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Abstract

A fundamental, unsolved vision problem is to distinguish
image intensity variations caused by surface normal vari-
ations from those caused by reflectance changes–ie, to tell
shading from paint. A solution to this problem is necessary
for machines to interpret images as people do and could
have many applications.

We take a learning-based approach. We generate a train-
ing set of synthetic images containing both shading and re-
flectance variations. We label the interpretations by indicat-
ing which coefficients in a steerable pyramid representation
of the image were caused by shading and which by paint.

To analyze local image evidence for shading or re-
flectance, we study the outputs of two layers of filters, each
followed by rectification. We fit a probability density model
to the filter outputs using a mixture of factor analyzers. The
resulting model indicates the probability, based on local im-
age evidence, that a pyramid coefficient at any orientation
and scale was caused by shading or by reflectance varia-
tions. We take the lighting direction to be that which gener-
ates the most shape-like labelling.

The labelling allows us to reconstruct bandpassed im-
ages containing only those parts of the input image caused
by shading effects, and a separate image containing only
those parts caused by reflectance changes. The resulting
classifications compare well with human psychophysical
performance on a test set of images, and show good results
for test photographs.

1. Introduction
A fundamental problem in image interpretation is to iden-
tify the cause of intensity variations in the image. Humans
can easily look at a photograph and identify which parts of
the image are due to shading, which are due to reflectance
variations, occluding contours, etc. These assignments are
crucial for proper interpretation of the image. For exam-
ple, shape-from-shading algorithms typically assume all in-

�Present address: Psychology Dept., Stanford University, Stanford, CA
94305

tensity changes are due to surface normal changes, and re-
construct spurious shapes when confronted with reflectance
changes. Here, we restrict ourselves to distinguishing shad-
ing from paint.

Figure 1 (a) illustrates the problem. Some of the image
intensity changes are caused by the graffiti paint; others of
the intensity variations are caused by the shape of the rock
on which the paint was sprayed. Some locations show both
effects. (b) shows the same location a few months later,
after an attempt was made to enforce a uniform reflectance
over the rock. It is simple to see the underlying shape of (b)
in the image (a); we want to develop a computer program to
do the same thing.

This problem has not yet been solved for real images.
Sinha and Adelson [11] solved the problem in a blocks
world domain, based on heuristic rules over a set of junc-
tions and contours, which were pre-identified by hand. Like
other blocks world vision solutions, this hasn’t led to an
analogous solution for real images.

Freeman and Viola [4] proposed a prior probability for
shapes which penalized the elaborate shapes that were re-
quired to explain images made by reflectance changes.
Their method assumed each image was either all shading
or all paint and couldn’t process an image containing both
shading and reflectance changes.

Freeman, Pasztor, and Carmichael [3] used a Markov
network to solve for the shape and reflectance combinations
which best explain the input image data, using a training set
of labelled images. However, their method required pre-
storing all possible shape and reflecance interpretations for
any patch. This caused the conjectured scene to be a poor
fit to the observed image, limiting the applicability of the
method.

To date, there is no adequate solution which identifies
which components of an image are caused by shading vari-
ations, and which are caused by reflectance variations.

Our approach is training-based, like that of [3], but we
use representations that make good solutions feasible. We
represent the image data using multi-layer filter energy
models, which allows better generalization over inputs than
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(a) (b)

Figure 1: (a) Example image of the sort that we would like
to separate shading and reflectance information. People can
trivially make the separation, yet it is a difficult task for the
computer. (b) Graffiti removal by the local town reveals the
underlying shape on which the paint was applied.

a pixel representation. We identify shading by assigning la-
bels to image pyramid coefficients, which allows the proper
interpretation in image regions where both shading and re-
flectance events occur.

Because the interpretation in some regions, such as iso-
lated contours, will be ambiguous, a full solution will fol-
low the local analysis with a propagation stage. However,
we show here that even the initial local analysis can go far
in disambiguating shading from paint.

2. Training set

Figure 2: Example of training images for mixed shape and
reflectance classification.

