
Law (equation (1.2)) as desired. If we substitute in P = exp(—E/T)/Z
into Gegqet, we find that at equilibrium (that is, when the joint proba-
bility distribution has its correct value), the Gibbs free energy is equal
to the Helmholtz free energy defined by F = —T'In Z.

One can understand things this way: the Helmholtz free energy is just
a number equal to U — T'S at equilibrium, but the Gibbs free energy is
a function that gives the value of U — T'S when some constraints are
applied. In the case of G¢z4ct, We constrain the whole joint probablity
function P(z1,Z2, ..., N )- In other cases that we will look at shortly, we
will just constrain some of the marginal probabilities. In general, there
can be more than one “Gibbs free energy”—which one you are talking
about depends on which additional constraints you want to apply. When
we minimize a Gibbs free energy with respect to those probabilities that
were constrained, we will obtain self-consistent equations that must be
obeyed in equilibrium.

The advantage of working with a Gibbs free energy instead of
Boltzmann’s Law directly is that it is much easier to come up with ideas
for approximations. There are in fact many different approximations
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that one could make to a Gibbs free energy, and much of the rest of this
chapter is devoted to surveying them.

1.5 Mean Field Theory: The Variational Approach

One very popular way to construct an approximate Gibbs free energy
involves a variational argument. The derivation given here will be from a
physicist’s perspective; for an introduction to variational methods from
a different point of view, see (12). Assume that we have some system
which can be in, say, K different states. The probability of each state is
some number p, where Ele pa = 1. Let there be some quantity X,
(like the energy) which depends on which state the system is in, and
introduce the notation for the mean value

K
(X) =) paXa- (1.8)

Then by the convexity of the exponential function, we can prove that
(e=X) > e~ (1.9)
Now consider the partition function

Z =" exp(—Eq/T). (1.10)

Let us introduce some arbitrary “trial” energy function E°. We can
manipulate Z into the form

_ 2o exp(—(Ea — EY)/T) exp(—EQ/T)
Z = S (0 /T) ;exp(—Eg/T) (1.11)
or
Z= <e*<E*E°>/T>O 3 exp(—ES/T) (1.12)

where the notation (X), means the average of X, using a trial proba-
bility distribution

0 _ exp(—Eg/T)

Pa = S oxp(~EQ/T)’ (1.13)
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We can now use the inequality (1.9) to assert that

7 > e (BT ™ exp(~ B2/ T) (1.14)

for any function E2. In terms of the Helmholtz free energy F = —T'In Z,
we can equivalently assert that

F<-Thn) exp(=ES/T)+(E—E°) = Fyar (1.15)

where we define the quantity on the right-hand side of the inequality
as the variational mean field free energy F,, corresponding to the trial
probability function p2. A little more manipulation gives us

Foar = (E)y—TSo > F (1.16)

where Sy is the trial entropy defined by So = — 3 p%Inp?. This
inequality gives us a useful variational argument: we will look for the
trial probability function p which gives us the lowest variational free
energy.

To be able to use the variational principle in practice, we must
restrict ourselves to a class of probabilities for which we can actually
analytically compute F,,,.. The quality of the variational approximation
will depend on how well the trial probability function can represent the
true one. For continuous z; or 7;, one can use Gaussians as very good,
yet tractable variational functions (28; 2; 3). Richard Feynman was one
of the first physicists to use this kind of variational argument (with
Gaussian trial probability functions) in his treatment of the polaron
problem (5).

The variational probability functions that are tractable for discrete
x; are not nearly as good. When people talk about “mean field theory,”
they are usually referring to using a trial probability function of the
factorized form

p(x1, 22, 2N) = Hbi(fvi)- (1.17)

and computing F,,, for some energy function of a form like equation
(1.3). The “mean field” Gibbs free energy that results is

Gur = —Z Z Jij(xi,l'j)bi(l'i)bj(l'j) - zzhz(xz)bz(xz)

(ij) ®izj
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To obtain the beliefs in equilibrium according to this approximation,
one minimizes G with respect to the beliefs b;(z;). Let us see how
this works for the Ising model with no external field. In that case, it
makes sense to define the local magnetization

m; = (s;) = bi(si = 1) — bi(s; = —1) (1.19)

which is a scalar that can take on values from —1 to 1. In terms of the
magnetization, we have

GMF = —ZJz-jm,-mj
(i5)

1+m; 1+m; 1—m; 1—m;
T 1 1 1.2
[ () e (15 )| oo
and the mean field stationary conditions are

