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Abstract

In this paper we presat the appication of a boasting classficationalgoiithm to confi-
dercescoring. We derive featue vectasfrom speechrecogrtion latticesandfeedthem
into aboostingclassfier. This classfier combneshundredsof very simple‘weaklearn-
ers’ anddervesclassfication rulesthat canredue the corfidenceerrar rate by up to
34%. We compae our resuts to those obtaired using two other standad classfication
tecmiques, Suppat VectorMachines(SVMs) andClassficationandRegressim Trees
(CART), andshowsignificantimprovements.Furthermae, the natue of the boostng
algarithm allows usto combinethe bestsinde classfier andimprove its performance.

We presnt expelimental resuts on real world corpora derived from the Compaq
SpeechBot Web index andfrom the HUB4 DARPA evaluaion sets. We believe these
resuts have wide applicability to audio indexing andto acousticandlanguagemodeing
adapation whereword confidencescores canbe usedin iteraive adagation schemes.
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Abstract

In this paperwe presenthe applicationof a booging clas-
sification algorithmto confidencescoring. We derive feature
vectorsfrom speechrecognitionlatticesand feed theminto a
boostingclassifier This classifiercombineshundredsof very
simple‘weak learners’andderivesclassificatiorrulesthatcan
reducetheconfidene errorrateby up to 34%. We compareour
resultsto thoseobtainedusingtwo otherstandardtlassification
techniqus, SupportVector Machines(SVMs) and Classifica-
tion and RegressionTrees(CART), and shav significantim-
provemerts. Furthermorethe natureof the boostingalgorithm
allows usto combinethe bestsingle classifierandimprove its
performance

We presentexperimentalresultson real world corporade-
rived from the CompaqSpeehBot Web index and from the
HUB4 DARPA evaluationsets. We believe theseresultshave
wide applicability to audio indexing and to acousticand lan-
guagemodding adaptationwhereword confidencescorescan
beusedin iterative adaptatiorschemes.

1. Intr oduction

Speechrecognitiontechnol@y hasadwancedto the stagewhere
real-world applicationsare feasible. However, dueto the cur
rent imperfectnatureof speechrecognition,confiderce scor

ing hasemepgedasanimportantcompmentof currentsystems.

Confidencescoringattemptsto assign'trust’ to the hypothegs
producel by speechrecognitionsystems.

We are interestedn audioindexing systemsfor the Weh
Confidencescorescan be very useful for suchsystemswhere
anenormots amountof datais indexed andthe groundtruth is
not known. For example,our speechindexing systemSpeeb-
Bot[1] indexescloseto 9000 hours of untranscribecudiocon-
tent. A good confidencescorercould enableusto make useof
suchdata,eitherfor acousticandlangua@ modeladaptatioror
evenfor retraining[2]. We could alsouseconfidencescoresto
improve our indexing function.

The literature containsmary examges of techniques for
word confidene scoring. Typical approatesform a feature
vector by concatenting or otherwisecombiningone or more
basicfeaturescorrelatedwith word confiderce,including basic
featuref adjacemwords. Oneof avarietyof classifiergs then
appliedto thisvectorto determineconfidercefor theword. Fea-
turesbasedon the acousticmodel (e.g. see[3]), the languag
model(e.g. [4]), thedecodingprocesqe.g. [5, 6, 7, 8, 9]) and
word semanticq10, 11]) have beenpropcsed. Classifiersin-
vestigatednclude simple thresholding[7], linear discriminant
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analysisfollowed by a linear thresholdq3, 11], Bayesclassi-
fiers[8], neuralnetworks|[5, 3, 6, 12], generalizedinearmodels
[9, 13] anddecisiontrees[6, 11].

In this paperwe explore the useof boosting techniquedo
classify confidencefeaturevectors. Boosting combineshun-
dredsor eventhousand of very simpleclassifierqcalled‘weak
learnersin theMachine Learningliterature)by aweightedsum.
Eachclassifierfocusesits attentionon thosevectorson which
the previous classifierfails.

Theuseof boostingclassifiersvith thechoiceof weaklearn-
ersproposedn [14] offersustheuniqueadvantage of beingless
sensitve to spuriois features Thatis, componatsof the confi-
dencefeaturevectorthatdo not addary adwantageareignored
atthe expenseof morepromisingfeatures Additionally, we are
ableto analyzetherelative importanceof eachfeaturein a prin-
cipledway. A simpleinspectionof theweaklearnersighlights
thosefeatureshatcontritute mostto classification.

