
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Human-Guided Search for Jobshop
Scheduling

Neal Lesh, Leonardo B. Lopes, Joe Marks, Michael Mitzenmacher, Guy T. Schafer

TR2002-43 January 2003

Abstract

We present an interactive jobshop scheduling application developed with the Human-Guided
Search (HuGS) framework and toolkit. Our system leverages people’s abilities in areas in which
they currently outperform computers, and allows people to steer a computer towards effective
jobshop schedules based on their knowledge of real-world constraints. Furthermore, users can
better understand, justify, and modify schedules if they participate in their construction. Our
prototype allows users to manually modify the current schedule, backtrack to previous schedules,
and invoke, monitor, and halt a variety of search algorithms to find better schedules. These
search algorithms include a variant of tabu search that users can focus and constrain by visually
annotating elements of the schedule.

3rd International NASA Workshop on Planning and Scheduling for Space

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2003
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Submitted June 2002.
Revised September 2002.



Human-Guided Search for Jobshop Scheduling

Neal Lesh
�
, Leonardo B. Lopes

�
, Joe Marks

�
, Michael Mitzenmacher

�
, Guy T. Schafer

�
�

Mitsubishi Electric Research Laboratories, � lesh,marks � @merl.com�
Northwestern University, leo@iems.nwu.edu�

Harvard University, michaelm@eecs.harvard.edu 	

Harvard University Extension School, gschafer@fas.harvard.edu

Abstract

We present an interactive jobshop scheduling application
developed with the Human-Guided Search (HuGS) frame-
work and toolkit. Our system leverages people’s abilities
in areas in which they currently outperform computers, and
allows people to steer a computer towards effecitive jobshop
schedules based on their knowledge of real-world constraints.
Furthermore, users can better understand, justify, and modify
schedules if they partcipate in their construction. Our proto-
type allows users to manually modify the current schedule,
backtrack to previous schedules, and invoke, monitor, and
halt a variety of search algorithms to find better schedules.
These search algorithms include a variant of tabu search that
users can focus and constrain by visually annotating elements
of the the schedule.

1 Introduction
The Human-Guided Search (HuGS) project is a ongoing
effort to investigate and develop interactive optimization
systems. We have created applications for a variety of
problems, developed general exhaustive and heuristic search
algorithms that are amenable to human guidance, and stud-
ied people’s ability to guide these search algorithms (Ander-
son et al., 2000; Lesh, Marks, & Patrignani, 2000; Scott,
Lesh, & Klau, 2002; Klau et al., 2002b). Additionally, we
have developed the HuGS Toolkit, which is Java software
which supports the quick development of interactive opti-
mization systems (Klau et al., 2002a).

In this paper, we present an interactive jobshop schedul-
ing application developed with the HuGS framework and
toolkit. The HuGS framework provides the user a greater
degree of control than previous interactive optimization
approaches. It allows users to manually modify solutions,
backtrack to previous solutions, and invoke, monitor, and
halt a variety of search algorithms. More significantly, users
can constrain and focus the search algorithms by assigning
mobilities, which we describe below, to elements of the cur-
rent solution.

The HuGS toolkit is Java software that helps developers
quickly create interactive optimization systems. To create
an application, the developer must provide domain-specific
definitions of the class of possible problems and solutions, a

�
Supported in part by NSF CAREER Grant CCR-9983832 and

an Alfred P. Sloan Research Fellowship. This work was done while
visiting Mitsubishi Electric Research Laboratories.

set of possible transformations on solutions, and a graphical
component to visualize the solutions. The toolkit contains
generic versions of several, human-guidable search algo-
rithms as well as code to maintain the current working solu-
tion, the mobilities, and the history of solutions.

We have developed an initial prototype system for inter-
actively solving jobshop scheduling problems. After provid-
ing the background for the HuGS framework, we describe
the domain-specific components of the Jobshop application,
emphasizing the challenges of the visualization component.
We also describe general extensions to the HuGS toolkit that
arose while developing the jobshop application. Finally, we
discuss our initial experiences with our prototype.

2 Background: HuGS

2.1 Prior applications

In this section, we briefly describe three additional applica-
tions of HuGS that serve as examples to describe the HuGS
framework. For more information, see (Klau et al., 2002b).