We generate test images in the following way. We first
generated test images of all shading or all reflectance. Some
of these were made by a fractal process, using the mid-point
displacement procedure. Others were generated by sum-
ming randomly placed ellipses of randomized position, ori-
entation, size, and eccentricity in an image. Fig. 2 shows a
sampling of the all-shading and all-reflectance images. We

shaded the shapes by assuming Lambertian surfaces, with
the light direction fixed, from the left, with a mid-gray con-
stant added to make all the light intensities positive. (We
will rotate the input image to generalize to other assumed
light directions).

Not all products of shading and reflectance images are
easily interpretable by people. We used visual interpretabil-
ity as a guide in synthesizing the labelled training set. We
found that a paint image could be multiplied by a rendered
shape image to yield an interpretable result provided that at
least one of the two images was very sparse, for example,
was generated from a small number of ellipses.

3. Representation and labelling
How should we label the shading and reflectance compo-
nents of an image? In many images, such as Fig. 4, a given
spatial localtion can have intensity changes caused by both
shading and reflectance effects in the image. A labelling of
shading or reflectance at each pixel would not be adequate.

Instead, we provide a label for each possible orienta-
tion, scale, and position. We represent the input image as
a steerable pyramid [10] and provide one label for each co-
efficient of the steerable pyramid. (We chose the steerable
pyramid representation because it is self-inverting, and the
image subbands are not aliased.) This can be thought of as
the generalization, for a signal processing approach, of the
assumption in [11] that each intensity edge can have only
one cause. (No paint and shape changes were allowed at
the same contour).

To label these images, we made pyramids from each of
the multiplicand images, and set the label of each coeffi-
cient in the product image to be that of modality with the
larger coefficient of the multiplicand images. We omitted
ambiguous classification points: if the ratio of absolute val-
ues of the pyramid coefficients for each class was between
0.2 and 0.8, we omitted that point from the training set.

Multiplication of the source images causes the steerable
pyramid coefficients to interact in a non-linear way. How-
ever, we found that for our sparse images, this approxima-
tion was adequate. Figure 4 (a) shows a test image and (d)
the corresponding shading/reflectance labelling of steerable
pyramid coefficients.

4. Local evidence
Influenced by the success of [2, 9, 6], we use a cascade of
local filters to represent the local image area in a way that al-
lows generalization from the training data. It is thought [9]
that such representations generalize better over image in-
tensities and over slight variations in relative positions than
a pixel representation does. There is evidence from psy-
chophysics research [12] that such cascades may exist in
the human visual system.
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We apply the filters of Fig. 3 in a cascade, also used by
[13] for image retrieval applications. These filters are sim-
ple combinations of first and second derivatives. We first
form three copies of the original image, downsampled by 0,
1, and 2 factors of two in each dimension. Then, to each
of those images, we apply each of the filters, and take the
absolute value of the output. Then we subsample and ap-
ply each filter again to the magnitude of the filter responses.
Three starting images, times 25 initial filters, times 25 sec-
ond filterings gives a 1875 dimensional feature vector, with
each dimension corresponding to a different combination of
initial subsamplings and first and second level filterings.

Figure 3: Filters used in cascaded energy model of local
image region.

Given the cascaded filter responses, we want to assign
a probability that each different image pyramid coefficient
corresponds to the shading or reflectance label.

(Note there are two different sets of filters–the cascaded
analysis filters and the steerable pyramid filters. The first
are small and fast to compute. The pyramid filters are larger
and designed to allow exact reconstruction of the input im-
age. While we could do all the processing using only the
pyramid filters, we use the smaller and separable second set
of filters for speed).

Once these dimensions are sampled, two normalization
procedures are performed. First, the value of each dimen-
sion, is scaled so that its average value over all training
points, is 1. The second normalization scales the feature
vector for each training point so that the average value is
1. The purpose of the second normalization is to normalize
for contrast differences; thus, the training done in an area
of a certain contrast can be applied to classifying areas with
a wide variety of contrasts. The first normalization is de-
signed to equalize the importance of each dimension so that
the second normalization does not favor certain dimensions.
When new images are being classified, the same normaliza-
tions are applied.

