MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Understanding Belief Propagation and its
Generalizations

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss

TR2001-22 November 2001

Abstract

“Inference” problems arise in statistical physics, computer vision, error-correcting coding the-
ory, and Al. We explain the principles behind the belief propagation (BP) algorithm, which is
an efficient way to solve inference problems based on passing local messages. We develop a
unified approach with examples, notation, and graphical models borrowed from the relevant dis-
ciplines.We explain the close connection between the BP algorithm and the Bethe approximation
of statistical physics. In particular, we show that BP can only converge to a fixed point that is also
a stationary point of the Bethe approximation to the free energy. This result helps explain the
successes of the BP algorithm and enables connections to be made with variational approaches
to approximate inference.

Delivered in the the ’Destinguished Lecture’ track at the 2001 International Joint Conference on
Artificial Intelligence in August 2001. To be published in a book collecting those lectures.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright (©) Mitsubishi Electric Research Laboratories, Inc., 2001
201 Broadway, Cambridge, Massachusetts 02139

Deliveredin the “DistinguishedLecture” track at the 2001 Internationaldoint Conferenceon Arti-
ficial Intelligencein August2001. To be publishedin a book collectingthoselectures.First Draft
August2001.Final Draft January2002.

Understanding Belief Propagation and its
Generalizations

Jonathan S. Yedidia William T. Freeman”
MERL MERL
201 Broadway 201 Broadway
Cambridge, MA 02139 Cambridge, MA 02139

yedidia@merl.com freeman@merl.com

Yair Weiss
School of Computer Science and Engineering
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
yweiss@cs.huji.ac.il

Abstract

“Inference” problems arise in statistical physics, computer vision, error-correcting
coding theory, and AI. We explain the principles behind the belief propagation
(BP) algorithm, which is an efficient way to solve inference problems based on
passing local messages. We develop a unified approach, with examples, notation,
and graphical models borrowed from the relevant disciplines.

We explain the close connection between the BP algorithm and the Bethe ap-
proximation of statistical physics. In particular, we show that BP can only con-
verge to a fixed point that is also a stationary point of the Bethe approximation
to the free energy. This result helps expain the successes of the BP algorithm,
and enables connections to be made with variational approaches to approximate
inference.

* Present Address: MIT Artificial Intelligence Laboratory, 200 Technology Square, room 725,
Cambridge MA 02139.

The connection of BP with the Bethe approximation also suggests a way to
construct new message passing algorithms based on improvements to Bethe’s
approximation introduced by Kikuchi and others. The new generalized belief
propagation (GBP) algorithms are significantly more accurate than ordinary
BP for some problems. We illustrate how to construct GBP algorithms with a
detailed example.

1 INFERENCE AND GRAPHICAL MODELS

We will be describing and explaining an algorithm, called “belief propagation” (BP), which
is supposed to solve “inference” problems, at least approximately. Inference problems come
up in many different scientific fields, so it is not that surprising that a good algorithm to
solve such problems has been repeatedly re-discovered. In fact, one can show that such
apparently different methods as the forward-backward algorithm, the Viterbi algorithm,
iterative decoding algorithms for Gallager codes and turbocodes, Pearl’s belief propagation
algorithm for Bayesian networks, the Kalman filter, and the transfer-matrix approach
in physics are all special cases of the BP algorithm discovered in different scientific
communities (Aji and McEliece 2000; Kschischang, Frey, and Loeliger 2001).

We will emphasize that a multi-disciplinary approach yields important insights into the
BP algorithm. We therefore begin with a small survey of “inference” problems from the
AT, computer vision, statistical physics, and digital communications literatures, which will
also give us a chance to introduce the different kinds of graphical models that are used to
describe these problems. This first section is a basic review of well-known material, but
we hope that it will be useful in elucidating the deep similarity between problems in these
different fields. The reader interested in other reviews of this material may want to consult
(Kschischang, Frey, and Loeliger 2001) and (Frey 1998).

1.1 BAYESIAN NETWORKS

In the AT literature, “Bayesian networks” are probably the most popular type of graphical
model (Pearl 1988; Jensen 1996). They are used in expert systems involving problem
domains such as medical diagnosis, map learning, language understanding, heuristic
search, and so on. We will take as an example the medical diagnosis problem. Suppose that
we want to construct a machine which will automatically give diagnoses for patients. For
each patient, we will have some (possibly incomplete) information, such as his symptoms
and test results, and we would like to infer the probability that a given disease or set of
diseases is causing his symptoms. We also assume that we know (presumably from expert
advice) the statistical dependencies between different symptoms, test results, and diseases.
For example, let us consider the fictional “Asia” example of Lauritzen and Spiegelhalter
(Lauritzen and Spiegelhalter 1988), shown in figure 1.

In words, the qualitative statistical dependencies shown in this small Bayesian network
can be described as follows:

1. A recent trip to Asia (A) increases the chances of tuberculosis (T).

2. Smoking (S) is a risk factor for both lung cancer (L) and bronchitis (B).

Figure 1 The fictional “Asia” Bayesian network, taken from (Lauritzen and Spiegelhal-
ter 1988).

3. The presence of either (E) tuberculosis or lung cancer can be detected by an X-ray
result (X), but the X-ray alone cannot distinguish between them.

4. Dyspnoea (D) (shortness of breath) may be caused by bronchitis (B), or either (E)
tuberculosis or lung cancer.

Each node represents a variable that can be in a discrete number of possible states. We
write z; for the variable representing the different possible states of node . In addition to
the qualitative dependencies described by the Bayesian network graph, there are quantitive
statistical relationships that we assign to each arrow in the graph. Associated with each
arrow is a conditional probability: for example, we write p(zr|zs) for the conditional
probability of a patient having lung cancer given that he does or does not smoke. For this
link, we say that the S node is the “parent” of the L node because zr is conditionally
dependent on z5. Some nodes like the D node might have more than one parent, in which
case we define their conditional probabilities in terms of all their parents; thus we write
p(xp|ze,zB) for the conditional probability of having dyspnoea.

Note that the Bayesian network defines an independency structure: the probability that
a node is in one of its states depends directly only on the states of its parents. For nodes
like A or S that do not have any parents, we introduce probabilities like p(zs) that are not
conditioned on any other nodes. In general, a Bayesian network (and the other graphical
models that we consider) is most useful if it is sparse, which means that most of the nodes
do not have a direct statistical dependence.

In our example, the over-all or “joint” probability p({z}) = p(za,zs, 27,21, 2B, ZE,ZXx,ZD)
that the patient has some combination of symptoms, test-results, and diseases, is just the
product of all the probabilities of the parent nodes and all the conditional probabilities:

p({z}) = p(za)p(zs)p(er|za)p(zrles)p(zs|zs)p(ze|er, r)p(zp|es, 2E)p(2x|2E) (1)

More generally, a Bayesian network is a directed acyclic graph of NV random variables ;
that defines a joint probability function

p(1, @3, ., 25) = [[(@il Par(a:)) (2)

i=1

where Par(z;) denotes the states of the parents of node 4, and if node i has no parents,
we take p(z;|Par(z;)) = p(z;). By “directed acyclic graph,” we mean that the arrows do
not loop around in a cycle—it is still possible that the links form a loop when one ignores
the arrows.

Our goal will be to compute certain marginal probabilities. For example, we might want
to compute the probability that a patient has a certain disease. By “inference,” we
simply mean the computation of these marginal probabilities. Mathematically, marginal
probabilities are defined in terms of sums over all the possible states of all the other nodes
in the system. For example if we want the marginal probability of the last node p(zn),
we in general need to compute

plzn) = Z Z Z p(x1,%2,%3, ..., TN) (3)

z1 22 TN -1

We will refer to marginal probabilities that we compute approximately as “beliefs,” and
denote the belief at node ¢ by b(z;).