The Crossing application is a graph layout problem
(Eades & Wormald, 1994). A problem consists of � lev-
els, each with 
 nodes, and edges connecting nodes on adja-
cent levels. The goal is to rearrange nodes within their level
to minimize the number of intersections between edges. A
screenshot of the Crossing application is shown in Figure 1.

The Delivery application is a variation of the Traveling
Salesman Problem (Feillet, Dejax, & Gendreau, 2001). A
problem consists of a starting point, a maximum distance,
and a set of customers each at a fixed geographic loca-
tion with a given number of requested packages. The goal
is to deliver as many packages as possible without driving
more than the given maximum distance. A screenshot of the
Delivery application is shown in Figure 1.

The Protein application is a simplified version of the
protein-folding problem, using the hydrophobic-hydrophilic
model introduced by Dill (Dill, 1985). A problem con-
sists of a sequence of amino acids, each labeled as either
hydrophobic or hydrophilic. The sequence must be placed
on a two-dimensional grid without overlapping, so that adja-
cent amino acids in the sequence remain adjacent in the grid.
The goal is to maximize the number of adjacent hydrophobic
pairs.



2.2 Terminology
We use the following abstractions to allow a uniform
description of the HuGS applications: problems, solutions,
moves, and elements. A problem is an instance of the type of
problem being optimized. For example, a Protein problem
consists of a sequence of amino acids.

The goal of optimization is to find the best solution to
the given problem. A Delivery solution, for example, is a
sequence of customers. We assume that for each application
there is a method for comparing any two solutions and that
for any two solutions, one is better than the other or they
are equally good. As mentioned in the introduction, how-
ever, we assume that this total ordering may merely approx-
imate the real-world constraints and preferences known by
the users. Additionally, for most applications, it is possible
to create infeasible solutions which violate some of the con-
straints of the problem. For example, a Delivery solution
may exceed the distance constraint.

For each application we have designed a set of possible
moves, or transformations on solutions. Applying a move
to a solution produces a new solution. For example, in the
Crossing application, one possible move is to swap two adja-
cent nodes. For the Delivery applications, the moves include
adding or removing customers from the current route.

Finally, we assume that each problem contains a finite
number of elements. The elements of Crossing are the
nodes, the elements of Delivery are the customers, and the
elements of Protein are the amino acids. Each move is
defined as operating on one element and altering that ele-
ment and possibly others. For example, moving a node from
the 3rd to the 8th position in a list, and shifting the 4th
through 8th nodes up one, would operate on the 3rd element
and alter the 3rd through the 8th. As with automatic opti-
mization, deciding which moves to include is an important
design choice for the developer of an optimization system.

2.3 Mobilities
Our system maintains and displays a single current solution,
such as the ones shown in Figures 1 and 2. Mobilities are
a general mechanism that allow users to visually annotate
elements of a solution in order to guide a computer search
to improve this solution. Each element is assigned a mobil-
ity: high, medium, or low. The search algorithm is only
allowed to explore solutions that can be reached by applying
a sequence of moves to the current solution such that each
move operates on a high-mobility element and does not alter
any low-mobility elements.

We demonstrate mobilities with a simple example. Sup-
pose the problem contains seven elements and the solutions
to this problem are all possible orderings of these elements.
The only allowed move on an element is to swap it with an
adjacent element. Suppose the current solution is as follows,
and we have assigned element 3 low mobility (shown in dark
gray), element 5 and 6 medium mobility (shown in medium
gray), and the rest of the elements have high mobility (shown
in light gray):

Figure 1: The Crossing and Delivery Applications.

A search algorithm can swap a pair of adjacent elements
only if at least one has high mobility and neither has low
mobility. It is limited to the space of solutions reachable by
a series of such swaps, including:

Note that setting element 3 to low mobility essentially
divides the problem into two much smaller subproblems.
Also, while medium-mobility elements can change position,
their relative order cannot be changed. Mobility constraints
can drastically reduce the search space; for this example,
there are only 12 possible solutions, while without mobili-
ties, there are ��� =5040 possible solutions. We have found
that this generalized version of mobilities useful in all of the
applications described above.