2. ConfidenceFeatures

We usea fairly standardsetof confidencefeaturesaugmented
with one novel featureto form a featurevector for eachhy-
pothesizedvord. Sinceour boostingclassifierwill ignorecom-
poners that supdy spuriousinformation, thereis no harmin
including asmary featuresaspossible(otherthanwastedpro-
cessingime). Our basicsetof featureds listedin Tablel.

| Component | BasicFeature |
word graphprobaility e.g. [7]

hypothess densityatword beginning
hypothess densityatword end
averagehypathesisdensityover theword
hypothess densityat precedingrame
hypothess densityatfollowing frame
acousticscore

unigramscore

word lengthin frames

word lengthin phones

10-12 3D pointrepresentinghefirst phore of the
word (explainedin thetext)

Ooo~NOoOUTh~WNEFEO

Tablel: Corefeaturesetusedto constructhefeaturevectorfor
eachhypothesizedvord. This vectoris augmentedy left and
right context asdescribedn thetext.

In addition to this basicset, we include context informa-
tion for eachword. We form thefinal confiderce featurevector
for eachhypothe&zed word asthe concatenatiomf the feature
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Figurel: 3D Euclidearrepresentationf TIMIT phoneslerived
usingMDS on their confusionmatrix. For clarity, only points
closeto the origin areshovn.

setin Table1 for thatword, andthe correspoding setsfor the
mostlikely (in the Viterbi searchsenseprecedingandfollow-
ing words. Our final confidenceeaturevectorthushasdimen-
sion39.

Our one novel featureis a 3D representatiorof the first
phoneof eachword. Our motivationis thatwe wish to include
moreinformation aboutthe intrinsic confusabilityof wordsin
confidene scoringmetrics. However, sincethereis no simple
low-dimensionamonothéic representationf word confusabil-
ity, we approximatet by the confusdility of thefirst phoneof
the word. This is reasonale sincean error at the beginning
of the word will impactthe whole word. Indeed,mary words
begin with easilyconfusibleconsorants.

Werepresenthe confusabilityof thefirst phonein theword
by transforminghephoneabelto arealthree-dimensiorgoint
using Multi-dimensioral scaling (MDS). This transformation
from alabelto thereal spaceallows usto treatthis featurenu-
merically, similar to all other features. MDS (e.g. [15]) is a
standardechniquewhich transformsa seriesof objects,about
which only relative distancenformationis available,to a series
of N-dimensioral points. The mappingattemptsto presere
the relative distancesdetweenobjectssuchthat objectswhich
areknown to be ‘close’ to eachotherare‘close’ in the N di-
mensionalspace. To transformphonelabelsusing MDS, we
usea phoneconfusionmatrix asa measureof the relative dis-
tanceamongthem. Figure 1 shows our 3D representatiorof
TIMIT phoresderived using MDS on their confusionmatrix.
We seethat linguistic cateyoriesarewell preseredin this Eu-
clideanspace We usethis mappingto obtaina 3D pointfor the
first phoneof eachword.

3. BoostingClasstfier

Boostingis a novel approachto classificationwhich haslately
receved muchattentiondueto its simplicity, elegance,power
and easeof implementation. The basicideasand algorithms
wereintroducedby Schapird16] andFreund[17].
Boostingappliesa classificationprocedureiteratively to a
setof weighteddatavectors.At first eachvectoris assignedin
equalweight (or a weight depemling on its prior probalility).
On eachiteration, a classifieris learntandthe vectorsthat are
classifiedincorrectly have their weightsincreasedvhile those

that are correctly classifiedhave their weightsdecreasedThe
intuition is that vectorswhich are difficult to classify receve
moreattentionon subseqgantiterations.
Theclassifiellearntateachiterationis calleda ‘weak’ clas-
sifier. It is called weak becauset is not expectedto classify
the training datavery well, only betterthan50%. Typically a
very simpleweakclassifieris used. Thefinal classifier the so-
called ‘strong’ classifier is formed as a weightedsum of the
weakclassifierdearntat eachstep. Table2 givesa algorithmic
descriptionof the boostingclassificatiorprocedure.

e Begin with N training vectorsz; andtheir associateda-
belsy; wherey; = 0, 1 for negative andpositive examples
respectiely.

e Initialize weightswi,; = 5=, &; for y; = 0,1 respec-

tively, wherem and! are the numter of negatives and
positivesrespectiely.

e Fort=1,...,T:

1. Normalizetheweights,
Wi
E;=1 Wt,j
sothatw; is aprobabhlity distributionandaddsup to
1.0.

2. For eachfeature,j, train a classifierh; whichis re-
strictedto usinga singlefeature. The erroris evalu-
atedwith respecto wy, €5 = >, wi |hj(x:) — yil.

