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EWA Splatting

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross

Abstract—In this paper, we present a framework for high quality splat- Moreover, we use the same framework to derive splat primitives
ting based on elliptical Gaussian kernels. To avoid aliasing artifacts, we for volume as well as for surface data.

introduce the concept of a resampling filter combining a reconstruction ker- . . . .
nel with a low-pass filter. Because of the similarity to Heckbert's EWA (el- VWA volume splatting works with arbitrary elliptical Gaus-
liptical weighted average) filter for texture mapping, we call our technique ~ Sian reconstruction kernels and efficiently supports perspective
EWA splatting. Our frame_work allows us to derive EWA splat pljimiFives projection. Our method is based on a novel approach to com-
for volume data and for point-sampled surface data. It provides high image pute the footprint function. which relies on the transformation
quality without aliasing artifacts or excessive blurring for volume data, and ’ .
additionally features anisotropic texture filtering for point-sampled sur- Of the volume data to so-calledy space This transforma-
faces. It also handles non-spherical volume kernels efficiently, hence it is tion is equivalent to perspective projection. By using its local
suitable for regular, rectilinear, and irregular volume datasets. Moreover, 4ffine approximation at each voxel. we derive an analytic ex-
our framework introduces a novel approach to compute the footprint func- ion for the EWA footprint i ' The EWA vol
tion, facilitating efficient perspective projection of arbitrary elliptical ker- pression tor " e ; 00 p”.n In screen spacg. e .VO -
nels at very little additional cost. Finally, we show that EWA volume re- ume splat primitive can be integrated easily into conventional
construction kernels can be reduced to surface reconstruction kernels. This yolume splatting algorithms. Because of its flexibility, it can be
makes our splat primitive universal in rendering surface and volume data. utilized to render rectilinear. curvilinear. or unstructured volume
Spgftﬁ'r‘:‘éori;;{"ig?ne;”g Systems, Volume Rendering, Texture Mapping, yaiasets. The rasterization of the footprint is performed using
' forward differencing, requiring only one 1D footprint table for
all reconstruction kernels and any viewing direction.
1 Introduction EWA surface splatting is equivalent to a screen space for-

Volume rendering is an important technique in visualizing ag].ula.tlon of the EWA. textqre f||tgr for trlanglg rend_ermg
elines [10]. Hence it provides high quality, anisotropic tex-

uired and simulated datasets in scientific and engineerin e ) .
d 9 9 re filtering for point-sampled surfaces. We will show that

lications. The ideal volume rendering algorithm reconstruc . )
P gay /A surface splatting can be derived from EWA volume splat-

a continuous function in 3D, transforms this 3D function intt by reducing G . | truction k st
screen space, and then evaluates opacity integrals along linetpf PY reducing Lsaussian volume reconstruction kemeis to sur-

sights. In 1989, Westover [1], [2] introduceslatting for in- face reconstruction kernels. Hence EWA splats are a universal
teractive volume rendering, which approximates this proceduF pderlng prlmlt]ive forr].vilumel_fzmc.i for sufrface da(;a. _Forbex}allrr:-
Splatting algorithms interpret volume data as a set of particIB ’ Wethcagé)%r orm ng quall y :so—s;Jhr acel ren ermég_ 3{{ at
that are absorbing and emitting light. Line integrals are prgqnlng € ob f>aussian Kernels aon.g € volume gracient.
computed across each particle separately, resultifigotprint The paper is organized as follows: We discuss previous work

functions Each footprint, or splat, spreads its contribution in thld Section 2. In Section 3 we review fundamental results from

image plane. These contributions are composited back to fr&fﬂnal processing theory that are needed to analyze aliasing. We
into the final image also present the general concept of an ideal resampling filter

that prevents aliasing during rendering by combining a recon-

On the other hand, laser range and image-based scanning . . ;
. strction kernel and a low-pass filter. Next, we describe how to
techniques have produced some of the most complex and visSu-

: . L odel volume rendering as a resampling process in Section 4,
ally stunning graphics models to date [3], resulting in huge sels . h . S
; . eading to the formulation of an ideal volume resampling fil-
of surface point samples. A commonly used approach is gener- .~ . . . . '
. : . . ter. Similarly, we derive an ideal resampling filter for render-
ating triangle meshes from the point data and using mesh reduc- ™. . ) ) .
. ; INg point-sampled surfaces in Section 5. In Section 6 we intro-
tion techniques to render them [4], [5]. In contrast, recent effor S . S .
) : . ; uce the EWA resampling filter, which uses elliptical Gaussians
have focused on direct rendering techniques for point samples : ,
i . as reconstruction kernel and as low-pass filter. We present ex-
without connectivity [6], [7], [8]. Most of these approaches arg

based on a splatting approach similar to splatting in volume r Hé EWA surface resampling filter. Moreover, we show how to

delrrllni.is paper, we present a framework for high quality spl g_erive the surface resampling filter as a special case of the vol-
. - R aume resampling filter by flattening the volume reconstruction

ting. Our derivation praceeds along similar lines as HeCkberF(%rnels. Finally, Sections 7 and 8 discuss our implementation
elliptical weighted averag¢EWA) texture filter [9], therefore and results and, Section 9 concludes the paper

we call our algorithmrEWA splatting The main feature of EWA ' '

splatting is that it integrates an elliptical Gaussian reconstrug- :
tion kernel and a low-pass filter, therefore preventing aliasi Previous Work

artifacts in the output image while avoiding excessive blurringne original work on splatting in the context of volume ren-
dering was presented by Westover [1]. Basic volume splatting
M. Zwicker and M. Gross are with the Computer Graphics Lab, Swiss Fealgorithms suffer from inaccurate visibility determination when
eral ';ét!“;te ;’f TﬁCh”"'Ogy (ETH), Zurich, Switzerland. E-mafzwicker, compositing the splats from back to front. This leads to visible
gros inf.ethz.c . .
H. Pfister and J. van Baar are with MERL, Cambridge MA. E-mgister, artifacts, such as color bleeding. Later, Westover [2] solved the

jeroery @merl.com problem using an axis-aligned sheet buffer. However, this tech-

licit formulas for both the EWA volume resampling filter and
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nique is plagued by disturbing popping artifacts in animations  ldeal Resampling
Recently, Mueller and Crawfis [11] proposed to align the shegtl Sampling and Aliasing
buffers parallel to the image plane instead of parallel to an axjs