2.4 Guidable Tabu
Tabu search is a heuristic approach for exploring a large
solution space (Glover & Laguna, 1997). Like other local
search techniques, tabu search exploits a neighborhood
structure defined on the solution space. In each iteration,
tabu search evaluates all neighbors of the current solution
and moves to the best one. The neighbors are evaluated
both in terms of the problem’s objective function and by



other metrics designed to encourage investigation of unex-
plored areas of the solution space. The classic “diversifi-
cation” mechanism that encourages exploration is to main-
tain a list of “tabu” moves that are temporarily forbidden,
although others have been developed. Recent tabu algo-
rithms often also include “intensification” methods for thor-
oughly exploring promising regions of the solution space
(although our algorithm does not currently include such
mechanisms). In practice, the general tabu approach is
often customized for individual applications in myriad ways
(Glover & Laguna, 1997).

GTABU a guidable tabu search algorithm developed for
HuGS. The algorithm maintains a current solution and cur-
rent set of mobilities. In each iteration, GTABU first evalu-
ates all legal moves on the current solution given the current
mobilities, in order to identify which one would yield the
best solution. It then applies this move, which may make the
current solution worse, and then updates its current mobil-
ities so as to prevent cycling and encourage exploration of
new regions of the search space.

The fact that the tabu algorithm controls its search by
modifying mobilities provides several important benefits.
First, applying GTABU requires no additional effort from
the developer beyond what is needed to allow human guid-
ance using mobilities. Second, users can more easily under-
stand the progress and effects of the algorithm, by viewing
the mobility settings at each iteration.

In Klau et al. (2002b) we describe experiments compar-
ing guided tabu search to unguided (i.e., fully automatic)
tabu search. The experiment included a total of seven test
subjects, two domains, and 40 trials. The results indicate
that 10 minutes of guided tabu search is comparable to, on
average, 70 minutes of unguided tabu search.

2.5 Overview of User Actions
We now describe the full range of user actions in the HuGS
framework. In our applications, the system always main-
tains a single, current working solution which is displayed
to the users. The users try to improve the current solution by
performing the following three actions:

1. manually choose a move to be applied to the current solu-
tion,

2. invoke, monitor, and halt a focused (via mobilities) search
for a better solution,

3. revert to a previous or precomputed solution.

We now describe each type of action. The users can man-
ually modify the current solution by performing any of the
possible moves defined for the current application on the
current solution. In many of our applications, a single user
action on the GUI can invoke several moves. In the Delivery
application, for example, the user can select multiple cus-
tomers and remove them all with a single button press.

Users can also invoke a computer search for a better solu-
tion. The search algorithm starts from the current solu-
tion and explores the space of solutions that can be reached
by applying moves which are allowed given the mobility
assignments as described above. The users can invoke a

variety of different search algorithms. In addition to GTABU
described above, we currently provide steepest-descent and
greedy exhaustive search algorithms. Both exhaustive algo-
rithms first evaluate all legal moves, then all combinations of
two legal moves, and then all combinations of three moves
and so forth, up to some maximum ply. The steepest-descent
algorithm keeps searching deeper and deeper for the move
that most improves the current solution. The greedy algo-
rithm immediately makes any move which improves the cur-
rent solution and then restarts its search to try to improve
the solution that results from applying that move. Our initial
experience has been that tabu search outperforms exhaustive
search but it seems useful to provide multiple search algo-
rithms to the users.

After the users have invoked a search algorithm, they can
monitor its progress to decide when to halt it. A text display
shows the score of the best solution the search has found and
how many seconds ago this solution was found. At any time,
the user can query the search algorithm for either the best
solution found so far or the current solution it is considering.
This solution becomes the current visualized solution of the
system. While the search is running the user can modify
the current visualized solution or reassign mobility values to
problem elements. The user can restart the search from these
current settings, or halt the search.

Finally, the third type of user action is to revert to a pre-
vious solution. The system maintains a history of previous
solutions, which can be browsed and adopted by the users.
The GUI also provides menu commands to quickly undo or
redo recent moves, as well as revert to the best solution seen
so far. Additionally, the users can browse and adopt a set
of solutions that were precomputed by the search algorithms
prior to the interactive optimization session.

3 Jobshop Scheduling
3.1 Problem definition
The Jobshop application is a widely-studied task scheduling
problem (Aarts et al., 1994). In the variation we consider,
a problem consists of 
 jobs and � machines. Each job is
composed of � operations which must be performed in a
specified order. The ordered list of operations for each job is
called an itinerary. Each operation must be performed by a
particular machine. In our variation, every job has exactly
one operation that must be performed on each machine.
Each machine can process only one operation at a time.