If we have some information about some of the nodes (e.g. we know that the patient does
not smoke in our “Asia” example), then we will be able to fix the corresponding variable
and we will not have to sum over the unknown states of that node. We will call such a
node an “observable” node, in contrast to the other nodes which are “hidden” nodes. For
all our graphical models, we will denote observable nodes by filled-in circles, and hidden
nodes by empty circles.

For small Bayesian networks, we can easily do marginalization sums directly, but unfor-
tunately, the number of terms in the sums will grow exponentially with the number of
hidden nodes in the network. The virtue of the BP algorithm is that we can use it to
compute marginal probabilities, at least approximately, in a time that grows only linearly
with the number of nodes in the system. For that reason, BP can be used in practice as
an “inference engine” acting on the statistical data encoded in a large Bayesian network.
Before we turn to BP, however, we describe some other inference problems.

1.2 PAIRWISE MARKOV RANDOM FIELDS

BP has also recently begun to be used as an “engine” for low-level computer vision
problems (Freeman, Pasztor, and Carmichael 2000). Humans often take for granted
the solution of apparently simple computer vision problems like the segmentation and
recognition of objects, or the detection and interpretation of motion. We solve these tasks
so automatically that it can be surprising how difficult it is to teach a computer to solve
the same tasks, given just a series of two-dimensional arrays of pixel values. A key to
progress in computer vision is to find theoretically solid models that are computationally
tractable.

Pairwise Markov random fields (MREF’s) provide attractive theoretical models for some
computer vision problems (Geman 1984). In such problems, we normally want to infer a
representation of whatever is “really out there” from the data that we are given, which
is ultimately a two-dimensional array of numbers representing pixel intensities. To take a
concrete example, suppose that we want to infer the distance of the objects in a scene from
the viewer. That is, imagine that we are given a 1000 by 1000 gray-scale image, and we
pose our problem as trying to infer distance values d; corresponding to intensity values I;,
where 7 ranges over the million possible pixel positions. Or, instead of distance, we might
be inferring some other quantity about the scene—such as high-resolution details that are
missing in the image, or the optical flow in a series of images, etc.

In general, we assume that we observe some quantities about the image y;, and that we
want to infer some other quantities about the underlying scene x;. The indices 7 could
represent single pixel positions, or they might represent the position of a small patch of
pixels. We further assume that there is some statistical dependency between x; and y; at
each position 4, which we write as a joint compatability function ¢;(z;,y;). The function
¢i(zi,y;) is often called the “evidence” for z;. Finally, for us to possibly be able to infer
anything about the scene, there has to be some structure to the z;. In general, if we do
not assume such structure, computer vision problems are inherently hopelessly ill-posed.
‘We encode the assumed structure of the scene by saying that the nodes ¢ are arranged in a
two-dimensional grid, and scene variables z; should, insofar as possible, be “compatible”
with nearby scene variables z;, as represented by a compatibility function v;;(x;, z;),
where ;; only connects nearby positions. We then take the overall joint probability of a
scene z; and an image y; to be

p((a},) = 5 [[vt 2) [] o:osm) (4)
(5) i

where Z is a normalization constant and the product over (¢j) is over (for example) nearest
neighbors on the square lattice.

A graphical depiction of this model is shown in figure 2. The filled-in circles represent

P
DDOL

Yy

Te e

=
oot el
RN

Figure 2 A square lattice pairwise Markov Random Field.

the observed image nodes y;, while the empty circles represent the “hidden” scene nodes

z;. The Markov random field is said to be “pairwise” because the compatibility functions
only depend on pairs of sites ¢ and j. In contrast to Bayesian networks, this graphical
model is undirected. There is no notion, as is usually implicit in a Bayesian network, that
the variable at one node z; is a causal “parent” of its neighbor z;, so we use undirected
compatibility functions t;;(x;, z;) instead of conditional probability functions p(z;|x;).
Nevertheless, our agenda in doing inference will be very similar: we will want to compute
the beliefs b(x;), for all positions 7, so as to be able to infer something about the underlying
unknown scene. Once again a direct computation of marginal probabilities would take
exponential time (and the number of nodes is typically very large) so we need a faster
algorithm like BP. We note in passing that for a restricted class of pairwise MREF’s relevant
to computer vision, fast algorithms based on “graph cuts” (Boykov, Veksler, and Zabih
2001) can also be used to estimate hidden states.

1.3 THE POTTS AND ISING MODELS

It is worth taking a small detour to show that the pairwise MRF described by equation (4)
can easily be brought into a form recognizable to physicists as the “Potts model” (Baxter
1982). Let us define the “interaction” Ji;(x;, ;) between the variables at neighboring
nodes by Jij(.’lii,l‘j) = lnwij(mi,zj) and the “field” hl(.’ll‘l) at each node by hl(xl) =
In ¢(zi,y;). (Because we do inference for a given set of y;, we can in fact consider the y;
as fixed variables and subsume them into our definition of h;(z;).) If we now define the

Potts model “energy” as
B({z}) = =) Jij(wi,zj) =) hi(w:) (5)
(%) i

and appeal to Boltzmann’s law from statistical mechanics:
1 .
p{a}) = e B CD/ ©)

we see that our pairwise MRF corresponds exactly to a Potts model at a temperature
T equal to 1. The normalization constant Z is known in the physics literature as the
“partition function.” If the number of states at each node is exactly two, the model is
called the “Ising model.” In this case, physicists sometimes prefer to change variables
from z; to s; which can take on the values of 1 or —1, and to further restrict themselves
to J;; interactions which have a symmetric form that can be written in terms of a “spin
glass” energy function (Mezard, Parisi, and Virasoro 1987)

E({s}) = ZJUSTSJ thsl (7)
(#5)

In the context of the Ising model, the inference problem of computing beliefs b(x;) can be
mapped onto the physics problem of computing local “magnetizations”

m; = b(s; =1) —b(s; = —1). (8)
1.4 TANNER GRAPHS AND FACTOR GRAPHS

Another problem for which the BP algorithm has given excellent results is the iterative
decoding of error-correcting codes (Frey and Mackay 1998; McEliece, MacKay, and Cheng

1998). BP is the decoding algorithm used to decode some of the best practical codes,
including turbocodes (Berrou, Glavieux, and Thitimajshima 1993) and Gallager codes
(Gallager 1963). Decoding error-correcting codes is in fact an elegant example of an
“inference” problem—the receiver of the coded message that has been corrupted by a
noisy channel is trying to infer the message that was initially transmitted. (For general
backround on error-correcting coding, see (Gallager 1968).)

Gallager codes and turbocodes can be formulated as parity-check codes (Mackay 1999).
In a block parity-check code, we will typically try to send k information bits in a block
of N bits. N will be greater than k so as to provide redundancy that can be used to
recover from errors induced by the noisy channel. Let us give a small example: an N = 6,
k = 3 binary code, shown by its “Tanner graph” in figure 3. A Tanner graph (Tanner

5 1 4
2 1
3 = 2
6

Figure 3 A Tanner graph for a small N =6, k = 3 parity check code.

1981) is a pictorial representation of the parity-check constraints on the codewords (legal
configurations of bits) of an error-correcting code. Each square represents a parity check,
and each circle connected to a square represents a bit that participates in that parity
check. In our example code, the first parity check forces the sum of bits #1, #2, and
#4 to be even, while second parity check forces the sum of bits #1, #3, and #5 to be
even, and the third parity check forces the sum of bits #2, #3, and #6 to be even. The
only eight codewords that satisfy these three parity-check constraints are 000000, 001011,
010101, 011110, 100110, 101101, 110011, and 111000. Note that for this code, the first
three bits are the “information” bits, so if you are transmitting messages, and you intend,
for example, to transmit the 010 message, you will use those bits as the first three bits of
your codeword, and then the remaining bits are uniquely determined (for that case you
would transmit the 010101 codeword.)

