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Abstract

We propose a representation for characterizing fa-
cial image differences using a deformable technique
for obtaining pizel-wise correspondences. This repre-
sentation, which is based on a deformable 3D mesh
in XYI-space, is then experimentally compared with
two related correspondence methods: optical flow and
intensity differences. Furthermore, we use a prob-
abilistic similarity measure for matching based on a
Bayesian analysis of image variations. We model
two classes of variation in facial appearance: intra-
personal and extra-personal. The probability density
function for each class is estimated from training data
and used to compute a similarity measure based on the
a posteriori probabilities. The performance advantage
of our deformable probabilistic matching technique is
demonstrated using 1700 faces from the US Army’s
“FERET” face database.

1 Introduction

In its simplest form, the similarity measure S(Iy,I5)
between two images I; and I, can be set to be
inversely proportional to the norm ||I; — I1||. Such a
simple formulation suffers from two major drawbacks:
it requires precise alignment of the objects in the
image and does not exploit knowledge of which type
of variations are critical (as opposed to incidental) in
expressing similarity. In this paper, we use a prob-
abilistic similarity measure based on the probability
that the image-based differences, denoted by d(I1, I2),
are characteristic of typical variations in appearance
of the same object. For example, for purposes of face
recognition, we can define two classes of facial image
variations: intrapersonal variations 1 (corresponding,
for example, to different facial expressions of the same
individual) and extrapersonal variations Qg (corre-
sponding to variations between different individuals).

Our similarity measure is then expressed in terms of
the probability

S(Ii, L) = P(Q | d(h,I2)) (1)

where P(Qp | d(I1,I2)) is the a posteriori probability
given by Bayes rule, using estimates of the likelihoods
P(d(I]_,I2) | QI) and P(d([]_,IQ) | QE) which are
derived from training data using an efficient subspace
method for density estimation of high-dimensional
data [9]. In addition to the use of this probabilistic
simiarlity measure, we explore a novel representation
for d(I, Is) which corresponds to the parametric modes
of a deformable intensity surface. We believe that
this representation affords a convenient and unifying
mathematical framework for incorporating both the 2D
shape and texture components of an object for visual
recognition. We propose a novel representation for
d(I1, ) which combines both the spatial (XY) and
grayscale (I) components of the image in a unified XYI
framework consisting of a deformable surface mesh.

2 Deformable Surfaces

The idea of using intensity surfaces for matching
and recognition comes from the observation that the
transformation of shape to intensity is quasi-linear
under controlled lighting conditions ; in other words,
the intensity of the 2D image reflects the actual 3D
shape. This essential observation is the basis of all
shape from shading methods [5] ; however, unlike
those methods, our aim is not actually to reconstruct
depth information from a single 2D projection, but
rather note that under controlled lighting conditions
the changes in the image intensities from one image
to the other reflect changes in their actual 3D shape
[13]. Mathematically, assuming the object of interest
to be a Lambertian (or matte) surface, the amount of
intensity reflected when illuminated by a single light



Figure 1: An image and its XYI surface representation

source placed at infinity, is isotropic :
I(z,y) = a N(z,y).L (2)

where N(z,y) is the surface normal vector at point
(z,y), L is the light source vector, and « is a positive
scalar. This equation directly links shape N (z,y) and
intensity surface I(z,y) (figure 1). If the shape is
relatively smooth, we can represent the image intensity
as a continuous surface:

(z,y) — I(z,y) (3)

This paper focuses on statistical analysis for recogni-
tion in the 3D space defined by (z,y, I(z,y)), which we
will call the XYT space.

2.1 XYI Warping

Following the theory of active contour models [7, 18],
several models have been developed that deal explicitly
with deformable surfaces, among them : deformable
superquadrics [14, 17], surface snakes [3, 8], particle
systems [16], splines [2] and elastic thin plates [15, 12].
The above models usually evolve in Euclidean 3D
space, however, deformable templates which evolve
in XYI space with application to feature extraction
have been investigated by Yuille et al [20]. Hence,
deformable intensity surfaces with application to face
recognition is a new approach to matching and recog-
nition.