A solution is a jobshop problem is a jobshop schedule that
specifies a roster for each machine, which indicates the order
in which the operations will be performed on that machine.
Given a jobshop schedule, a simple, recursive algorithm can
compute the earliest possible start time and end time for each
operation: each operation starts as soon as all predecessors
on its machine’s roster and predecessors on its job’s itinerary
have completed. The end time of an operation is simply its
start time plus its duration. The goal is to find a schedule
which minimizes the time that the last job finishes, called
the makespan.

In our application, we define problems, solutions, ele-
ments, and moves as follows. A Jobshop problem specifies



the number of jobs, the number of machines, an itinerary
for each job, and the duration of each operation. A Job-
shop solution is a roster for each machine. The Jobshop ele-
ments are the operations. We allow insertion moves which
move one operation to an earlier or later position on its
machine’s roster and shifts the other operations accordingly.
The search routines only consider shifting an operation by
one position (i.e., swapping an operation with an operation
it is adjacent to), but the users can manually perform any
insertion move.

A useful concept in jobshop scheduling is called the crit-
ical path, which identifies the operations that are the bot-
tleneck of the current schedule. The critical path can be
recursively defined as follows: the operation(s) that finish
last are on the critical path. Operation ��� is on the critical
path if there exists operation ��� on the critical path such that
� � immediately precedes ��� on either its itinerary or roster,
and ��� ends at the same time that � � begins. It is impossible
to improve the makespan of a schedule without changing the
roster-position of at least one operation on the critical path.
Therefore, our search algorithms only evaluate moves that
alter operations on the critical path.

3.2 Jobshop visualization
The jobshop visualization was the most challenging we have
designed because there is more information to display about
each problem element than in the other applications. Our
design goal was to make the following information available
to the user about each operation:
� start time� duration� mobility� its job� position in its itinerary� its machine� position in its roster� if it is on the critical path� if it is currently selected (required for various user

actions)� if its current roster-position is different than on the previ-
ously displayed solution 1

As shown in Figure 2, our visualization uses Gant charts,
a standard mechanism to display schedules. Each operation
is represented by a rectangle with a length that is propor-
tional to the duration of that operation. The x-location of the
rectangle indicates the start time of the operation in the cur-
rent schedule. The y-location of the rectangle depends on
whether the user chooses to view itineraries or rosters. If the
user views rosters, then each row of the Gant chart represents
the activity of one machine. If the user views itineraries,
each row represents all the operations of one job. While
viewing rosters is generally more useful, viewing itineraries
allows users to quickly observe when the idle time for each
job occurs as well as which of each job’s operations lie on
the critical path.

The background color of each operation displays either
its mobility or its job; the user can toggle between the two.

1Our experience has been that without any indication of what
has changed, it is very difficult to know what has happened when,
for example, the search algorithm returns a new solution.

These are two of the most important pieces of information
for the user and hence it is imperative that the user be able
to perceive them at a glance. While it would be preferable to
display both at the same time, we found that if we displayed
both simultaneously then neither was easily perceivable.

A toggle switch allows the job ID and itinerary position
to be drawn on top of each operation when viewing rosters.
For example, we draw “4.5” for the fifth operation on the
fourth job.

The rest of the information is conveyed with thin, hori-
zontal bands drawn in each operation. Each band is 1/5 the
total height of the rectangle for the operation. A white band
in the middle of an operation indicates it is on the critical
path. This band stands out well against the solid background
colors, allowing the user to quickly perceive this important
information. A purple band along the bottom indicates the
operation has changed position compared to the previous
solution. A band along the top is used to indicate the job id if
the mobilities are being shown. These bands allow users to
detect the corresponding information if the user focuses on
them, but do not distract the users unnecessarily. All bands
can be toggled on and off by the user.

Users can select or unselect operations individually (by
clicking on an operation), by job (by double clicking on any
of the job’s operations), or by rectangular region in the Gant
chart. Selection is used to change mobilities or mark oper-
ations (marking is described below). In our visualization, a
selected operation’s background color is set to black, and the
top band shows its job id.

3.3 Extensions to HuGS

We now present two generic extensions to HuGS we devel-
oped while creating the Jobshop application. We also
describe how these extensions were used within the Jobshop
application.