The recipient of a coded message, after it has been corrupted by a noisy channel, may
find that the received message is not a codeword after all. For example, let us suppose
that the 010101 message was transmitted, but because of the noisy channel, one of the
bits was flipped and the 011101 “word” was received. This word does not correspond to
any codeword, and it is the job of the decoding algorithm to infer which codeword was
actually sent. For our code, we can readily see that the 010101 codeword is the only one
that is only a single bit-flip away from the received word, so if the bit-flip probability is

small, it is reasonable to decode to that codeword. Unfortunately, for many codes, N and
k will be large, so that the number of codewords is exponentially huge and we cannot
simply resort to examining all the codewords and finding the closest one. As is by now
becoming a familiar refrain, we will be able to turn to the BP algorithm, because it will
work in a time that only grows linearly with V.

The decoding problem can be given a probabilistic formulation. We assume that we
have received a sequence of N bits y;, and we are trying to find the N bits of the
transmitted codeword z;. Let us, for the purpose of simplicity, assume that the noisy
channel is “memoryless,” that is each bit i is flipped independently of every other bit.
That means that we can associate a conditional probability p(z;|y;) with each received
bit. For example, if the first bit is received as a 0, and we know that the bits are flipped
with a probability f, then the probability that the first bit was transmitted as a 0 is 1 — f,
while the probability that it was transmitted as a 1 is f. So p(z1 = 0ly1 =0) = (1 — f),
while p(z1 = 1|y1 = 0) = f. The overall probability of each codeword is proportional to
the product of these one-node probabilities: Hf\;l p(z;|y:). But to make sure that we only
consider combinations of z; that are codewords, we write a a joint probability function that
combines these conditional probabilities with the parity check constraints. For example,
for our N = 6, k = 3 code given above, we write the overall joint probability distribution

as
6

p({=z},{v}) = %%24(:31, T2, 24) 135 (T1, T3, T5)hase (2, 3, w6) [[plwiles). (9)

i=1

In the above equation, functions like 9124 (1, 2, x4) are parity check functions. They have
the value 1 if the sum of their arguments is even, and have the value 0 if the sum of their
arguments is odd.

In general, for a parity check code with transmitted bits z; and received bits y;, and N —k
parity checks, we can write the joint probability distribution as

N

N-—k
p(iz},) = 5 [vetiz)e) [pluiles) (10)

i=1

where we have used the notation v, ({z}.) to denote the ath parity check function v, and
its arguments {z}4.

A decoding algorithm for parity check codes that minimizes the number of bits that are
decoded incorrectly is to compute the marginal probabilities p(x;) for every bit 7, and then
to threshold each bit to its most probable value. Note that taking the most probable value
of each bit independently is the strategy that is guaranteed to minimize the number of
incorrectly decoded bits even though it may not yield a valid codeword (Gallager 1968).
As usual, a direct computation of the marginal probabilities will take an exponentially
huge time, so we resort to the efficient BP algorithm. The BP algorithm, while not exact
for Gallager codes or turbocodes, is very effective in practice, and has been used to achieve
near-Shannon limit performance (Mackay 1999).

A factor graph (Kschischang, Frey, and Loeliger 2001) is a generalization of a Tanner
graph, whose graph looks essentially identical, but now each square can represent any
function of its variables (the nodes it is attached to). Each function can have varying

numbers of variables, including just one. We take the joint probability distribution of a
factor graph of N variables with M functions to be

p(iz}) = o [] vallehe) (1)

Note that we subsume any “observed” nodes y; into functions that they generate of the
“hidden” nodes ;.

1.5 CONVERTING GRAPHICAL MODELS

It is very easy to convert arbitrary pairwise MRF’s or Bayesian networks into equivalent

Figure 4 Converting a pairwise MRF into a factor graph.

factor graphs. In figure 4 we show a small pairwise MRF and the equivalent factor graph.
Note that instead of using “observable” nodes, we introduce equivalent factor graph
functions of a single variable. The factor graph functions ,({z}.) will be equivalent
to either the two node functions 1;;(z;, z;) if they link two “hidden” nodes, or the single
node functions ¢;(x;, y;) if they are attached to a single “hidden” node.

In figure 5 we give a small Bayesian network and the equivalent factor graph. Notice
that there is always a factor graph function linking a node and all of its parents,
because that is the form of the joint probability distribution in a Bayesian network. The
factor graph functions 9, ({z}.) directly correspond to the Bayesian network probabilities
p(z;|Par(z;)).

Finally, in figure 6, we give the factor graph representation of the N = 6, kK = 3 code that
we discussed above. The received bits y; are represented in terms of the functions that they
induce on the corresponding bits x;. There are also factor graph functions corresponding
to the original parity check functions.

N Ly
/\

Figure 5 Converting a Bayesian Network into a factor graph.

Belief propagation algorithms specific to Bayesian networks, pairwise MRF’s, and factor
graphs have all been developed, and they are all mathematically equivalent, but it would
certainly confusing from the pedagogical point of view to present all these different
versions. In fact, as we have just seen, arbitrary Bayesian networks and pairwise MRF’s
can be easily converted into equivalent factor graphs, and as we shall see in a moment,
one can also convert arbitrary factor graphs into equivalent Bayesian networks or pairwise
MRF’s. We can thus choose to work with Bayesian networks, pairwise MRF’s, or factor
graphs without losing any generality.

‘We will choose to focus on pairwise MRF’s. Our reason for this choice is purely pedagogical—
although all the different BP algorithms are mathematically equivalent, the version of BP
for pairwise MRF’s is somewhat simpler in form because it has only one kind of message,
while the BP algorithms for the other graphical models are normally described using two
kinds of messages. The need for two kinds of messages arises either because of the ar-
rows in Bayesian networks, or the two kinds of nodes in factor graphs. In any case, the
BP algorithm that one derives by using the pairwise MRF formulation on a converted
Bayesian network or factor graph is precisely mathematically equivalent at every iteration
to the BP algorithm as it is normally described for the other graphical models, so we will
actually lose nothing at all by using this description.

The reader who is impatient to learn about BP can now skip ahead to the next section,
but for the purposes of completeness we explain how to convert arbitrary factor graphs
into equivalent Bayesian networks and pairwise MRF’s. To convert a factor graph into
an equivalent Bayesian network, convert every function node into an “observable” node
that is observed to be in its first state. Then make the probability of the first state of

VA

Figure 6 The factor graph representing the joint probability function of a small parity
check code.

that observable node, given its parents, equivalent to the factor graph function that was
eliminated (see figure 7.)

‘We show the conversion of a factor graph into a pairwise MRF graphically in figure 8.
Each function in the factor graph is converted into a hidden node in a pairwise MRF
with an observable node hanging off of it. For example, a function ¢, (z;, z;,x) of three
nodes in a factor graph will be represented by a new hidden node x, and a new observable
node y,. The node z, can be in as many states as the product of all the variables of
the corresponding function ,. For example, if the factor graph function that we were
converting was 9o (z;, j,), and x;, z;, and xx were each binary nodes taking on values
0 or 1, then the new node z, could take on eight values ranging from 000 to 111. The
“evidence” ¢(zq,ya) is set to correspond to the factor graph function ¢ ({z}). For example,
if ({x}) is a parity check function, than ¢(zq,y,) will just be equal to 1 if z, corresponds
to a state with an even number of ones and 0 otherwise. Finally, we need to introduce the
notation x4 (i) to denote the state that the ith node should be in to correspond with the
a node being in state z,. The compatibility functions)ai(za, ;) between a new node z,
and an ordinary node z; should be set to one if x4 (i) = x; and zero otherwise.

