
Mitsubishi Electric Research Laboratory
MERL - Cambridge Research

Technical Report 2001-TR2001-14 March 27, 2001

A New Method For Numerical Constrained Optimization

Ronald N. Perry

Abstract

Numerical constrained optimization is an important tool with extensive applications in computer
graphics and many other diverse fields. In computer animation, for example, constrained
optimization has been used for finding initial conditions, smoothing or finishing motion paths,
interpolating orientations, animating flexible bodies, self-assembly of objects, and finding
boundaries.

An ideal problem for constrained optimization is one that has a single measure defining the
quality of a solution plus some requirements upon that solution that must not be violated. The quality
measure is called the objective function; the requirements are called constraints. A constrained
optimization solver maximizes (or minimizes) the objective function while satisfying the constraints.
In this report, we propose a new method for constraint handling that can be applied to established
optimization algorithms and which significantly improves their ability to traverse through
constrained space. To make the presentation concrete, we apply the new constraint method to the
Nelder and Mead polytope algorithm. The resulting technique, called SPIDER, has shown great
initial promise for solving difficult (e.g., nonlinear, nondifferentiable, noisy) constrained problems.

Presented at SIGGRAPH 2001 Conference Abstracts and Applications.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories of Cambridge,
Massachusetts; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright
notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric
Research Laboratories. All rights reserved.

Copyright © MERL Mitsubishi Electric Research Laboratories, 2001
201 Broadway, Cambridge, Massachusetts 02139

A New Method For Numerical Constrained Optimization
Ronald N. Perry
Mitsubishi Electric Research Laboratory

Introduction
Numerical constrained optimization is an important tool with extensive applications in
computer graphics [3] and many other diverse fields [1]. In computer animation, for example,
constrained optimization has been used for finding initial conditions, smoothing or finishing
motion paths, interpolating orientations, animating flexible bodies, self-assembly of objects,
and finding boundaries [3].

An ideal problem for constrained optimization is one that has a single measure defining the
quality of a solution plus some requirements upon that solution that must not be violated. The
quality measure is called the objective function (denoted as F below); the requirements are
called constraints (denoted as Ci below). A constrained optimization solver maximizes (or
minimizes) the objective function while satisfying the constraints. In this sketch, we propose a
new method for constraint handling that can be applied to established optimization algorithms
and which significantly improves their ability to traverse through constrained space. To make
the presentation concrete, we apply the new constraint method to the Nelder and Mead
polytope algorithm [2]. The resulting technique, called SPIDER, has shown great initial
promise for solving difficult (e.g., nonlinear, nondifferentiable, noisy) constrained problems.

The Idea
Many constrained problems have optima that lie near constraint boundaries. Consequently,
avoidance of constraints can hinder an algorithm’s path to the answer. By allowing (and even
encouraging) an optimization algorithm to move its vertices into constrained space, a more
efficient and robust algorithm emerges. In the new method, constraints are partitioned into
multiple levels. A constrained performance, independent of the objective function, is defined
for each level. A set of rules, based on these partitioned performances, specify the ordering
and movement of vertices as they straddle constraint boundaries; these rules (employing the
insight stated above) have been shown to significantly aid motion along constraints toward an
optimum. Note that the new approach uses no penalty function and thus does not warp the
performance surface, thereby avoiding the possible ill-conditioning of the objective function
typical in penalty methods.

Problem Statement
Maximize F(x) for all x ∈ RN such that Ci(x) ≥ 0 where F:RN→R, Ci:RN→R, and i = [1…M]. F
or any Ci may be highly nonlinear, nondifferentiable, and/or noisy. A function (e.g., F) is
considered noisy when repeated evaluation of that function with identical input yields
different values.

SPIDER Algorithm
1. Pick a starting location xs ∈ RN

2. Partition F and the constraints Ci into W levels [L1…Lw] with Lw = { F }. We define the
performance of a location x ∈ RN as a 2-tuple <P,L> consisting of a floating point scalar
P and an integer level indicator L. P represents the “goodness” of x at level L. P and L are
computed as follows:

a. P1 ← ∑ min(Ck(x), 0), for all Ck in L1

b. If (P1 is nonzero) P ← P1, L ← 1, Stop
c. P2 ← ∑ min(Ck(x), 0), for all Ck in L2

d. If (P2 is nonzero) P ← P2, L ← 2, Stop
e. …
f. …
g. PW ← F(x), P ← PW, L ← W, Stop