The first extension was motivated by the fact that when the
user manually modifies the current jobshop solution, it often
increases the makespan dramatically. Quite often much of
the loss in solution-quality can be recovered by making
small adjustments to other parts of the schedule. However,
it is typically difficult for the user to visually identify where
in the schedule these small adjustments need to be made.

To address this problem, we created a power move option.
Enabling power moves changes the semantics of manual
moves made by the user. After each manual move, the
HuGS application initiates a greedy exhaustive search, with
the maximum ply set to one, on the solution that results
from applying the manual move to the current solution. The
restriction on maximum ply forces the search to complete
quickly.

To prevent the system from immediately un-doing the
move that the user performed, the system creates a copy
of the current mobilities and sets all elements altered by
the user’s move to low mobility. This set of mobilities is
saved. If the user holds down the shift key while making the
next manual move, then the system uses the saved mobili-
ties, again setting the elements altered by the current move
to low, to constrain the greedy exhaustive search. Thus, the



Figure 2: The Jobshop Application: the screenshot above shows our visualization in the mode for viewing operations by roster, where the
background color of each operation indicates which job the operation is on. A white band in the middle of an operation indicates it is on the
critical path, and a purple band on the bottom of an operation indicates its roster-position has changed from the previously displayed solution.
Job number 5 has been selected by the user, by double-clicking on one of its operations, and so its operations are painted black

user can make a sequence of power moves without having
the system undo any of the user’s modifications.

The code for power moves was made entirely within the
generic HuGS toolkit, and thus all of our applications were
able to take immediate advantage of this extension. We dis-
cuss the use of these moves in the section below.

The second extension to HuGS is a generic mechanism
and corresponding visualizations that allow the user to tailor
the objective function for each invocation of the search algo-
rithm. Developers of HuGS applications can now provide
the user with a set of parameters for controlling the search.
We currently support boolean, integer, and double valued
parameters. The user-controlled values are fed as input to
the HuGS components that compute and compare the score
(or cost) of the solutions. These components are, in turn,
called by the search algorithms, and thus the users to control
the objective function used to evaluate solutions by all the
search algorithms in HuGS.

We increased the expressiveness of objective-function
control by allowing users to mark selected elements. Each
application’s visualization component must indicate which
elements are marked. In Jobshop, marked operations are
drawn with a diagonal line from the upper left corner to the
lower right corner.

In Jobshop we found that users often could identify trou-
blesome operations that they wanted moved either earlier or
later in the schedule, but were not sure how to accomplish
this. To allow users to encourage the search algorithm to
shift operations in a particular direction, we designed “ear-

lier” and “later” control parameters. If the user marks some
elements and sets the “earlier” control to true, the system
will try to minimize the sum of the roster-position of the
marked elements. The user also has an integer control-
parameter called “budget” which indicates how much the
search algorithm can “spend” to achieve this goal. If the
budget is 0, then the search algorithm will use the position of
the marked elements only to break ties between two sched-
ules that would otherwise appear equally good. If the budget
is 10, then the algorithm can reduce the makespan by up to
10 units in order to find a schedule in which the marked ele-
ments appear earlier in their rosters.

Another control-parameter in our Jobshop application is
an integer parameter called “spansize”. Recall that the
objective function is to reduce the makespan, i.e., the time
that the last operation finishes. With spansize

�
, the system

compares solutions based on when the last
�

machines com-
plete their operations, using the lexicographic ordering. This
feature is especially useful when the second to last machine
completes its operations just before the last machine finishes
its operations. The disadvantage of setting the spansize high
is that it slows optimization, since now there are multiple
critical paths. Our initial experiments suggest that a span-
size of 3 produces the best results for unguided search.

4 Initial Experience with HuGS Jobshop
The authors of this paper have used this system on
a variety of problems, including the “swv00”-“swv10”
instances of size 20 � 10 and 20 � 15 (Storer, Wu, &



Vaccari, 1992) and the four “yn1”-“yn4” instances of
size 20 � 20 (Yamada & Nakano, 1992) available at
http://www.ms.ic.ac.uk/info.html. We now report on our
informal observations from this initial exploration.

On the negative side, unlike Crossing and Delivery, we
rarely found it productive to focus the search algorithms on
subproblems using the mobilities. Our explanation is that
the operations in a given schedule are highly interconnected
and so local changes are rarely sufficient to improve the
schedule.

