MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

ICA-based Probabilistic Local Appearance
Models

Xiang Zhou, Baback Moghaddam, Thomas Huang

TR2001-29 December 2001

Abstract
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factorized component-wise after an independent component analysis (ICA). Also, we propose
a distance-sensitive histograming technique for capturing spatial dependencies. The advantages
over existing techniques include the ability to model non-rigid objects (at the expense of model-
ing accuracy) and the flexibility in modeling spatial relationships. Experiments show that ICA
does improve modeling accuracy and detection performance. Experiments in object detection in
cluttered scenes have demonstrated promising results.
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Abstract
This paper proposes a novel image modeling scheme for
object detection and localization. Object appearance is
modeled by the joint distribution of k-tuple salient point
feature vectors which are factorized component-wise
after an independent component analysis (ICA). Also, we
propose a distance-sensitive histograming technique for
capturing spatial dependencies. The advantages over
existing techniques include the ability to model non-rigid
objects (at the expense of modeling accuracy) and the
flexibility in modeling spatial relationships. Experiments
show that ICA does improve modeling accuracy and
detection performance. Experiments in object detection
in cluttered scenes have demonstrated promising results.

1. Introduction

For appearance based object modeling in images, the
choice of method is usually a trade-off determined by the
nature of the application or the availability of
computational resources. Existing object representation
schemes provide models either for global featureg[14], or
for local features and their spatial relationships
[10][1][13][5]. With increased complexity, the latter
provides higher modeling power and accuracy.

Among various local appearance and structure models,
there are those that assume rigidity of appearance and
viewing angle, thus adopting more explicit models
[13][10][9]; while others employ stochastic models and
use probabilistic distance/matching metrics [5][8][1].

In this paper we construct a probabilistic appearance
model with an emphasis on the representation of non-
rigid and approximate local image structures. We use
joint histograms on k-tuples (k salient points) to enhance
the modeling power for loca dependency, while
reducing the complexity by histogram factorization
along the feature components. Unlike Schneiderman and
Kanade [13], in which sub-region dependency is
intentionally ignored for simplicity, we explicitly model
the dependency by joint histograms. Although, the gain
in modeling power of joint densities can increase the

computational complexity, we propose histogram
factorization based on independent component analysis
to reduce the dimensionality dramatically, thus reducing
the computation to a level that can be easily handled by
today’ s personal computers.

For modeling local structures, we use distance-
sensitive histograming technique. In Huang et a. [5] or
Chang and Krumm [1], the distance information is
explicitly captured into the histogram bins. We argue in
favor of collapsing the distance axis and instead using
distance-dependent  weights on the histogram
increments. For example, for articulated and non-rigid
object, any constraint on the structure or distance
between distant points/regions can be misleading. In this
case, inverse-distance-weighted histograming can be a
better choice. Again, this should be an application-
dependent choice.

In this paper we will focus our attention only on the
modeling of images/objects through joint histograms.
Figure 1 provides an overview diagram of our
histogram-based image and object model. More detailed
description is given in Section 2. This model can be
applied toward image retrieval or object detection in
cluttered scenes. In Section 4 we present some
preliminary results with discussions.

2. TheProposed Modeling Scheme

We propose joint multi-dimensional histograms as a
non-parametric approximation of the joint distribution of
image features at multiple image locations.

2.1 Clasdfication by Class-conditional Density

Let i be the index for elementary feature components in
an image, which can be pixels, corner/interest points
[3][4], blocks, or regions in an image. Let x; denote the
feature vector of dimension n at location i. x; can be as
simple as {R, G, B} components at each pixel location
or some invariant feature vectors extracted at corner or
interest points [7][10][11] or even transform domain
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Figure 1 Image local appearance modeling by joint histograms

coefficients at an image block, or any other local/
regional features.
It is well known that maximum a posteriori decision
rule, i.e.,
mlaxP(MI |T) (1)

where M, isthe model and T = {x;} isatest image, gives
the minimum classification error. By Bayes theorem, and
assuming equal priors, this is eguivalent to maximum
likelihood testing:

mlaXP(T M) 2

For the class-conditional density in (2), it isintractable
to model dependencies among all x;'s, yet to completely
ignore them will severely limit our modeling power—
more often than not, objects distinguish themselves not
through single patches of features, but by the interaction
of different patches in a specific way. Without making a
binary choice, we strike a balance between the two
extremes by using joint histograms for k-tuples.
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In our system, we are not actually modeling the total
joint likelihood of x; X ..., X;, which is an (Ixn)-
dimensional distribution. Instead, we model the
distribution of all k-tuples as an approximation:
PACX, . %, %, )} IM) 3
Now this becomes a (kxn)-dimensiona distribution,
which is still unworkable—e.g., for 20 histogram bins
along each dimension, we have 20%" bins to fill in.
Therefore, we need to factorize this distribution into a
product of low-dimensional distributions. We achieve
this factorization by transforming x into a new feature
vector S whose components are independent. This is
where independent component analysis (ICA) comesin.

2.3 Histogram factorization based on ICA

Joint distribution for k-tuples

ICA originated in the context of blind source
separation[6][2] to separate “independent causes’ of a
complex signal. It is usually implemented by pushing the
vector components away from Gaussianity by
minimizing high-order statistics such as the 4™ order
cross cumulants. ICA is in general not perfect therefore
the IC’s obtained are not guaranteed to be completely

independent.
By applying ICA to {x;}, we obtain the linear mapping
x=AS 4
and

P{(S,.S, .S, )} M)
[P, 5L HM)

where A is a n-by-m matrix and S is the “source signal”
at location i with nearly independent components. The
origina high-dimensional distribution is now factorized
into a product of m k-dimensional distributions, with
only small distortions expected. We note that this differs
from so-called “naive Bayes’ where the distribution of
feature vectors is assumed to be factorizable. Without
ICA the model suffers since in genera the components
are amost certainly statistically dependent.