2 STANDARD BELIEF PROPAGATION

For the reasons given in the preceding section, we will focus on pairwise MRF’s. We can
consider the “observed” nodes y; to be fixed, write ¢;(z;) as a short-hand for ¢;(z;,y:),
and focus on the joint probability distribution for the unknown variables x;:

pie) = 5 [] vista o [[6ite0) (12

(i) i

In the BP algorithm, we introduce variables such as m;;(z;), which can intuitively be
understood as a “message” from a hidden node ¢ to the hidden node j about what state
node j should be in (see figure 9). The message m;;(z;) will be a vector of the same

bod =0

Figure 7 Converting a factor graph into a Bayesian network.

dimensionality as z;, with each component being proportional to how likely node 4 thinks
it is that node j will be in the corresponding state. In the BP algorithm, the belief at a
node ¢ is proportional to the product of the local evidence at that node (¢;(z;)), and all
the messages coming into node i:

bi(z;) = kéi(x;) H myi(4) (13)

JEN(i)

where k is a normalization constant (the beliefs must sum to 1) and N(¢) denotes the
nodes neighboring i (see figure 10.) The messages are determined self-consistently by the
message update rules:

mij(2;) < Y dilwiii(@i,zg) [mui(ws). (14)

keN(i)\j

Note that on the right-hand-side, we take the product over all messages going into node %
except for the one coming from node j. The message-update rule is shown diagramatically
in figure 11.

Where do these rules come from? It is not too hard to show that these rules give beliefs
that are exact if the pairwise MRF is “singly-connected”; that is, if there are no loops in
the pairwise MRF. We will not give a proof here, but just a small example that might
help convince the reader. Consider the network with four hidden nodes shown if figure 12.
We will compute the belief at node 1 using the belief propagation rules. We have

bi(z1) = kg1 (21)mai (1) (15)

Figure 8 Converting a factor graph into a pairwise MRF.

Using the message-update rules for mai1(z1), we find

bi(x1) = ke (z1) 21012(931, T2)Pa(x2)ma2 (T2)mas(z2) (16)

z2

Using the message-update rules for ms2(z2) and ma2(z2) we find

bi(w1) = kgu(w1) Y iz (@1, 32)a(w2) Y ha(wa)bea(@s,@s) Y da(wa)vpoa(wz, xa) (17)

X9 x3 T4

Finally, by reorganizing the sums, it is easy to se that the belief at node 1 is the same as
the exact marginal probability at node 1:

bi(a) =k Y p({z}) =pi(a) (18)

z2,23,T4

It is easy to convince oneself, and to prove, that BP in fact gives the exact marginal
probabilities for all the nodes in any singly-connected graph.

In a practical computation, one starts with the nodes at the edge of the graph, and
only computes a message when one has available all the messages necessary. Thus, in
our example, one would start with mg2 and ma2, and then compute mo1, and then
finally compute b;. In general, it is easy to see that each message need only be computed
once for singly connected graphs. That means that the whole computation takes a time
proportional to the number of links in the graph, which is dramatically less than the
exponentially large time that would be required to compute marginal probabilities naively.

Figure 9 An illustration of the messages passed in BP. m;;(z;) can be thought of as a
“message” from a hidden node ¢ to the hidden node j about what state node j should be
in.

The point of view illustrated by this example suggests that belief propagation is a way
of organizing the “global” computation of marginal beliefs in terms of smaller local
computations. The message flow is akin to the flow of a river, and each message summarizes
all the computations that occurred further upstream along the branches that feed into that
message. Thus in our example, ma1(z1) is a summary of all the computations that occured
at nodes 2,3, and 4. This is the classical point of view, and it seems to suggest that it must
be very important that there be no loops in the pairwise MRF, for otherwise the entire
argument for the exactness of BP breaks down.

So for the time being, let us continue our discussion of singly-connected (loop-free) pairwise
MREF’s. We will find it very convenient to introduce the two-node marginal probabilities
pij(zi, z;), for two neighboring sites ¢ and j, which are obtained by marginalizing the joint
probability function over every node except the two nodes 7 and j:

pis(ziz)= Y p({2)). (19)

zi255=(2;,2;)

We write a belief equation for the two-node beliefs b;; (x;, ;) analogously to equation (13)
for the one-node beliefs:

bij (@i, ;) = kepij (@i, @) i(@i)di (@) [[muit@) [] musices) (20)

KEN(i)\i IEN(i)\i

where k£ € N(¢)\j means that we consider all neighbors k of node 7 except for node j. We
describe this equation diagrammatically in figure 13. It can be justified on singly-connected
graphs by working out that for such graphs the two-node beliefs will correspond to the
exact two-node marginal probabilities.

Figure 10 A diagrammatic representation of the BP belief equation b;(z;) =
ki(@:) [;e n gy mii(@e)-

It is also worth noting that that by combining equations (13) and (20) with the marginal-
ization condition

biw) =) bis(wi, ;) (21)

we consistently derive the message update rules (14). (See figure 14 for a diagrammatic
version of this derivation.)

The BP algorithm, as defined in terms of the belief equations (13) and (20), and the
message-update rules (14), does not make reference to the topology of the graph that it
is running on. Thus, there is nothing to stop us from implementing it on a graph that has
loops. One starts with some initial set of messages (one usually begins with completely
unbiased messages), and simply iterates the message-update rules until they (possibly)
converge, and then one can read off the approximate beliefs from the belief equations. But
one would not necessarily expect the algorithm to work well. As Pearl warned, “if we ignore
the existence of loops and permit the nodes to continue communicating with each other
as if the network were singly connected, messages may circulate indefinitely around these
loops, and the process may not converge to a stable equilibrium” (Pearl 1988). One can
indeed find examples of graphical models with loops, where, for certain parameter values,
the BP algorithm fails to converge, or predicts beliefs that are inaccurate (Murphy, Weiss,
and Jordan 1999). On the other hand, the BP algorithm has been successful as a decoding
algorithm for error-correcting codes defined on Tanner graphs that have loops (Frey and
Mackay 1998), and also for some computer vision problems where the underlying MRF
if full of loops (Freeman, Pasztor, and Carmichael 2000). In the next section, we explain
why this success might not be so surprising after all.

3 FREE ENERGIES

In this section, we will introduce the Bethe approximation to the free energy and show that
the fixed points of the BP algorithm correspond to the stationary points of the Bethe free

Figure 11 A diagrammatic representation of the BP message update rules m;;(z;) <
Zm,- di(zi)ij (x4, z5) HkEN(i)\j my;(x;). The summation symbol indicates that we are
summing over all the states of node i.

energy. First we want to explain, to readers who might not have a physics background,
the concept of a “free energy.” (See also (Yedidia 2001) for more background.) All of
our graphical models define a joint probability function p({z}). If we have some other
approximate joint probability function b({z}), we can define a “distance” (known as the
Kullback-Leibler distance) between p({z}) and b({z}) by

_ b({z})
D (b({z})llp({z}) = %b({w}) e (22)

The Kullback-Liebler distance does not have all the properties we normally associate with
distances: it is not symmetric and does not satisfy the triangle inequality. Nevertheless, it
is useful because it is always non-negative and it is zero if and only if the two probability
functions b({z}) and p({z}) are equal (Cover and Thomas 1991).