2 Jijmj>

(1.21)

m; = tanh ( T

If we further specialize to the case of a ferromagnet on a d-
dimensional hyper-cubic lattice, set all the J;; = 2—1d, and assume that
all m; are equal to the same magnetization m, we can analytically ana-
lyze the solutions of this equation. We find that above T, = 1, the only
solution is m = 0, while below T,., we have two other solutions with
positive or negative magnetization. This is a classic example of a phase
transition that breaks the underlying symmetry in a model. The mean
field prediction of a phase transition is qualitatively correct for dimen-
sion d > 2. Other bulk thermodynamic quantities like the susceptibility
X = 0m/Oh and the specific heat C = 9U/IT are also easy to compute
once we have the stationary conditions.

How good an approximation does mean field theory give? It depends
a lot on the model. For the Ising ferromagnet, mean field theory becomes
exact for a hyper-cubic lattice in the limit of infinite dimensions, or for
an “infinite-ranged” lattice where every node is connected to every other
node. On the other hand, for lower dimensional ferromagnets, or spin
glasses in any dimension, mean field theory can give quite poor results.
In general, mean field theory does badly when the nodes in a network
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fluctuate a lot around their mean values, because it incorrectly insists
that all two-node beliefs b;;(z;, ;) are simply given by b;;(xi,x;) =
bi(z;)b;(x;). In practice, one sees many papers where questionable mean
field approximations are used when it would not have been too difficult
to obtain better results using one of the techniques that I describe in
the rest of the chapter.

1.6 Correcting Mean Field Theory

Mean field theory is exact for the infinite-ranged ferromagnet, so
when physicists started contemplating spin glasses in the 1970’s, they
quickly turned to the simplest corresponding model: the infinite-ranged
Sherrington-Kirpatrick (SK) Ising spin glass model with zero field and
J;j’s chosen from a zero-mean Gaussian distribution (25). Thouless, An-
derson and Palmer (TAP) presented “as a fait accompl?” (26) a Gibbs
free energy that they claimed should be exact for this model:

14+m; 14+m; 1—-m; 1—m;
—ﬁGTAP = —Z[ 2 ln( 3 >+ 2 III( 2 ):|

+8> Jijmim; + & Z JE(1—m})(1—m?)  (1.22)
(i7) (i5)

where 8 = 1/T is the inverse temperature. The only difference between
the TAP and ordinary mean field free energy is the last term, which is
sometimes called the “Onsager reaction” term.

I have written the TAP free energy in a suggestive form: it appears
to be a Taylor expansion in powers of 3. Plefka showed that one could in
fact derive Grap from such a Taylor expansion (24). Antoine Georges
and T later (10) showed how to continue the Taylor expansion to terms
beyond O(3?), and exploited this kind of expansion for a variety of
statistical mechanical (8; 30) and quantum mechanical (9) models. Of
course, the higher-order terms are important for any model that is
not infinite-ranged. Because this technique is little-known, but quite
generally applicable, I will review it here using the Ising spin glass energy

function.

The variational approximation gives a rigorous upper bound on the
Helmholtz free energy, but there is no reason to believe that it is the best
approximation one can make for the magnetization-dependent Gibbs free
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energy. We can construct such a Gibbs free energy by adding a set of
external auxilary fields (Lagrange multipliers) that are used to insure
that all the magnetizations are constrained to their desired values. Note
that the auxiliary fields are temperature-dependent. Of course, when the
magnetizations are at their equilibrium values, no auxiliary fields will be
necessary. We write

—BG =In Z exp ﬁZJz]s 8]+Z/\ m;) (1.23)

81,.498N (i)

where the A(8) are our auxiliary fields.
We can use this exact formula to expand —8G(3, m;) around 3 = 0:

6= (00 - (550) 0~ (55 ) T

2
At 8 =0, the spins are entirely controlled by their auxiliary fields, and
so we have reduced our problem to one of independent spins. Since m;
is fixed equal to (s;) for any inverse temperature (3, it is in particular
equal to (s;) when 8 = 0, which gives us the relation

Es =41 Si eXp( (0 Sz)
mi = (8i)g_q = > fil exp(A;(0)s;)

From the definition of —3G(83, m;) given in equation (1.23), we find that

= tanh(X;(0)) (1.25)

—(BG)p=0 = »_ In[cosh(X;(0))] — Ai(0)m,. (1.26)
Eliminating the A;(0), we obtain
—(BG)g—0 = — ; [1 +2mi In (1 +2m’> 41 —2mi In (1 _2m")] (1.27)

which is just the mean field entropy. Considering next the first derivative,
we find that