The mathematical approach to our model is inspired
by the one described in [12]. The intensity surface
is modeled as a deformable mesh of N nodes and is
governed by Lagrangian dynamics [1] :

MU + CU + KU = F(t) (4)

where U = [..., Az;, Ay;, Az;, .. .]T is a vector storing
nodal displacements, M, C and K are respectively the
mass, damping and stiffness matrices of the system,
and F is the external force. The above equation is
of order 3N coresponding to the three displacement
directions X,Y, I.

| 1(X)

Figure 2: A cross-section of the intensity surface S
being pulled towards S’ by image forces

In warping one image onto a second (reference)
image, the external force at each node P; of the mesh
is the vector to the closest 3D point ); in the reference
surface:

F(t)=[...,BQit),...]7 (5)

FEuclidean distance algorithms can help us extract this
force in each voxel of the 3D image, as a pre-processing
[4,19]. The final correspondence (and consequently the
resultant XYI-warp) between two images is obtained by
solving the governing equation above. Figure 2 shows
a schematic representation of the deformation process.
Note that the external forces (dashed arrows) do not
necessarily correspond to the final displacement field of
the surface. The elasticity of the surface provides an
intrinsic smoothness constraint for computing the final
displacement field.

2.2 Modal Analysis

Equation 4 is an impractically large matrix equation
to solve. Instead modal analysis seeks to jointly
diagonalize the mass and stiffness matrices in the new
(modal) coordinate system. The vibration modes ¢ (%)
of the deformable surface are then the vector solutions
of the eigenproblem:

K¢ = wMe¢ (6)

where w(i) is the i-th eigenfrequency of the system.
This eigen-decomposition yields, in modal coordinates,
K = diag(..w;...) and M = L Consequently, C =
aM + PK is also diagonalized to C = diag(...G;...).
Solving the governing equations in the modal basis then
leads to scalar equations where the unknown (%) is the
amplitude of the deformation mode 4 [1]

a(i) + &a() + w@)?a() = fi(t) i=1,...,3N (7)

In particular, for surface meshes, each mode is defined
by two parameters (i = (p,p')). The closed-form
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Figure 3: Example of XYI warping two images.

expression of the displacement field is then given by

P
U~ Zﬂ(i)qf)(i) (8)

with P <« 3N, which means that only P scalar
equations of the type (7) need to be solved. The
modal superposition equation (8) can be seen as a
Fourier expansion with high-frequencies neglected [11].
In our formulation, however, we make use of the
analytic modes [11, 13], which are known sine and
cosine functions for specific surface topologies

pr(2i—1)  p'm(2—1)
n cos DY -

()

These analytic expressions avoid costly eigenvector
decompositions and furthermore allow the total num-
ber of modes to be easily adjusted for the application.
We note that the above modal analysis technique
represents a coordinate transform from the nodal dis-
placement space to the modal amplitude subspace:

¢(p,p') =1, cos

U=e"U (10)

where @ is the matrix of analytic modes ¢(p,p’) and
U is the resultant vector of modal amplitudes which
encodes the type of deformations which characterize
the difference between the two images.

3 Analysis of Deformations

Consider the problem of characterizing the type of
deformations which occur when matching two images
in a face recognition task. We define two distinct

and mutually exclusive classes: ()5 representing in-
trapersonal variations between multiple images of the
same individual (e.g., with different expressions and
lighting conditions), and Qg representing extrapersonal
variations which result when matching two different
individuals. We will assume that both classes are
Gaussian-distributed and seek to obtain estimates of
the likelihood functions P(U|Q) and P(U|Sg) for a
given deformation’s modal amplitude vector U. Given
these likelihoods we can define the similarity score
S(I1,I5) between a pair of images directly in terms of
the intrapersonal a posteriori probability as given by
Bayes rule:

P(UQ;)P(Q)
P(fJIQI)P(QI) +P(ﬁ|QE)P(QE)11)

S(,L) =

3.1 Statistical Modeling of Modes

One difficulty with this approach is that the modal
amplitude vectors are high-dimensional — U € RY
with N = O(10%). Therefore we typically lack sufficient
independent training observations to compute reliable
2nd-order statistics for the likelihood densities (i.e.,
singular covariance matrices will result). An efficient
density estimation method for such a case was proposed
by Moghaddam & Pentland [10] which divides the
vector space R into two complementary subspaces
using an eigenspace decomposition. This method relies
on Principal Components Analysis (PCA) [6] to form
a low-dimensional estimate of the complete likelihood
which can be evaluated using only the first M principal
components, where M << N. This decomposition



Figure 4: Examples of FERET frontal-view image pairs
used for (a) the Gallery set (training) and (b) the Probe
set (testing).

forms an orthogonal decomposition of the vector space
RN into two mutually exclusive subspaces: the prin-
cipal subspace F' containing the first M principal
components and its orthogonal complement F, which
contains the residual of the expansion. As shown in
[10], the complete likelihood estimate can be written
as the product of two independent marginal Gaussian
densities