Statistical physicists generally assume that Boltzmann’s law p({z}) = Le Z{=}/T jg
true. In our context, we can just consider it a tautology, defining the “energy” E({z}).
Furthermore, from our point of view, the “temperature” T is just a parameter that defines
a scale of units for the energy, and for simplicity, we can choose our units so that T = 1.
Substituting Boltzmann’s law into our distance measure, and setting 7' = 1, we find that

D (b{z}lp({z}) = > _b({zDE({z}) + > _b({z})Inb({z}) +1n Z (23)
{a} {a}

Figure 12 A pairwise MRF with four hidden nodes.

Figure 13 A diagrammatic representation of the BP two-node belief equation
bij (@i, 25) = ktpij (i,)i (24)85 (25) [Tre wiap; ki (@) T iy ™1 (24)-

So we see that the Kullback-Leibler distance will be zero, and therefore the approximate
probability function b({z}) will equal to the exact probability function p({x}), when the
quantity

G (0{z}) =Y _b{zPE(e}) + Y _b{z}) Inb({z}) = Ub{z}) — S®{z}) (24)

{=} {=}

achieves its minimal value of FF = —In Z. F is called the “Helmholz free energy,” while
the more important functional G(b({z})) unfortunately does not have a name that is
universally agreed upon; we will use the name “Gibbs free energy.” The first term in the
Gibbs free energy is called the “average energy” U, while the second is the negative of the
“entropy” S.

‘
<
v [
<
-

F 9

Figure 14 The top equation is a diagrammatic version of the equation b;(z;) =
Zm, bij(zi,z;). By cancelling the pieces that are common on both sides of the equation,
we derive the message-update rules m;; (z;) « Zmi &i (z3)ij (x5, T5) erN(i)\j mei(zi),
shown below.

3.1 THE MEAN-FIELD FREE ENERGY

Why is it useful to describe a system in terms of its Gibbs free energy G instead of
directly in terms of its joint probability distribution? One reason is that it is often possible
to make progress by constructing analytically tractable approximations to G (Yedidia
2001). For example, let us return to pairwise MRF’s and restrict ourselves to consider
approximate joint probability distributions b({z}) that have a particularly simple form:
they are factorized over the sites:

b({a}) = [bs(=:) (25)

where the b;(z;) are subject to the constraint). b;(x;) = 1. Note that within this “mean-
field” approximation, the one-node beliefs are b;(x;) and the two node beliefs are just
the products of the corresponding one-node beliefs: b;;(xs,z;) = bi(x:)b;j(x;). Using this
approximate joint probability function, it is easy to compute the approximate Gibbs free

energy. The energy of a configuration of a pairwise MRF is

E({z}) = Zlnwu (zi,25) — Zlnd)q, () (26)

(i)

so the mean-field average energy is

Unr({b:i}) = Z Z bi(zi)bj(z;) Inhs; wl,:c])—ZZb (z:) In ¢; (z:) (27)

(i5) @i,z; i

while the mean-field entropy is

Sur({bi}) = ZZb @) In by (x:) (28)

i

and mean-field Gibbs free energy is Gur = Umr — Smr. Note that while the full Gibbs
free energy is a function of the full joint probability distribution, the mean-field free energy
is only a function of the one-node beliefs. Since we know the Gibbs free energy is bounded
below by the Helmholz free energy, it is reasonable to search for that configuration of b;’s
that minimizes Gy r. This is the standard variational justification for mean field theory.
(See (Jordan, Ghahramani, Jaakkola, and Saul 1998) and (Jaakkola 2000) for tutorial
introductions to variational methods.)

3.2 THE BETHE FREE ENERGY

The justification for the Bethe free energy is different from that behind the mean-field
theory, although there are some similarities. We would like to derive a Gibbs free energy
that is a function of both the one-node beliefs b;(x;) and the two-node beliefs b;; (xs, ;).
The beliefs should obey the normalization conditions Zml bi(z:) = Exl% bij(zs,xzj) =1
and the marginalization conditions b;(z;) = Emj bij(zi,x;). Because of the pairwise
property of pairwise MRF’s, the one-node and two-node beliefs are actually sufficient
to determine the average energy. In other words, for any pairwise MRF and for any
approximate joint probability function such that the one-node marginal probabilities are
bi(z;) and the two-node marginal probabilities are b;;(z;, z;), the average energy will have

the form
U=- Zb” (zs,25) Inpsj (zi, x5) Zb (z:) In i (z5) (29)
(i)

The average energy when computed with the exact marginal probabilities p;(z;) and
pij(xi,z;) will also have this form, so if the one-node and two-node beliefs are exact,
the average energy given by equation (29) will be exact.

The entropy is not so easy to obtain, and we must normally settle for an approximation.
We could compute the entropy exactly if we could explicitly express the joint distribution
b({z}) in terms of the one-node and two-node beliefs. If our graph were singly-connected,
we can in fact do that. In that case, we know that the correct joint probability distribution
can be written in the form

H(ij) bi; (wiv .’13]‘)

) = e

(30)

where g; is the number of nodes neighboring node ¢ (Pearl 1988). Using this form, we
obtain the Bethe approximation to the entropy

SBethez—ZZb”(xz,mJ In b;; xl,xj)+z '—I)Zb ;) Inb; (x;) (31)

(ij) =iz

For a singly-connected graph then, the Bethe approximation of both the energy and the
entropy will have the correct functional dependence on the beliefs, and the values of those
beliefs that minimize the Bethe free energy Gpethe = U — SBethe Will correspond to the
exact marginal probabilities. For graphs with loops, the Bethe entropy and free energy
will only be approximations, albeit ones that are usually quite good. In contrast to the
mean-field free energy, the Bethe free energy is not generally an upper bound on the true
free energy.

The average energy can be written in a form that is similar to that of the Bethe entropy
if we introduce the local energies E;(z;) = —In ¢;(z;) and Esj(zi, x;) = — Inei;(zs, ;) —
In ¢;(z;) — In@;(z;). Using the marginalization conditions on the beliefs, we obtain

U= Z Z bij (i, z;)Eij(xs, xj) + Z(ql -1) Zb (z:) Ei(x;) (32)

(1) zi,2;5

which is exactly the same form as the Bethe approximation to the entropy except that we
have replaced the Inb terms with local energy E terms.

3.3 EQUIVALENCE OF BP TO THE BETHE APPROXIMATION

In the previous section, we saw that the Bethe free energy

G Bethe (bi(®:i), bij(zi, x5)) = ZZbij(xi,xj)(Eij(iEi,ﬁj)+1nbij(iaj))

(ij) =iz

= D (@ =1 biwi) (Bilw) +Inbi(w:)) (33)

is equal to the exact Gibbs free energy for pairwise MRF’s when their graph has no loops
so that the Bethe free energy is minimal for the correct marginals. We also know that BP
gives correct marginals when the graph has no loops ((13) and (20).In other words, when
there are no loops, the BP beliefs are the global minima of the Bethe free energy. It turns
out that we can say more: a set of beliefs gives a BP fized point in any graph if and only
if they are local stationary points of the Bethe free energy.

To see this, we need to add Lagrange multipliers to G getre in order to form a Lagrangian L:
Aij(z;) is a multiplier that enforces the marginalization constraint b;(z;) = Z bij (i, zj),

while v;; and +y; are multipliers that enforce the normalizations of b;; and b;. The equation
7311,_?; =y = 0 gives:
ij \&Li>Tj

Inbij (@i, xj) = —Eij(xi, ;) + Aij(T5) + Njilw:) + 745 — 1 (34)
The equation #(Lm) = 0 gives:

(¢ — D) (Inbi(z:) +1) = (1 — ¢ Es () + Z Nji(@s) +vi (35)

JEN(i)

differentiating the Lagrangian with respect to the Lagrange multipliers gives the marginal-
ization constraints.