After factorization, each of the factored distributions
becomes manageable if k is small, eg., k = 2 or 3.
Moreover, matching can now be performed individually
on these low-dimensional distributions and the results
combined to form an overall score.
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24  Distance-Sensitive Histograming for

Modeling Spatial Dependencies

For the joint distribution estimation of k-tuples, not all
the tuples are counted equally. We argue that an object’s
local appearance or structure is best captured by
distance-sensitive histograming, in which the increment



contributed by each tuple into its histogram bin depends
upon the spatial adjacency structure among them.

For objects with fine-grain texture or structure, a
larger increment should be added to the histogram for
tuples with mutual distances on the order of the pattern
periodicity. However, for objects with distinct outer
boundary structure, tuples with distances comparable to
the object size are most representative of appearance and
these should be given higher weights.

For the case of k = 2, denoting the distance of the pair
as d, the alternative methods are inverse-distance-
weighted (IDW) histograming,

dZ

A=e 7, ©)
or distance-weighted (DW) histograming,
dZ

A=1l-e 7, )
or simple hard-threshol ding.
o, if d=threshold
=0 it d<threshold ®

for differently structured images/objects.

3. Implementation | ssues

To dea with noise as well as small variations in pose
and lighting, the model histogram is passed through a
Gaussian smoothing filter of variable sizes to achieve
different trade-offs between accuracy and robustness.

In image database applications, the meta-data are
usually extracted beforehand. To make the histograms
from different images comparable, consistent
guantization boundaries (bin width, bin range, etc)
should be used across images. For some features such as
color this is not an issue; while for others with large
dynamic range, such as differential invariant Gaussian
jets, one must exercise extra caution to maintain
histogram resolution. We used a large collection of
images to estimate the range and frequency and cut 3-5%
of the tails before the quantization. This can improve the
resolution of the histograms by over 100% in some cases
with relatively little information loss.
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Figure 2. Diagram for the object detection and localization
task implemented in this paper
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Figure 3. Synthetic test images and a detection example.
(a) The synthetic test image of 20 objects from COIL;
(b) The rotated and occluded version of (a);
(c) The likelihood map for detecting “piggy bank” in (b). The
white dots are the interest points.

4. Experimentsand Discussions

For our experiments, we used a Harris operator [4][11]
to detect interest points and extracted the first 9
differential invariant jets [7] a each point as the
corresponding feature vector x. ICA was then performed
to get m independent components. We used k = 2,
resulting in a set of 2-D histograms which were used to
model 2-tuple joint component densities. Inverse-
distance-weighted (IDW) histograming was applied in
our experiments.

Tests on object detection in cluttered scenes were
conducted in our study.

Figure 2 shows the flow diagram for this task. Note
that we use the ICA mixing matrix A of the model
images on the test images for direct computation of their
IC’'s. This is based on the intuition that if the test image
is cluttered, its own mixing matrix will not agree with
that of the model. This in turn can distort a potential
candidate’s ICA components.

Test images were constructed using 20 objects from
the Columbia Object Image Library (COIL) (Figure 3a).
To test the invariance properties, each of the objects is
transformed by pose change, a planar rotation, followed
by 50% occlusion (Figure 3b). Figure 3c shows the raw
output for “piggy bank” detection on b.

The effectiveness of ICA was evaluated by comparing
1 through 9 1C's with the original 9 jets as the feature
vector. For the original 9 jets, the histogram factorization
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Figure 4. The average detection rank of the target object
using ICs (m =1, 2, ... 9) vs. original 9-dimensional jets
(shown as the rightmost bar). Dataset: COIL; 20 objects
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Figure 5 Detecting Leopard and Tigers
The likelihood maps are multiplied by the corresponding original
images to reveal the detected (high likelihood) local structure.

along feature components is no longer valid, since the
independence assumption on the differentia invariant
jets does not hold in general.

Detection performance was measured by the average
rank of the accumulated regional likelihood for the
model object (the ground truth object location was used).
Figure 4 depicts the clear improvement introduced by
ICA. In fact, by only 3 IC’'s the system achieved 100%
“first guess’ detection (average rank = 1) on Figure 3a,
and an averaged rank of 1.2 for Figure 3b.

It is necessary to test object detection performance
with greater variations such as that presented Figure 5.
Here we tested the detection of “leopard” and “tiger” on
three images. Since we used window sizes of about 10
pixels for selecting interest points and jet computation,
which is small compared to the image size and object
sizes, this test is essentially equivalent to putting these
images together as one cluttered scene.

In Figure 5, first a single model image of a leopard
was used. The likelihood map, normalized to the range
[0,1], was multiplied by the original images to highlight
the high-probability regions. Shown in part (c) are the
detection results for leopard: the detection maps revea a
high likelihood region in the first test image. Second, we
used six tigers as training images and simply averaged

their histograms to obtain a model for “tiger”, which
proved as effective as a single “prototype” model. In part
(e), severa high likelihood regions are detected in the
third test image around the face and the neck of thetiger.

5. Conclusion

A novel probabilistic image modeling scheme was
proposed based on factorization of high-dimensional
distributions of image features. We argued in favor of
the distance-sensitive k-tuple histograming scheme for
the purpose of capturing local spatial dependencies. In
contrast to existing methods, the new scheme tries to
mediate a trade-off between the capability for non-rigid
object modeling and modeling accuracy. Another
advantage of the proposed method is the flexibility in
modeling spatial  relationships. Experiments  yield
promising results on robust object localization in
cluttered scenes.
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