Mobilities were, however, quite useful. A typical usage
pattern was to change the roster-position of one or more
operations, set them to low mobility, and invoke the search
algorithm. The low-mobility settings force the search algo-
rithm to adjust other parts of the schedule. After the user
halts the search, the user can reset all operations to high
mobility and invoke the search algorithm again. This combi-
nation of moves often produced a new best solution by forc-
ing the system out of its local minimum. Without the low
mobilities, the first search would often return immediately
to the previous local minimum.

An additional use of mobilities was to swap the roster-
position of two operations and set them both to medium
mobility. This imposes the constraint that the relative order
of the two operations cannot be changed, but otherwise
allows all moves.

Both extensions to HuGS described above proved useful.
Power moves produced the desired results and give the user
a better sense of the implications of a manual move. The
ability to encourage the system to move operations earlier or
later seems especially effective. With this feature, the users
can convey a general idea for how to optimize the schedule
and let the search algorithms pursue it. Prior to this fea-
ture, pursuing similar ideas often required a long series of
manual moves and searches. Finally, users often adjust the
spansize during the optimization session based on how many
machines complete their operations near the makespan in the
current schedule.

A particularly subjective impression is that strategy plays
a more significant role in the Jobshop application than in the
other HuGS applications. The user can often think multiple
moves ahead, noticing that if some operation is moved ear-
lier or later it will provide flexibility for some other opera-
tion which, if moved, will provide flexibility for some other
operation, and so on, eventually connecting to the critical
path.

5 Related Work
Interactive optimization systems have been built for a variety
of applications, including space-shuttle scheduling (Chien
et al., 1999), graph drawing (Nascimento & Eades, 2001),
graph partitioning (Lesh, Marks, & Patrignani, 2000), vehi-
cle routing (Waters, 1984; Bracklow et al., 1992; Anderson
et al., 2000), and constraint-based drawing (Nelson, 1985;
Heydon & Nelson, 1994; Gleicher & Witkin, 1994; Ryall,
Marks, & Shieber, 1997).

Other research has explored alternative methods for divid-
ing the work between human and computer in coopera-

tive optimization or design. In the space-shuttle schedul-
ing application (Chien et al., 1999), for example, the com-
puter detects and resolves conflicts introduced by the user’s
refinements to a schedule. In interactive constraint-based
drawing applications e.g., (Nelson, 1985; Heydon & Nelson,
1994; Gleicher & Witkin, 1994; Ryall, Marks, & Shieber,
1997), the user imposes geometric or topological constraints
on a nascent drawing such that subsequent user manipula-
tion is constrained to useful areas. The interactive-evolution
paradigm, which has primarily been applied to design prob-
lems, offers a different type of cooperation (Sims, 1991;
Todd & Latham, 1992). In this approach, the computer
generates successive populations of novel designs based
on previous ones, and the user selects which of the new
designs to accept and which to reject. Thus novel designs
evolve, subject to user-supplied selection criteria. This
paradigm has found use in various computer-graphics appli-
cations. The HuGS paradigm differs significantly from the
iterative-repair, constraint-based, and interactive-evolution
paradigms in affording the user great involvement and
greater control of the optimization/design process.

A preliminary version of the Jobshop application has been
described briefly in our previous work (Klau et al., 2002a,b).
Of course, there has been extensive research on automatic
optimization for the jobshop problem (e.g., Applegate &
Cook. (1991); Aarts et al. (1994)).

6 Conclusion
We have described a new interactive jobshop scheduling
application developed using the HuGS toolkit. We inherit
the powerful, albeit generic, local-search algorithms from
the HuGS toolkit and have not focused on improving the
efficiency of these algorithms for this specific algorithm.
Instead, we focused on improving the interaction between
the application and the user. The visual user-interface
proved a significant challenge, as the jobshop problem
requires displaying a great deal of information of various
types to the end user. We also developed general mecha-
nisms for improving interaction that have become part of
the toolkit: power moves and user-controlled objective func-
tions combined with marking.

Our preliminary experience suggests that users can guide
the search algorithms in our application to improve per-
formance over purely automatic algorithms. More impor-
tantly, the interactivity of our application allows users to
steer the search algorithm toward solutions that reflect their
real-world knowledge of constraints and preferences, and
improves user trust and understanding of solutions by allow-
ing them to participate in their construction.