Now, suppose that we have a set of messages and beliefs that are a fixed-point of BP. We
define)\ij (.’I}]) by

Nij(z) =t [mas(ay) (36)

keN(j)\i

and using the BP equations (13) and (20) it is easy to show that A;; and the beliefs satisfy
the stationarity conditions (34,35). Similarly, given beliefs and Lagrange multipliers that
satisfy the stationarity equations (34,35) we use equation (36) to define messages and it
is easy to show that these messages and beliefs must satisfy the BP fixed-point equations.

We can use the fact that Bayesian networks, error-correcting codes, and factor graphs can
be converted into pairwise MREF’s to define free energies for a wide range of different kinds
of models. In every case, we have an identical story: the BP algorithm for each different
model corresponds to the stationary point of a Bethe free energy for that model. The
reader interested in more details should consult (Yedidia, Freeman, and Weiss 2001a).

The BP algorithm for graphical models with loops is not guaranteed to converge, but
because the BP fixed points correspond to Bethe free energy minima, one can simply
choose to minimize the Bethe free energy directly. Such free energy minimizations are
slower than the BP algorithm, but they are at least guaranteed to converge. (Welling and
Teh 2001; Yuille 2001) On the other hand, empirical exploration of this idea indicates
that when BP fails to converge, it is a clue that the results from minimizing the Bethe
approximation will also be quite inaccurate (Welling and Teh 2001).

We refer the interested reader to the “tree-based reparameterization” algorithm devel-
oped in (Wainright, Jaakkola, and Willsky 2001), and the “expectation propapagation”
algorithm developed by (Minka 2001). These algorithms provide new formulations and
extensions of the BP algorithm that can also be connected to a free energy minimization
framework.

4 KIKUCHI APPROXIMATIONS TO THE FREE
ENERGY

Physicists, beginning with Kikuchi (Kikuchi 1951; Kikuchi 1994), have developed a
method, sometimes known as the “cluster variational method,” of deriving approximations,
that improve on and generalize the Bethe approximation to the Gibbs free energy. Given
the close relationship between the Bethe approximation and the BP algorithm, it is natural
to ask whether there exist generalized BP algorithms whose fixed points correspond to the
stationary points of these improved approximations. As we shall see in the next section, the
answer is yes. In fact, just as ordinary BP can be defined without reference to the Bethe
approximation, we shall be able to define generalized BP algorithms without referring
directly to the Kikuchi approximations to which they correspond. Thus, the reader
primarily interested in implementing improved BP algorithms could begin by reading
the next section immediately, and only return to this section later to better understand
the approximation made by the generalized BP algorithms.

In a general “Kikuchi” approximation, the free energy is approximated as a sum of the
local free energies of a set of regions of nodes. The “cluster variational method” provides
one way to choose that set of regions. One begins with a basic set of clusters of nodes
which include every interaction and node in the pairwise MRF, and then subtracts the
free energies of over-counted intersection regions, and then adds back the free energies of
the over-counted intersections of intersections, and so on.

Figure 15 The basic clusters in the Bethe approximation (left) and a Kikuchi approxi-
mation (right) for a small six-node pairwise MRF.

Figure 15 shows an example of the Bethe approximation and a Kikuchi approximation for a
small pairwise MRF. In this figure we have omitted the observed nodes that are understood
to be connected to each hidden node. The Bethe approximation can be considered as
a particular Kikuchi approximation, where we choose the basic clusters of the cluster
variational method to be the set of all pairs of hidden nodes. We define the local free
energy involving a single node ¢ by

Gibi(w)) = > biw:)(Inbi(ws) + Ei(w:)) (37)
and the local free energy involving two nodes by
G (bis (i) = Y bij (@i, @) (Inbis (i, 25) + By (wi, ;) (38)
i,

In the Bethe approximation for this example pairwise MRF, the basic clusters are all the
pairs of connected nodes, and the intersection regions are all the single nodes. Notice that
when we start by summing over all local free energies of pairs of nodes, we overcount the

local free energy of nodes 1, 3, 4, and 6 once, and the local free energies of nodes 2 and
5 twice. Taking node 2 as an example, we count it in the free energies of the pairs [12],
[23], and [25], and we should have only counted it once, so we need to subtract Ga(bz(z2))
twice. Subtracting each of the single-node local free energies appropriately, we find that
for this example,

GBethe = Gi12+G23+ Gas +Gse +G1a + G2s + Gss
— G1—G3s— G4 — G —2G2 — 2G5 (39)
where we have suppressed the explicit dependence of each local free energy on its local
beliefs. Notice that this equation is just a particular case of equation (33).

Better Kikuchi approximations are derived by just extending this kind of logic. For
example, if we consider the cluster of four nodes [1245] in figure 15, we can define its
local free energy to be

G1245(b1245 (21, T2, 24, T5))
= Z bi2as (1, T2, T4, x5)(In b1245 (21, T2, T4, T5) + Er245(21, T2, x4, x5) (40)
r1,T2,T4,T5

where the local energy Fi245(x1, %2, %4, T5) iS

Eroas(z1,z2,z4,5) = — Intpio(z1,24) — Intpra(zr, x4) — Inthos(z2, x5) — Inthas(z4, 5)

— Ing¢i(z1) —In¢a(z2) — In pa(zs) — In ds(xs). (41)

This definition of the local energy is a generalization of our previous notion: we just include
all the compatibility matrices and evidence terms that influence only nodes in our cluster.

In our example of a Kikuchi approximation in figure 15, we take our basic clusters to be
the four-node clusters [1245] and [2356], and we subtract off the intersection region [25],
which will be over-counted. The Kikuchi free energy in this case will be

Gkikuchi = G1245 + Ga3s6 — Gas (42)

where we have again suppressed the explicit dependence of the local free energies on the
local beliefs.

Figure 16 shows a more generic situation. (Again we omitted the observed nodes for
clarity.) When we use the indicated quartets of nodes as our basic clusters in the cluster
variational method, we find

Grkikuchi = Gi2as + Gasse + Gasrs + Gseso
— Gas —Gas — Gsg — Gsg + G (43)

Notice that the pairs of nodes [25],[45], [56], and [58] each appear in two basic clusters, so
that we must subtract off their local free energies once. But once we do that we see that
node 5 appears in four basic clusters and then was subtracted in each of the intersection
regions, so that its local free energy must be added again.

For a general pairwise MRF, we define a Kikuchi approximation by a set of regions R and
a set of counting numbers ¢, for each region r € R. The counting numbers must satisfy

Figure 16 Four-node basic clusters in a a Kikuchi approximation for a small nine-node
pairwise MRF.

the condition that each interaction and node is ultimately counted once when one includes
the contributions of every region. Formally, this means that we require that

Zcr[i€r]=ZcT[i,jEr]=l (44)
rER rER

for all nodes ¢ and pairs of nodes 7, j in the pairwise MRF. Here [i € r] is an indicator
function equal to one if node 4 is in region r and equal to zero otherwise. In the cluster
variational method, this is condition can be guaranteed to be satisified by defining

a=1- Y (45)

s€super(r)

where super(r) is the set of all super-regions of .

Let {z}, be a state of all the nodes in region r, and b,({z},) be the belief in the state
{z},. Define the energy of a region by

E:({z},) = —ln [[v (@i, z;) —In [[d(xs) (46)

(i7) i

where the products are over all nodes or pairs of nodes that are contained entirely in
region r. Then the Kikuchi free energy is

Gk =) o (Z b ({o})Er({z}s) +) br({z}s)In br({zm) (47)

TER Tr Tr

Of course, the beliefs b, ({z}-) in region r must sum to one and be consistent with the
beliefs that intersect with r.