M
2
y?
exp (—% E TZ) exp(—€2(ﬁ))
2p

i=1
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(12)
where Pr(U|Q) is the true marginal density in F,
P-(U|Q) is the estimated marginal density in the
orthogonal complement F, y; are the principal com-
ponents and €2(U) is the residual (or DFFS). The
optimal value for the weighting parameter p is simply
the average of the F eigenvalues

1 N

N-M

p = A; (13)
+

i=M+1

4 Experiments

Our experimental data consisted of a training “gallery”
of 700 individual FERET faces and 1000 test images
or “probes” containing one or more images of every
person in the gallery. This collection of images consists
of typically hard recognition cases that have proven
difficult mainly due to the fact that the images were
taken at different times, at different locations, and
under different imaging conditions. Representative
(unprocessed) images are shown in Figure 4. Before
applying our deformable matching technique, we per-
formed a rigid alignment of the facial images using an

Feature
Search

==

Multiscale
Head Search

Figure 5: The face alignment system

automatic face-processing system which extracts faces
from the input image and normalizes for translation,
scale as well as slight rotations. This system is
described in detail in Moghaddam & Pentland [10] and
uses maximum-likelihood estimation of object location
— see Figure 5.

4.1 Matching with Eigenfaces

Figure 6: The first 8 normalized eigenfaces.

As a baseline comparison, we first used an eigenface
matching technique for recognition. The normalized
images from the gallery and the probe sets were
projected onto a 100-dimensional eigenspace and a
nearest-neighbor rule based on a Euclidean distance
measure was used to match each probe image to a
gallery image. A few of the lower-order eigenfaces used
for this projection are shown in Figure 6. We note that
these eigenfaces represent the principal components of
an entirely different set of images — i.e., none of the
individuals in the gallery or probe sets were used in
obtaining these eigenvectors. In other words, neither
the gallery nor the probe sets were part of the “training
set.” The rank-1 recognition rate obtained with this
method was found to be 79.5% and the correct match
was always in the top 10 nearest neighbors.

4.2 Matching with XYI Warps

For our probabilistic algorithm, we first gathered train-
ing data by computing the modal amplitude spectra
for a training subset of 700 intrapersonal warps (by
matching the two views of every individual in the
gallery) and a random subset of 1500 extrapersonal
warps (by matching images of different individuals
in the gallery), corresponding to the classes Q; and
QE, respectively. An example of each of these two
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Figure 7: Examples of (a) intrapersonal and (b) extrapersonal facial warps.

types of warps is shown in_Figure 7. We computed
the likelihood estimates P(U|Qy) and P(U|Qg) using
the PCA-based method outlined in Section 3.1. We
selected principal subspace dimensions of M; = 10 and
Mg = 30 for Q; and Qf, respectively. These density
estimates were then used with a default setting of equal
priors, P(2y) = P(Qg), to evaluate the a posteriori
intrapersonal probability P(Qr|U) for matching the
1000 probe images to the 700 in the gallery. There-
fore, for each probe image we computed all probe-
to-gallery warps and sorted the matching order using
the a posteriori probability P(Qr|U) as the similarity
measure. This probabilistic ranking yielded a peak
rank-1 recognition rate of 97.8%.

4.3 Matching with Optical Flow and
Intensity Differences

To compare our deformable representation for d(Iy, I2)
(i.e., the modal amplitudes of an XYI-warp), we
next applied our Bayesian matching technique on the
alternative representations: intensity differences and
optical flow. For each method, the eigenspace analysis
was used to derive corresponding density estimates
for the intra/extra classes and recognition proceeded
exactly as described in the previous section. Since
it is difficult to compare recognition and false match
rates directly (due to the different dimensionalities of
d(I;,I,) in each case) we systematically varied the
dimensions of the principal subspaces My and Mg, for
each method and analyzed the performance in terms
of % correct recognition. Table 8 shows the results

averaged over nearly 2,000 different combinations of
M; and Mg for the three different methods: full
XYI-warp, intensity differences (I-diff) and optical flow
(XY-flow). These results indicate that XYI-warps
are in fact the best representation for classification
purposes, with intensity differences being second and
optical flow being the least effective representation.

5 Conclusions

We have argued in favor of a probabilistic measure of fa-
cial similarity, in contrast to simpler methods which are
based on standard Ly norms (e.g., template matching)
or subspace-restricted norms (e.g., eigenspace match-
ing). This probabilistic framework is also advantageous
in that the intra/extra density estimates explicitly
characterize the type of appearance variations which
are critical in formulating a meaningful measure of
similarity. Furthermore, we have experimentally shown
that our deformable XYI warping method for obtaining
pixel correspondences does indeed lead to an effective
representation especially when compared with simpler
methods such as intensity differences and optical flow.
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