3. Chooseheclassifier ks, with thelowesterrore;.
4. Updatetheweights:

We,i <

1—e;
Wit1,i = Wi,
wheree; = 0 if examplex; is classifiedcorrectly

e; = 1 otherwiseandg; = 1?“ .

e Thefinal strongclassifieris:

h(x)z{ 1 Y ahi(a) > 38T o

0 otherwise

wherea; = log B%

Table 2: The boostingalgorithm for learninga classifier T
weak classifiersare constructed. The final strongclassifieris
aweightedlinear combindion of the " weakclassifiersvhere
theweightsareinverselyproportionalto thetrainingerrors.

The formal guaranteeprovided by boostingclassification
theory are quite strong. Freundand Schapireprove that the
training error of the strongclassifierapproabeszeroexponen-
tially in the numberof iterations.

3.1. Choiceof Weak Learner

The boostingalgorithmdoesnot imposeary restrictionon the
natureof theweaklearner Any classifierthatdoesa betterjob
than pure chanceis acceptake. In this paperwe have exper
imentedwith a rathersimple weak learner We usea variant
of AdaBoost{17] proposedy TieuandViola[14] in whichthe
weaklearneris asimplethresholdhatdepend onasinglecom-
poner of the featurevector This weaklearnerexaminesthe
featurevectorandfinds the componat andthresholdthat best
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Figure2: Strongandweakerrorratesasa function of thenum-
ber of iterationsin the boostingalgorithm. The datasewas a
subsebf theHUB4 confidene set.

separateshe two classes.Thereforeeachweaklearnerh; (x)
is identified by a featurecompament f;, a thresholdd;, anda
directiond; indicatingthe directionof theinequalitysign.
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In practiceno single featurecomponentcan performthe clas-
sificationtaskwith low error. Typically the first weaklearner
hasan error rate of abou 0.3 andthe final learnerscloserto
0.5. Figure2 shavs weakandstronglearnererror ratesfor the
HUBA496 datasetasa function of the numberof iterations.We
seethat the strongerror rate corvergesto 0.2 while the weak
learnercorvergesto aroundo.5.

4. Alter native Classifiers

In addition to boosting, we also experimentwith alternatve
classifierson our featureset. We usestandardmplementations
of SupportVectorMachines(SVM) [18] andClassificatiorand
Regressionrees(CART) [19].

5. Experimental Results

Wetestouralgorithmon confidercefeatureobtainedrom two
datasets.Thefirst setis the 1996 HUB4 testset[20], atotal of
about3 hoursof speechThesecondsetis sampledrom around
9 hours of transcribedWeb BroadcasitNews from our internal
SpeehBa testset[1].

To obtain latticesfrom which our confidencefeaturesare
extracted,we run a standardHMM-baseddecoderbuilt on the
HUB496 and HUB497 training sets. For the SpeehBot test
set,thetrainingdatais Real-Audioencoddanddecoddto ac-
countfor the streameahatureof thetestset. Thedecodeffor the
HUB4 datausesl6 Gaussiamixturecomporentsperstate.For
the Speebbat data,8 mixture componats areused. The word
errorratesfor the datasetsare32.9%and55.0%respectiely.

Using the decodel word lattices, We constructconfidene
featurevectorsasdescribedn Section2 for eachword in the
top hypothesis.Eachfeatureis labeledwith ‘1’ or ‘0", reflect-
ing whetheror not the word is correct. Table 3 gives further
detailsof the featuresets,including the baselineerror or prior
probability of Class0. Notice thatthe error ratesfor the con-
fidencevectorsare not the sameasthe recognizererror rates.
This is becasedeletedwords, which countaserrorsfor word
errorratescoresdo notappeain confidencdeaturesets(since
thereis noword to obtainfeaturedor).

For all the experimentsreportedin this paperwe perform
crossvalidation. The datasetswererandomizedandsplit into
10 differentsets. Trainingwasperformedon 9 setsandtesting
ontheremainingset. Thisexperimentwasrepeated 0 timesby
testingonall 10sets.Ourerrorratesarethereforeaverageover
all 10 sets. This experimentalmethodprovides more accurate

[ DataSet | Nr. Vectors | BaselineError |

HUB496 43k 29.0%
SpeehBot 43k 41.7%

Table3: Detailsof theHUB4 andSpeebBotconfidercefeature
sets

andvalid results.