(5G) e
ﬂ( 6ﬂ )ﬂZO <ZJZJS’LSJ> +ﬂ<31 z)g:() 6,6,3:0-(1-28)

(i7) B=0
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At 8 = 0, the two-node correlation functions factorize so we find that

ﬂ( (g)ﬂG)> = ﬂ Z Jijmimj (1.29)
F=0 )
which is, of course, the same as the variational internal energy term.
Naturally, we can continue this expansion to arbitrarily high order if
we work hard enough. Unfortunately, neither Georges and I, nor Parisi
and Potters who later examined this expansion (22), were able to derive
the Feynman rules for a fully diagrammatic expansion, but there are
some tricks that make the computation easier (10). To order 3%, we find
that

14+ m; 14+ m; 1—m; 1—m;
-G = —;[ 5 ln( 5 )+ > 1n< 5 )]
+ﬂZJijmimj
(45)

2
ﬁZﬂl— (1-m2)
(i4)

ﬁ
Z —m)m;(1 —m3)
(i5)
+6° > Jij ik k(1 = mi) (1 — m3)(1 —m3)
(ijk)
Z TH(L—m3) (1 = m3)(1 4 3m] + 3m3 — 15mIm3)

(zJ)

+2p3* Z Tk Trimi(1 —m?)m; (1 — m?)(l —mj)
(ijk)
+4* Z Jij kI ii(1 — m3) (1 —m3) (1 —mg)(1 — mj)
(ijkl)
i (1.30)

where the notation (i5), (ijk), or (¢jkl) means that one should sum over
all distinct pairs, triplets, or quadruplets of spins.

For the ferromagnet on a d-dimensional hypercubic lattice, all these
terms can be reorganized according to their contribution in powers of
1/d. Tt is easy to show that only the mean field terms contribute in
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the limit d — oo and to generate 1/d expansions for all the bulk
thermodynamic quantities, including the magnetization (10).

A few points should be made about the Taylor expansion of equation
(1.30). First, as with any Taylor expansion, there is a danger that the
radius of convergence of the expansion will be too small to obtain results
for the value of 3 you are interested in. It is hard to say anything about
this issue in general. For ferromagnets, there does not seem to be any
problem at low or high temperatures, but for the SK model, the issue is
non-trivial and was analyzed by Plefka (24).

Secondly, since the expansion was presented as one that starts at
B = 0, it is initially surprising that it can work at low temperatures.
The explanation, at least for the ferromagnetic case, is that the higher-
order terms become exponentially small in the limit 77 — 0. Thus, the
expansion works very well for T'— 0 or T' — oo and is worst near T.

Finally, the TAP free energy is sometimes justified as a “Bethe ap-
proximation,” that is, as an approximation that would become exact on
a tree-like lattice (1). In fact, the general convention in the statistical
physics community is to refer to the technique of using a Bethe approx-
imation on a inhomogeneous model as the “TAP approach.” In general,
to obtain the proper Bethe approximation from the expansion (1.30) for
models on a tree-like lattice, we need to sum over all the higher-order
terms that do not include loops of nodes. The TAP free energy for the
SK model only simplifies because for that model all terms of order 3°
or higher are believed to vanish anyways in the limit N — oo (which
is the “thermodynamic limit” physicists are interested in). In the next
section, we will describe a much simpler way to arrive at the important
Bethe approximation.

1.7 The Bethe Approximation

The remaining sections of this chapter will discuss the Bethe and Kikuchi
approximations and belief propagation algorithms. My understanding
of these subjects was formed by a collaboration with Bill Freeman at
MERL and Yair Weiss at Berkeley. These sections can be considered an
introduction to the work that we did together (29).

So far we have discussed Gibbs free energies with just one-node
beliefs b;(z;) constrained. The next obvious step to take is to constrain
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the two-node beliefs b;;(x;,z;) as well. For Markov networks that have
a tree-like topology, taking this step is sufficient to obtain the exact
Gibbs free energy. The reason is that for these models, the exact joint
probability distribution itself can be factorized into a form that only
depends on one-node and two-node marginal probabilities:

p(e1, @2, o) = [ [ pis(@ir 25) [[[piz)] (1.31)
(i5) i
where ¢; is the number of nodes that are connected to node i.