The performances of two locations x1 (<P1,L1>) and x2 (<P2,L2>) are compared as
follows:

a. If (L1 == L2) if (P1 > P2) x1 is better else x2 is better, Stop
b. If (L1 > L2) x1 is better else x2 is better

3. Determine the performance of the starting location xs to form the starting vertex vs =
<xs,Ps,Ls>

4. Pick the scale of each dimension to form the size of space vector s ∈ RN

5. Generate an initial set of N+1 vertices [v1…vn+1] using vs and s. For example (where N =
2 and vector indices begin at 1),

v1 , v2 , v3 ← vs

v2.x[1] ← v2.x[1] + random() ∗ s[1]
v3.x[2] ← v3.x[2] + random() ∗ s[2]

6. Determine the performance of each vertex [v1…vn+1]

7. Sort the vertices [v1…vn+1] from worst to best. Label the overall best vertex Ball and the
overall worst vector Wall.

8. For each vertex v in the set [v1…vn+1] from worst to best:

a. Determine the centroid c of [v1…vn+1], excluding v and other vertices at a lower level
than v. If there are insufficient vertices to compute a valid centroid (e.g., < 2),

incrementally include other vertices at lower levels until there are a sufficient
number.

b. If v is not the best vertex:
b1. xt ← c + (c – v.x) ∗ expansionFactor (e.g., 1.1)
b2. <Pt,Lt> ← ComputePerf(xt)
b3. Form trial vertex vt: vt.x ← xt , vt.P ← Pt , vt.L ← Lt

b4. Either accept vt or reject vt (where accept means replace v with vt) using the
following criteria: if vt.L == v.L, accept vt if vt.P > v.P; if vt.L > v.L, accept vt if
Perf(vt) > Perf(Ball); if vt.L < v.L, accept vt if Perf(vt) > Perf(Wall)

c. If v is the best vertex:
c1. xt ← c – (c – v.x) ∗ expansionFactor (e.g., 1.1)
c2. <Pt,Lt> ← ComputePerf(xt)
c3. Form trial vertex vt: vt.x ← xt , vt.P ← Pt , vt.L ← Lt

c4. Accept vt if Perf(vt) > Perf(v)

d. Relabel Ball and Wall if either has changed

9. If Perf(Ball) has not improved, shrink the vertices at the same level as Ball toward Ball, and
flip (as well as shrink) vertices at lower levels over Ball. The later rule helps to move legs
(vertices) across a constraint boundary towards feasibility.

10. If the number of successive shrinks exceeds some threshold, rebuild the vertex set using
Ball as vs and the current size in each dimension as s (see step 5)

11. If there are more iterations to perform, repeat from step 7

Notes and Extensions
1. One effective classification of constraints is to place simple limits on x that are

independent of F into level 1, all other constraints into level 2, and the objective function F
into level 3. Many different strategies for classification are being explored.

2. SPIDER permits dynamic classification of constraints at anytime. This classification can
be specified by a user (through observation of how SPIDER is moving) or by a
classification algorithm which, for example, categorizes constraints into “active” and
“inactive” levels.

3. Other non-polytope optimization methods [2] can be modified to use the dynamic
partitioned performances and corresponding rules introduced above, thereby improving
their ability to traverse constrained space.

Results
Although we have tested SPIDER on some difficult problems with great initial success, much
remains to prove the viability of this technique. In the talk we will demonstrate, through a
series of contour plots, how SPIDER traverses constrained space and why the partitioned
performances, along with the specified rules, enable an optimization algorithm to better
navigate difficult terrain.

Summary
Partitioned performances permit many optimization algorithms, including SPIDER, to better
traverse constrained space. The dynamic classification of constraints, either by a user or a
classification algorithm, further enhances navigation through difficult terrain. Finally, the
SPIDER algorithm, including the centroid computation, leg flipping when shrinking, and
cycling through all legs before resorting, is a robust method for solving difficult constrained
problems.

References
[1] R. Fletcher, Practical Methods of Optimization, Second Edition (John Wiley, Chichester
and New York, 1987).
[2] Press, W., Flannery, B., Teukolsky, S., and Vetterling, W., Numerical Recipes, Cambridge
University Press, New York, NY, 1986.
[3] Goldsmith, Jeff and Alan H. Barr, ''Applying constrained optimization to computer
graphics,'' SMPTE Journal, Vol. 102, No. 10, October 1993, pp. 910-912.