In the future, we plan to experiment with other visual-
izations which will provide more information about which
operations are “near” the critical path, as well as those that
are on it. We also plan to perform thorough user studies,
along the lines of those reported in (Klau et al., 2002b) for
the Crossing and Delivery applications.

References
Aarts, E.; Laarhoven, P. v.; Lenstra, J.; and Ulder, N. 1994. A com-

putational study of local search algorithms for job-shop schedul-



ing. ORSA Journal on Computing 6(2):118–125.

Anderson, D.; Anderson, E.; Lesh, N.; Marks, J.; Mirtich, B.; Rata-
jczak, D.; and Ryall, K. 2000. Human-guided simple search. In
Proc. of AAAI 2000, 209–216.

Applegate, D., and Cook., W. 1991. A computational study of
the job-shop scheduling problem. ORSA Journal on Computing
3(2):149–156.

Bracklow, J. W.; Graham, W. W.; Hassler, S. M.; Peck, K. E.; and
Powell, W. B. 1992. Interactive optimization improves ser-
vice and performance for Yellow Freight system. INTERFACES
22(1):147–172.

Chien, S.; Rabideau, G.; Willis, J.; and Mann, T. 1999. Automat-
ing planning and scheduling of shuttle payload operations. J.
Artificial Intelligence 114:239–255.

Dill, A. K. 1985. Theory for the folding and stability of globular
proteins. Biochemistry 24:1501.

Eades, P., and Wormald, N. C. 1994. Edge crossings in drawings
of bipartite graphs. Algorithmica 11:379–403.

Feillet, D.; Dejax, P.; and Gendreau, M. 2001. The selective
Traveling Salesman Problem and extensions: an overview. TR
CRT-2001-25, Laboratoire Productique Logistique, Ecole Cen-
trale Paris.

Gleicher, M., and Witkin, A. 1994. Drawing with constraints.
Visual Computer 11:39–51.

Glover, F., and Laguna, M. 1997. Tabu Search. Kluwer academic
publishers.

Heydon, A., and Nelson, G. 1994. The Juno-2 constraint-based
drawing editor. Digital Systems Research Center Research
Report 131a.

Klau, G. W.; Lesh, N.; Marks, J.; Mitzenmacher, M.; and Schafer,
G. T. 2002a. The HuGS platform: A toolkit for interactive
optimization. Advanced Visual Interfaces 2002.

Klau, G. W.; Lesh, N.; Marks, J.; and Mitzenmacher, M. 2002b.
Human-guided Tabu search. to appear in AAAI’02.

Lesh, N.; Marks, J.; and Patrignani, M. 2000. Interactive partition-
ing. Graph Drawing 31–36.

Nascimento, H. d., and Eades, P. 2001. User hints for directed
graph drawing. To appear in Graph Drawing.

Nelson, G. 1985. Juno, a constraint based graphics system. Com-
puter Graphics (Proc. of SIGGRAPH ’85) 19(3):235–243.

Ryall, K.; Marks, J.; and Shieber, S. 1997. Glide: An interac-
tive system for graph drawing. In Proc. of the 1997 ACM SIG-
GRAPH Symposium on User Interface Software and Technology
(UIST ’97), 97–104.

Scott, S.; Lesh, N.; and Klau, G. W. 2002. Investigating human-
computer optimization. To appear in CHI 2002.

Sims, K. 1991. Artificial evolution for computer graphics. Comp.
Graphics (Proc. of SIGGRAPH ’91) 25(3):319–328.

Storer, R.; Wu, S.; and Vaccari, R. 1992. New search spaces for
sequencing instances with application to job shop scheduling.
Management Science 38:1495–1509.

Todd, S., and Latham, W. 1992. Evolutionary Art and Computers.
Academic Press.

Waters, C. 1984. Interactive vehicle routeing. Journal of Opera-
tional Research Society 35(9):821–826.

Yamada, T., and Nakano, R. 1992. A genetic algorithm applicable
to large-scale job-shop instances. In Parallel instance solving
from nature 2. North-Holland, Amsterdam: R. Manner, B. Man-
derick(eds). 281–290.


	Title Page
	Title Page
	page 2


	Human-Guided Search for Jobshop Scheduling
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