In general, increasing the size of the basic clusters improves the approximation one obtains
by minimizing the Kikuchi free energy. As we saw, the Bethe free energy for a pairwise

MRF already has an average energy term that is exact, and this continues to be true
of all improved Kikuchi approximations. The improvement arises in the treatment of the
entropy, which becomes increasingly accurate as the basic clusters become larger. In the
limit where a basic cluster covers all the nodes in the system, the Kikuchi approximation
for the entropy becomes exact.

5 GENERALIZING BELIEF PROPAGATION

In ordinary BP, all messages are always from a single node to another single node. It is
natural to expect that messages from groups of nodes to other groups of nodes could be
more informative, and thus lead to better inference. That is the basic intuitive idea behind
generalized belief propagation (GBP). The mathematical justification of GBP algorithms
is that, if we define messages and message-update rules appropriately, we can show that the
fixed points of a GBP algorithm are equivalent to the stationary points of a corresponding
Kikuchi approximation to the free energy. In this paper, we will not give the procedure
to construct a GBP algorithm in the general case, or the proof of the equivalence to a
Kikuchi approximation. We refer the interested reader to (Yedidia, Freeman, and Weiss
2001a). Instead, to illustrate the ideas involved, we will work step-by-step through the
“canonical” method to construct a GBP algorithm for an example pairwise MRF.

Specifically, let us return to figure 16 and try to construct a GBP algorithm that
corresponds to the Kikuchi approximation described in the last section. The basic clusters
had four nodes each: [1245], [2356], [4578], and [5689]. The first step in constructing a
GBP algorithm is to find all the intersection regions of the basic clusters, and all their
intersection regions, and so on. We find the intersection regions [25], [45], [56], and [58],
and the single region that is an intersection of intersections: [5].

The next step in constructing a GBP algorithm is to organize all the regions into a region
graph: a hierarchy of regions and their “direct” sub-regions. A direct sub-region s of a
region r is a sub-region of R that is not also a sub-region of another sub-region of r. In
figure 17, we give the hierarchy of regions for our example. Note that region [5] is not a
direct sub-region of region [1245], because it is also a sub-region of region [25].

The next step is to construct messages connecting all regions r to all their direct sub-
regions s. In other words, we associate a message with each line in figure 17. Consider
for example the message connecting region [1245] to region [25]. We can consider this
to be a message from nodes 1 and 4 to nodes 2 and 5. We will denote this message
by mi4—25(x2,xs5). In general, we can consider a message connecting a region r and a
sub-region s to be a message from those nodes in r that are not in s to the nodes in s.

The next step is very important. We construct belief equations for every region r, according
to the rule that the belief b,.({z},) is proportional to the product of every compatibility
matrix and evidence term contained completely in the region, and every message that
goes into nodes in the region from nodes outside the region. For example, for the region
consisting just of node 5, the belief equation is

bs = k [¢s5] [m2—smassme—s5ms—ss) - (48)

where, k is a normalization constant, and we have suppressed all the obvious functional
dependences on the states {z}. This equation is illustrated in figure 18 on both the region

1245 2356 4578 5689

25 45 56 58

Figure 17 Region graph showing the hierarchy of regions in our nine-node example.
Regions are connected to their direct sub-regions beneath them.

graph and the original pairwise MRF. Taking the region [45] as an example of a two-node
region, its belief equation is:

bas = k [Padstpas] [mi12—sasmrssa5massmes5mass], (49)

which we illustrate in figure 19. Taking the region [1245] as an example of a four-node
region, its belief equation is:

bi24s = k [p1d204059129014125%45] [M3e—25M78545M6—5M8—s5] (50)

which is illustrated in figure 20. The region belief equations are natural generalizations of
the Bethe belief equations, but one might still wonder about their justification. Although
we are omitting the proof here, the point is that this natural way to construct belief
equations is precisely what you need for the GBP fixed points to be stationary points of
the corresponding Kikuchi free energy.

The next, and final, step in constructing a GBP algorithm is to enforce the marginalization
condition relating each pair of regions that are connected in the hierarchy shown in figure
17. For example the marginalization condition connecting the region [5] with the region
[45] is b5(zs5) = EM bas(x4,xs5). If we combine that with our previous belief equations
(48) and (49), we find, by cancelling common terms, the message update rule

my_s5(zs5) < k Z Pa(xa)as (T4, T5)mM1245(T 4, T5)Mrs 25 (T2, T5) (51)
42

1245 | 2356 4578 5689

Figure 18 The belief equation bs = k[¢s] [m2—5ma—sme—sms—s] for the region [5],
illustrated both on the region graph (left) and on the original pairwise MRF (right).

The collection of all the belief equations and message update rules defines our GBP
algorithm. A GBP algorithm runs in the same way as the BP algorithm. One normally
initializes all the messages to their unbiased states, and then iterates the message update
rules until they (hopefully) converge. Occasionally, it is helpful from the point of view
of convergence to only move part-way at each iteration towards the new values of the
messages. When convergence of the messages is achieved, the desired beliefs can be read
off from the belief equations.

How well do GBP algorithms work? For a longer answer with details, the reader is
referred to (Yedidia, Freeman, and Weiss 2001b), where we describe experiments where
GBP algorithms can significantly out-perform ordinary BP on two-dimensional pairwise
MREF’s, and for decoding error-correcting codes. The short answer is that GBP algorithms
nearly always improve, at least slightly, over the performance of ordinary BP, and they
can significantly out-perform ordinary BP if the graphical model under consideration has
short loops.

As for the complexity of GBP, the bad news is that it grows exponentially with the size of
the basic clusters that are chosen. The good news is that if the basic clusters encompass the
shortest loops in the graphical model, one usually eliminates nearly all the error associated
with the BP algorithm. For many graphical models, (e.g. square lattice pairwise MRF’s),
using such basic clusters actually involves only minimally more computation than ordinary
BP.

5689

Figure 19 The belief equation bas = k [pad5tPas5] [M12—s45mrs—45m25me—5ms—s], for
the region [45], illustrated both on the region graph (left) and on the original pairwise
MRF (right). Note that we include all messages that impinge upon the region [45] or its
subregion [5].

5.1 GBP, CLUSTERING AND JUNCTION TREES

A standard algorithm for exact inference in graphical models is the junction tree algorithm
(Cowell 1998), which we briefly illustrate in figure 21a-d. The graph is first triangulated
(i.e. we add edges so that every cycle of length > 3 has a chord). In our example, this
gives the graph in figure 21b. We then find the maximal cliques of the junction tree and
connect these in a tree (figure 21c). The potentials on the spanning tree are set so that
the tree defines an equivalent MRF to the original problem. Once we have an equivalent
tree, we can simply run BP on the junction tree to obtain marginals on the cliques (and
an additional marginalization on each clique will give us marginals on individual nodes).
However, since the nodes in the junction tree correspond to overlapping sets of variables
in the original graph, one would like a BP algorithm that takes advantage of this fact
to reduce the size of the messages. In the Shafer-Shenoy algorithm(Shafer and Shenyoy
1990) messages between cliques are functions of the state of the separators or interesections
between cliques. This algorithm is equivalent to to running BP on a tree in which we have
added extra nodes to denote the separators (figure 21d). This algorithm is known as the
generalized distributive law in the information theory literature (Aji and McEliece 2000).

A related method is Pearl’s method of clustering(Pearl 1988) illustrated in figure 21e. In
this method we form clusters of nodes from the original graph and construct a new graph
from the clusters such that the new graph represents the same probability distribution.
BP is then run on the cluster graph.

1245| “1.2356| |4578 | |5689

25 45 | 4| 56 58

Figure 20

The belief equation bi2as = k[P12P4¢51129014125%45] [Ma6—25Mr8—45Me—5Ms—s5], for
the region [1245], illustrated both on the region graph (left) and on the original pairwise
MRF (right).