Many of the dimensions of our 1875-d feature vector are

redundant, although we do not know ahead of time which
dimensions those will be. We prune them to a more man-
ageable set in the following way: First, we compute the
correlation between each of the dimensions in the training
data. Then, we delete one of the pair of dimensions with
the highest absolute correlation. This deletion process is
iterated until we have pared down the dataset to 150 dimen-
sional feature vectors~d. This must be done so that the mix-
ture of factor analyzers algorithm can run in a reasonable
amount of time.

We modelled the probability density for each class la-
bel (shading and reflectance) by a mixture of gaussians
[1], using the mixture of factor analyzers approach of [5].
By evaluating the resulting categorization accuracy using
cross-validation with the labelled training data, we chose to
use 10 gaussians in the mixture, and 4 dimensions in each
gaussian. We fit one such mixture for each class label,l,
and for each orientation,o, and scale,s of steerable pyra-
mid coefficient:

Pl;o;s(~d) =
1

Z

10X

i=1

�iN(~d; ~di;�i); (1)

N(~d; ~di;�i) is a gaussian in~d of mean~di and covariance
�i, �i is the weight of theith mixture gaussian, andZ is a
normalization constant,

Given an image to analyze, we apply the layered filters,
rectifying the output at each level. We select the 150 out-
puts determined in the training set to be most uncorrelated
with each other, and evaluate the probability density for
each class labelling (shading or paint) at each orientation
and scale of pyramid coefficients, using the learned densi-
ties,Pl;o;s(~d). We compare the shading and paint probabil-
ities, and assign the label of the larger density. (We do not
assign confidence measures, or indicate ties).

We illustrate an initial test on our labelling method by
applying it to an image generated by the same program as
generated the training set images, although this image itself
was not in the training set. This is thus a typical image of
the set described by the training data, yet a novel image.
Figure 4 (a) is the test image. (d) is the labels of the steer-
able pyramid coefficients (dark means paint, light means
shape). Using these labels, one can reconstruct the ideal
result bandpass paint (b) and shading (c) images.

The learning-based algorithm’s performance is not per-
fect, as above, but is good. (e) through (g) show the class
labels on the 4 orientations of the steerable pyramid at the
three spatial scales (black is paint; white is shape). We
use the class labels to mask out only those pyramid coeffi-
cients estimated to be due to paint, then reconstruct the im-
age from those pyramid coefficients to give (h). Doing the
same for the coefficients labeled as shape gives (i). Because
we are only labelling bandpass pyramid coefficients, these

3



images have no DC component. The reconstructed images
compare well with the best possible bandpassed reconstruc-
tions, (b) and (c), showing that we can separate shading and
reflectance effects in images similar to the training set im-
ages.

4.1 Unknown lighting direction

To a first approximation, the lighting direction that humans
perceive can be summarized by the azimuthal angle, in the
plane of the image, that the light arrives from (see discus-
sion in [7]). We make that assumption and allow for un-
known lighting direction by rotating the image through dif-
ferent angles before applying the labeling algorithm, which
is only trained on images with the light arriving from the
left. While the majority of reflectance changes are likely to
be classified as reflectance changes no matter what direction
they are facing, the algorithm has difficulty properly recog-
nizing shape changes when they are produced by a lighting
direction that is not from the left or right. As a result, the ro-
tated image that produces the most shapelike classification
is presumed to have the lighting from the left or right, rela-
tive to the orientation of the rotated image. It is this image’s
classification that is chosen as the final classification.

We determine an index of shapeness by computing the
ratio of total variance of the extracted shape image to the
total variance of the extracted reflectance image.

5. Results

5.1 Application to psychophysics database

We applied the labelling to a random subset of the images
of the psychophysics test. The Spearman rank ordering cor-
relation [8] between the mean of the subjects’ rankings and
that of the algorithm was 0.46. at a significance level of
0.0027. The Spearman between differrent human subjects
ranged between 0.32 and 0.9; the algorithm’s agreement
with the subjects’ rankings was within that range. Figure 5
shows test images, in decreasing order of shapeness as de-
termined by the algorithm. The ordering looks very plausi-
ble. (The optimal azimuthal light direction was computed
separately for each image. The images are shown at the
orientation determined by the algorithm to give maximal
shapeness, assuming the light comes from the left.)