We alsoreportthe confidenceerror ratesfor both classes.
Any classifiercanbe tunedto minimize global errorrateor to
minimizefalsepositivesor falsenegatives. In thispapemwetune
ourclassifierso operatecloseto theequalerrorratepointwhere
both falsepositivesandfalsenegativesaresimilar. Otherwise,
ourresultswill bebiasedoy theprior probabilitiesof eachclass.

5.1. HUB496 results

Table4 shavstheresultsof testsontheHUB4 datasetWe shov

error ratesfor boostingsystemswith up to 200 weaklearners.
We did not obsene significantimprovemeris beyond this num-
ber. Theresultsshav thatwe canreducetheerrorrateto 25.5%,

animprovemert of 12.1% relative to the baselineof 29.0%.

Number of Classl Class0 Total
weak learners | Error Rate | Error Rate | Error Rate
1 30.4% 28.9% 28.1%
50 27.6% 27.4% 26.1%
100 27.4% 27.1% 25.9%
200 28.0% 26.3% 25.5%

Table4: Errorratesfor theHUB4 96 datasetandtheir relation-
shipto the numberof weaklearners.

On this set,the CART classifierproducesan error rate of
28.1%, almostno improvementover the baseline. The SVM
classifieryieldsanerrorrateof 31.2%, againnoimprovement.

5.2. SpeechBot results

Table 5 presentgesultsfor the Speehbbot dataset.Again, we
shaw errorratesfor up to 200 weaklearners. A substatial im-
provemert over the baselineresultis obsened. We improve
the errorratefrom 41.7% to 27.6%, arelative improvementof
33.8%. Onthis datasetthe CART classifierproducesan error
rateof 28.4% andthe SVM classifieranerrorrateof 32.6%.

Number of Class1 Class0 Total
weaklearners | Error Rate | Error Rate | Error Rate
1 28.6% 34.4% 31.9%
50 26.1% 29.7% 28.2%
100 25.5% 29.2% 27.7%
200 25.7% 28.9% 27.6%

Table5: Error ratesfor the SpeehBot datasetandtheir rela-
tionshipto the numbe of weaklearners.

6. Discussion

We obsene thatour boostingclassifieroutperfamsboth SVMs
and CART classifiers.Even on the HUB96 datasewherethe
CART and SVM classifiersfailed to yield ary improvement
boostinggave a 12.1%relative improvemert.

Becauseur choiceof weaklearneris a dimensionspecific
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Figure 3: Weightsappliedto eachof the weaklearners. The
first five learnerscontribute closeto 25%to thedecision.

classifierit is interestingo examinewheneachfeaturecompo-
nentis chosenby the boostingiterative procedure.Intuitively,
confidene vectorfeatureghatarechoserearly aremoreinfor-
mativethanthosechosenlater on. Using this simple analysis
we obsene thatfeaturess, 0, 3, 1, 7 and11 arethefirst six fea-
tureschosenby the strongclassifier Thesefeaturescorrespond
to theaveragehypothesisdensityovertheword, theword graph
probability, the hypothesisdensityat the word beginning, the
unigramscoreandthemiddle comporentof our 3D representa-
tion of thefirst phonein theword. This orderof featurechoice
is relatively consistentacrossexperimentsand datasets.Inter-
estingly our 3D phone representatiois moreinformative than
mary of the otherlattice-dervedfeatures.

Figure3 displaystypical weightsappliedto thefirst thirty
weaklearners.We obsenre thatthe featuresfor context words
(from comporents 14 to 39) that provide another26 compo-
nentsto our 39 dimensionalectoronly appeaafterposition10
or so. In fact, afterlearning100 weaklearnersonly 26 out of
thepossible39 arechosenThisis dueto thefactthatourboost-
ing implementatiorplaysa dualrole of learningclassifiersand
picking thosefeaturesthat are more promisingin classifying
the datacorrectly This characteristioof our boostingimple-
mentationcould be usedas a prepro@ssorto extractinforma-
tive featuresfrom an arbitrarily large setto aid dimensionality
reductionin othertasks.

7. Conclusion

In this paperwe have exploredthe useof boostingtechniques
for confidencescoring.We have comparedhemwith two other
classificatiorschemesCART andSVMs, andconsistentlyout-
performedthem. Our choiceof boostingalgorithmoffers sev-
eraladwarntages. It is simpleto implement,fastin its learning
time, and very flexible in the choice of weaklearner In this
paperwe have useda very simplelearnerthat picks individual
featuresand classifiesthem with a thresholdand a flag indi-
catingthe directionof the inequality sign. Remarkablysucha
simple classifieris able to provide up to a 34% improvement
in performanceon the SpeehBot dataset.More sophisticated
weak learnerssuchas CART should be able to improve this
performancetthe costof longertrainingtime.
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