Recall that the exact Gibbs free energy is G = U — T'S, where the
internal energy U = )  pa Eq, the entropy S = ) poInp,, and « is
an index over every possible state. Using equation (1.31), we find that
the exact entropy for models with tree-like topology is

S = —Z Z pij (@i, z;) Inpij (23, ;)
(ij) zizj

—Z(l —qz')Zpi(mi)lnpi(mi). (1.32)

The average energy can be expressed exactly in terms of one-node and
two-node marginal probabilities for pair-wise Markov networks of any

topology:
U = =33 pilene) (i (@i, 2,9) + hi(w:) + hi(;))
(i3) @i Tj
- Z(l — ) > pi(wi)hi(zs). (1.33)

The first term is just the average energy of each link, and the second
term is a correction for the fact that the evidence at each node is counted
q; — 1 times too many.

The Bethe approximation to the Gibbs free energy amounts to
using these expressions (with beliefs substituting for exact marginal
probabilities) for any pair-wise Markov network:

GBethe(bisbig) = Y Y bij(wi,z;)(Tnbij(wi, 7;) + Eij(wi, ;)
(ij) ®i>T;

+ 2(1 —qi) > bi(w:)(TInbi(z;) + Ei(z:)) (1.34)

24

where we have introduced the local energies F;(z;) = —h;(z;) and
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Eij (.’Ez', Z‘j) = —Jz'j (x,-, .CL']') — h,(m,) — h]’ (.’L'J) 0)§ course, the beliefs
bij(zi, z;) and b;(x;) must obey the standard normalization conditions
>z bi(zi) = 1 and 37, bij(z;, ;) = 1 and marginalization conditions
bi(wi) = 3 g, bij(wi, 75).

There is more than one way to obtain the stationarity conditions for
the Bethe free energy. For inhomogeneous models, the most straightfor-
ward approach is to form a Lagrangian L by adding Lagrange multipliers
which enforce the normalization and marginalization conditions and to
differentiate the Lagrangian with respect to the beliefs and those La-
grange multipliers. We have

L = Gpehe+ Y, > Nij(z;) (bj(fﬂj) = bij(ai, mj))

(i) @j

+D 0D Nila) | bilws) = D bij(wi, z5)

(ig) =

+ D v (1 - Z’h’(%’)) +> v [ 1= D bilwizy) | (1.35)

(i4) Titj
Of course, the derivatives with respect to the Lagrange multipliers

give back the desired constraints, while the derivatives with respect
to the beliefs give back equations for beliefs in terms of Lagrange

multipliers:

_ 1 Ei(z;) | 22 Aii(i)
bz(wz)—ZeXp [— T T(q — 1) (1.36)
and
e ) — Eij(i, ) | Ni(@i) | i (@)
bu(wuﬂa)—zi_exp[ e (1.37)

where Z; and Z;; are constants which enforce the normalization con-
ditions. Finally one can use the marginalization conditions to obtain
self-consistent equations for the Lagrange multipliers.

The Bethe approximation is a significantly better approximation to
the Gibbs free energy than the mean field approximation. The only real
difficulty is a practical one: how do we minimize the Bethe free energy
efficiently? As we shall see, it turns out that the belief propagation
algorithm, which was developed by Pearl following an entirely different
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path, provides a possible answer.

1.8 Belief Propagation

Belief propagation algorithms can probably best be understood by imag-
ining that each node in a Markov network represents a person, who com-
municates by “messages” with those people on connected nodes about
what their beliefs should be. Let us see what the properties of these
messages should be if we want to get reasonable equations for the beliefs
bi(x;). We will denote the message from node j to node i by Mj;(x;).
Note that the message has the same dimensionality as node i—the person
at j is telling the one at ¢ something like “you should believe in your
state 1 twice as strongly as your state 2, and your state number 3 should
be impossible.” That message would be the vector (2,1,0). Now imagine
that the person at node 7 is looking at all the messages that he is get-
ting, plus the independent evidence that he alone is receiving denoted
by 1;(z;). Assume that each message is arriving independently and is
reliably informing the person at node ¢ about something he has no other
way of finding out. Given equally reliable messages and evidence, what
should his beliefs be? A reasonable guess would be

bi(wi) = ayi(;) H Mji(z;) (1.38)

JEN(P)

where « is a normalization constant, and N (i) denotes all the nodes
neighboring 4. Thus a person following this rule who got messages (2, 1, 0)
and (1,1,1) and had personal evidence (1,2,1) would have a belief
(.5,.5,0). His thought process would work like this: “The first message is
telling me that state 3 is impossible, the second message can be ignored
because it is telling me it does not care, while my personal evidence is
telling me to believe in state 2 twice as strongly as state 1, which is the
opposite of what the first message tells me, so I will just believe in state
1 and state 2 equally strongly.”