(a) (b) (c)

(d)

(e)

(f)

(g)

(h) (i)

Figure 4: (a) Input image, from the algorithm that gener-
ated the training images (assuming light coming from the
left, which we also assume here for the analysis), but not in
the training set. (b) reflectance component, (c) shape com-
ponent. (d) are the true labels for each pyramid band. The
origin labelling algorithm of the paper was applied to each
coefficient of a steerable representation of the input image,
resulting in a label (black = paint, white = shape) for pyra-
mid coefficients at each of 4 orientations at each of 3 scales,
(e), (f), and (g). The low-pass band of the pyramid was not
labelled. Reconstructing the pyramid for a label category,
using only the coefficients corresponding to that category,
yields an image showing only those features which corre-
spond to (h) reflectance and (i) shape. Note that the algo-
rithm has correctly separated the components due to shad-
ing from those due to shape.
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Figure 5: Test images, from [4], listed in decreasing or-
der of rated “shapeness”, as determined by our algorithm.
Apart from the bump in the bottom row, the ordering looks
very reasonable. The extent of the bump was larger than
the support region of the local evidence filters, so the image
was never viewed in its entirety by any single filter. The
Spearman rank correlation with the mean subjects’ score
was 0.45.
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5.2 Graffiti image

We apply our labelling method to the graffiti image of
Fig. 1. We first sought the proper light direction. Over
a range of assumed light directions (or, equivalently, im-
age rotations assuming a fixed lighting orientation), we
computed the variance of the reconstructed shape and re-
flectance bandpassed images. The orientation correspond-
ing to the maximum ratio (the fourth from left in Fig. 6 (b))
was assumed to be the true lighting direction.

Using that lighting direction, we can then label each of
the steerable pyramid coefficients as being due to shading
or paint, based on our mixture of gaussians probability den-
sity model for the responses of the layered analyzing filters.
From that labelling, we can then reconstruct bandpassed
versions of images corresponding to each cause–shading
and reflectance. To our knowledge, this is the first anal-
ysis of separate shading and reflectance causes in natural,
grayscale images.

6. Summary and Conclusions
We have developed a learning-based method to separate
shading and reflectance in images.

We assume that each local filter in a steerable pyramid
has only one cause in the image, either shading or paint,
and we seek a labelling for each coefficient describing an
image. This labelling allows a bandpassed reconstruction
of the image components due to shading, and those due to
paint.

We use a training-based approach, first creating a syn-
thetic visual world showing typical examples of images
combining shading and reflectance variations.

We analyze the input images using a cascaded energy
model: we apply spatial filters, rectify their outputs, then
apply them again and rectify again. The pruned outputs of
these operations are input to a probability density for each
image event class (shading or paint), learning from the train-
ing data. The local classification is taken to be the class of
the higher probability density.

This simple method works well. The result for an image
typical of the training set (but not in it) agreed well with
the best possible bandpassed results. The output for a set of
psychophysics test images agree well with the judgements
of humans. The bandpassed separation for a photograph of
mixed shape and paint looks very reasonable.

Because local evidence alone does not always determine
the image interpretation, a complete solution would need to
propagate the local evidence to uncertain regions. However,
it is encouraging to note how much progress can be made
from a local analysis alone. To handle more general images,
categories of image events other than just shading or paint,
such as occluding contours, would have to be accounted for,
as well.

This work illustrates an important learning-based ap-
proach to low-level vision problems. We constructed a
labelled training set, and an appropriate set of image and
scene representations which allowed a straightforward ma-
chine learning algorithm to solve an important problem in
computational vision.
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(a) (b) (c)

(d)

Figure 7: Result of applying learning-based image labelling
method to image of graffiti on a rock. Using the best
lighting direction, found as shown in Fig. 6, we apply our
learning-based method to the graffiti image of Fig. 1. (a),
(b), and (c): The labelling of the steerable pyramid coef-
ficients, determined by our training-based method, for the
3 resolution levels of the image pyramid. Black indicates
a “paint” classification; white indicates reflectance. (d):
Since we only label steerable pyramid coefficients, the best
we can expect is bandpassed reconstructions of the parts of
the image caused by shading and the parts caused by paint.
The pictured decomposition is largly correct, as compared
with the image of the rock with the graffiti painted over,
Fig. 1 (b).
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