Both the junction tree and the clustering algorithms pass messages that are functions of
clusters of nodes. How are these algorithms related to GBP?

The short answer is that both the junction tree and the clustering algorithms are special
cases of Kikuchi approximations. For example, the junction tree algorithm in figure 21d
approximates the Gibbs free energy using:

Grkikuchi = G123 + G235 + G245 — G23 — G5 (52)
while the clustering method in figure 21e approximates the Gibbs free energy using:

Gkikuehi = G123 + G23as — Ga3 (53)

Both equations (52) and equation (53) are cases where the Kikuchi approximation is no
longer an approximation: it is an exact expression. It can be shown that whenever the
region graph (e.g. figure 17) contains only two levels (i.e. regions and their intersections)
and the region graph has no cycles, the Kikuchi approximation is exact (Yedidia, Freeman,
and Weiss 2001a; Aji and McEliece 2001).

While the junction tree and clustering methods can yield exact Kikuchi expansions, for
many practical problems they require region sizes that are enormous. The goal of the
general Kikuchi framework is to find expansions that are of reasonable accuracy but of
far less complexity than the junction tree. In general, by choosing an appropriate Kikuchi

e

Figure 21 a. an undirected graph with loops. b. the same graph after triangulation:
edges have been added so that every cycle of length > 3 has a chord c. the junction tree
is a spanning tree of the maximal cliques of the triangulated graph. d. inference in the
junction tree can be performed by running BP on a graph that includes the cliques and the
separators. e. an alternative way to convert the original graph into a tree is the method
of clustering.

approximation and corresponding generalized BP algorithm, one can adjust the trade-off
between accuracy and complexity. As a practical matter, how to choose the “optimal”
Kikuchi approximation is still more an art than a science. We only offer the advice that
one should try to insure that the shortest loops in the graph are entirely included in
Kikuchi regions, so that they are handled exactly.

6 SUMMARY

The success of BP and GBP algorithms is exciting, because it means that many different
kinds of problems that seemed so difficult to handle, involving graphs with many nodes and
loops, can actually be handled using efficient and systematically correctable algorithms.
These algorithms are much faster than Monte Carlo approaches, and the approximations
to the free energy that they are effectively implementing are more sophisticated and
accurate than “mean-field” approximations. These algorithms give a principled framework
for propagating, in parallel, information and uncertainty between nodes in a network.
It would be exciting if they had relevance or modeling power for neural computational
systems.

References

Aji, S.M. and McEliece, R.J. (2000) The Generalized Distributive Law. IEEE Transactions
on Information Theory 46:325-343.

Aji, S.M. and McEliece, R.J (2001) The Generalized Distributive Law and Free Energy
Minimization. To be published in the Proceedings of the 89th Annual Allerton Confer-
ence on Communication, Control, and Computing.

Baxter, R. J. (1982). Ezactly Solved Models in Statistical Mechanics. Academic Press.

Berrou, C., A. Glavieux, and P. Thitimajshima (1993). Near Shannon limit error-correcting
coding and decoding: Turbo-codes. In Proceedings 1998 IEEE International Conference
on Communications, Geneva, Switzerland, pp. 1064-1070.

Boykov, Y., O. Veksler, and R. Zabih (2001). Fast Approximate Energy Minimiza-
tion via Graph Cuts. IEEE Transactions in Pattern Analysis and Machine Intelli-
gence 23(11),1222-1239.

Cover, T. M. and J. A. Thomas (1991). Elements of Information Theory. John Wiley and
Sons.

Cowell, R. (1998). Introduction to Inference for Bayesian Networks. In M. Jordan (Ed.),
Learning in Graphical Models. MIT Press.

Freeman, W. T., E. C. Pasztor, and O. T. Carmichael (2000). Learning low-level vision.
Intl. J. Computer Vision 40(1), 25—-47.

Frey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication.

MIT Press.

Frey, B. J. and D. J. C. Mackay (1998). A revolution: Belief propagation in graphs with
cycles. In M. Jordan, M. S. Kearns, and S. A. Solla (Eds.), Adv. in Neural Information
Processing Systems, Volume 10. MIT Press.

Gallager, R. G. (1963). Low-density parity check codes. MIT Press.

Gallager, R. G. (1968). Information Theory and Reliable Communication. John Wiley and
Sons.

Geman, S. and D. Geman (1984). Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Transactions in Pattern Analysis and Machine
Intelligence 6(6),721-741.

Jaakkola, T. (2000). Tutorial on variational approximation methods. available online at
http://www.ai.mit.edu/people/tommi/papers.html.

Jensen, F. (1996). An Introduction to Bayesian Networks. Springer.

Jordan, M. I, Z. Ghahramani, T. Jaakkola, and L. Saul (1998). An introduction to
variational methods for graphical models. In M. Jordan (Ed.), Learning in Graphical
Models. MIT Press.

Kikuchi, R. (1951). Phys. Rev. 81, 988.

Kikuchi, R. (1994). Special issue in honor of R. Kikuchi. Progr. Theor. Phys. Suppl., vol.
115, 1994.

Kschischang, F. R., B. J. Frey, and H.-A. Loeliger (2001). Factor graphs and the sum-
product algorithm. IEEE Trans. Info. Theory 47, 498-519.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabilities on
graphical structures and their application to expert systems (with discussion). Journal
of the Royal Statistical Society, Series B 50, 157-224.

Mackay, D. J. C. (1999). Good error-correcting codes based on very sparse matrices. IEEE
Trans. Info. Theory 45, 399-431.

McEliece, R. J., D. J. C. MacKay, and J. F. Cheng (1998). Turbo decoding as an instance
of Pearl’s ‘belief propagation’ algorithm. IEEE J. on Sel. Areas in Comm. 16(2), 140-
152.

Mezard, M., G. Parisi, and M. A. Virasoro (1987). Spin glass theory and beyond. World
Scientific.

Minka, T.P. (2001). Expectation Propagation for Approximate Bayesian Inference. UAI
2001.

Murphy, K., Y. Weiss, and M. Jordan (1999). Loopy belief propagation for approximate
inference: an empirical study. In Proc. Uncertainty in AL

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann.

Shafer G.R. and Shenoy P.P.. (1990). Probability Propagation. Annals of Mathematics
and Aritifical Intelligence 2:327-352.

Tanner, R. M. (1981). A recursive approach to low complexity codes. IEEE Trans. Info.
Theory IT-27, 533-547.

Wainright, M.J., T. Jaakkola, and A.S. Willsky (2001). Tree-based reparameterization
framework for approximate estimation in graphs with cycles. LIDS Technical Report
P-2510. Available online at http://ssg.mit.edu/group/mjwain/mjwain.shtml.

Welling, M. and Y. W. Teh (2001). Belief optimization: A stable alternative to belief
propagation.

Yedidia, J. S. (2001). An idiosyncratic journey beyond mean field theory. In D. Saad and
M. Opper (Eds.), Advance Mean Field Methods—Theory and Practice. MIT Press.
Yedidia, J. S., W. T. Freeman, and Y. Weiss (2001a). Bethe free energies,
Kikuchi approximations, and belief propagation algorithms. Available online at

http://www.merl.com/reports/ TR2001-16 /index.html.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2001b). Characterizing belief propagation
and its generalizations. Available online at http://www.merl.com/reports/TR2001-
15/index.html.

Yuille, A. L. (2001). A double-loop algorithm to minimize the Bethe and Kikuchi free
energies. Unpublished.

	Title Page
	Title Page
	page 2

	Understanding Belief Propagation and its Generalizations
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