Now consider the joint beliefs of a pair of neighboring nodes ¢ and j.
Clearly they must depend on the compatibility matrix ¢;;(z;,z;), the
evidence at each node 9;(x;) and v;(z;), and all the messages coming
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into nodes i and j. The obvious guess would be the rule
bij (i w5) = oy (i, o) (@) (wg) [ Mui(ws) [ Mij(;)(1.39)
kEN(i) LeN(j)

If we combine these rules for the one-node and two-node beliefs with the
marginalization condition

bi(zi) = Zbij(xi,xj) (1.40)
z;
we obtain the self-consistent equations for the messages
Mij(z;) = a Z¢ij (@i, x)i(x;) H Mi(z;) (1.41)
i keN(i)\j

where N (i)\j means all nodes neighboring i except for j. The belief
propagation algorithm amounts to solving these message equations iter-
atively, and using the solution for the messages in the belief equations.

So far I have probably just convinced you that the belief propagation
algorithm is vaguely plausible. Pearl did more than that of course-he
showed directly that all the belief propagation equations written above
are exact for Markov networks that have a tree-like topology (23). One
might note that this fact was already partially known in the physics
literature—as long ago as 1979, T. Morita wrote down the correct belief
propagation equations for the case of an Ising spin glass in a random
field (20). Of course, the suitability of these equations as an algorithm
was not appreciated. Recently, Y. Kabashima and D. Saad (13; 14) have
shown that for a number of other specific disordered models, the TAP
approach and belief propagation give rise to identical equations, and
speculated that this might be true in general.

Freeman, Weiss and I have shown that this identity does in fact hold
in general (29). To prove it for general Markov networks, you simply need
to identify the following relationship between the Lagrange multipliers
Aij(z;) that we introduced in the last section and the messages M;;(z;):

/\z'j(.’L'j) =TIn H Mkj(a:j) (142)
keN(H)\i

Using this relation, one can easily show that equations (1.36) and (1.37)
derived for the Bethe approximation in the last section are equivalent
to the belief propagation equations (1.38) and (1.39).
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1.9 Kikuchi Approximations and Generalized Belief Propagation

Pearl pointed out that belief propagation was not exact for networks with
loops, but that has not stopped a number of researchers from using it on
such networks, often very successfully. One particularly dramatic case
is near Shannon-limit performance of “Turbo codes” and low density
parity check codes, whose decoding algorithm is equivalent to belief
propagation on a network with loops (18; 17). For some problems in
computer vision involving networks with loops, belief propagation has
worked well and converged very quickly (7; 6; 21). On the other hand,
for other networks with loops, belief propagation gives poor results or
fails to converge (21; 29).

What has been generally missing has been an idea for how one might
systematically correct belief propagation in a way that preserves its
main advantage-the rapidity with which it normally converges (27). The
idea which turned out to be successful was to work out approximations
to the Gibbs free energy that are even more accurate than the Bethe
approximation, and find corresponding “generalized” belief propagation
algorithms.

Once one has the idea of improving the approximation for the Gibbs
free energy by constraining two-node beliefs like b;;(x;,x;), it is natural
to go further and constrain higher-order beliefs as well. The “cluster
variation method,” which was invented by Kikuchi (15; 16), is a way
of obtaining increasingly accurate approximations in precisely this way.
The idea is to group the nodes of the Markov network into basic (possibly
overlapping) clusters, and then to compute an approximation to the
Gibbs free energy by summing the free energies of the basic clusters,
minus the free energy of over-counted intersections of clusters, minus
the free energy of over-counted intersections of intersections, and so on.
The Bethe approximation is the simplest example of one of these more
complicated Kikuchi free energies: for that case, the basic clusters are all
the connected pairs of nodes. Every Kikuchi free energy will handle the
average energy exactly, and the entropy will become increaingly accurate
as the size of the basic clusters increases.

Rather than repeat analysis that you can find elsewhere, I will just
advertise the results of our work (29). One can indeed derive new belief
propagation algorithms based on Kikuchi free energies. They converge to
beliefs that are provably equivalent to the beliefs that are obtained from
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the Kikuchi stationary conditions. The new messages that need to be
introduced involve groups of nodes telling other groups of nodes what
their joint beliefs should be. These new belief propagation algorithms
have the attractive feature of being user-adjustable: by paying some
additional computational cost, you can buy additional accuracy. In
practice, the additional cost is not great: we found that we were able
to obtain dramatic improvements in accuracy at negligible cost for some
models where ordinary belief propation performs poorly.
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