S . .
of the volume data. Additionally, they splat several slices érﬁasmg is & fundamental problem in computer graphics. Al-

each reconstruction kernel separately. This technique is simﬁla?ugh conceptuglly computer_graphlcs oft_en deal_s with contin-
to slice-basedvolume rendering [12], [13] and does not suffePOUS representatlons of graphics models, n practice computer-
from popping artifacts. Mueller and Yagel [14] combine Splagener?ted |maget3§ are -reprleserlthed by a dlscre;etarray of St‘?‘m'
ting with ray casting techniques to accelerate rendering Wml]es. mage synthesis Involves the conversion between contin-
perspective projection. Laur and Hanrahan [15] describe a H‘fus and discrete r'epresentatlons,_ which may cause ahasmg ar-
erarchical splatting algorithm enabling progressive refinemehEcts jUCh f?sque patterns a_nd Jagged edges, illustrated in
during rendering. Furthermore, Lippert [16] introduced aspla’t:—Igure » orflickering in animations.

ting algorithm that directly uses a wavelet representation of t
volume data.

S e s X

Additional care has to be taken if the 3D kernels are not
dially symmetric, as is the case for rectilinear, curvilinear,
irregular grids. In addition, for an arbitrary position in 3D, th
contributions from all kernels must sum up to one. Otherwis
artifacts such as splotches occur in the image. For rectiling
grids, Westover [2] proposes using elliptical footprints that a
warped back to a circular footprint. To render curvilinear grid:
Mao et al. [17] use stochastic Poisson resampling to genera
set of new points whose kernels are spheres or ellipsoids. T
compute the elliptical footprints very similar to Westover [2]
As pointed out in Section 6.2, our technique can be used witf
rectilinear, curvilinear, and irregular grids to efficiently and ac-  rig 1. Aliasing artifacts. Note the Mdir patterns and jagged edges.

curately project and rasterize the elliptical splat kernels. o ) )
To study aliasing, it is useful to interpret images, surface tex-

Westover's original framewqu doe_s n(_)t deal W'th. Samp."”ﬂures, or volume data as multidimensional signals. In the follow-
rate changes due to perspective projections. Aliasing artifagt discussion, we will focus on one-dimensional signals, and

an oceur in a]ire"asboﬁ the %’OIUTe wher% the sa}_mpllng ra_trer% urn to multidimensional signals in Sections 4 and 5. When
IVerging rays 1afls be ow the volume grid sampling rate. continuous signal is converted to a discrete signal it is evalu-
aliasing problem in volume splatting has first been addressed ¥d, orsampled on a discrete grid. To analyze the effects of

Swan et al. [18] and Mueller et al. [19]. They use a Ol'Stancgélmpling and to understand the relation between the continu-

d_ependent stretch of the footpn_nts to make them act as Iow—_pgag and the discrete representation of a signal, we review some
filters. In contrast, EWA splatting models both reconstructingt ion< and results from signal processing theory.

and band limiting the texture function in a unified framework. A fier is a process that takes a signal as an input and gen-

The concept of representing surfaces as a set of points @&ndtes a modified signal orrasponseas an output. The easiest
using these as rendering primitives has been introduced in agass of filters to understand aliaear space invarianfilters.
oneering report by Levoy and Whitted [20]. Due to the contirA linear space invariant filtef is uniquely characterized by its
uing increase in geometric complexity, their idea has recentiyipulse responsk(z), i.e., its output resulting from an impulse
gained more interest. QSplat [6] is a point rendering system tlgput. As a consequence, the response of a linear space invari-
was designed to interactively render large datasets producedahyfilter to any input signaf (z) is given by theconvolutionof
modern scanning devices. Other researchers demonstratedf{hg andh(x):
efficiency of point-based methods for rendering geometrically oo
complex objects [7], [8]. In some systems, point-based repre- L{f(z)} = / F)h(z —t)dt = (f @ h)(z).
sentations are temporarily stored in the rendering pipeline to ac- — 0
celerate rendering [21], [22]. We have systematically addressed\ f,nqamental approach to analyze a filter is to compute its
the problem of representing texture functions on point-samplgghenynctions and eigenvalues. The eigenfunctions of linear
objects and avoiding aliasing during rendering in [23]. The SU§ie invariant filters areomplex exponentialand the eigenval-
face splatting technique can replace the heuristics used in pre\ds are given by the Fourier transform of its impulse response,
ous methods and provide superior texture quality. which is calledfrequency responseThe Fourier transform of

We develop EWA splatting along similar lines to the semina signal f(z) is called thespectrumof the signal, denoted by
work of Heckbert [9], who introduced EWA filtering to avoidF’(w) wherew is the angular frequency. We wriféz) < F(w)
aliasing of surface textures. We recently extended his framte-relate thespatialand thefrequency domainepresentation of
work to represent and render texture functions on irregulatlye signal. One of the most useful properties of the Fourier trans-
point-sampled surfaces [23], and to volume splatting [24]. Seform is that the Fourier transform of the convolution of two sig-
tion 6.4 will show the connection between EWA volume andals is the product of their Fourier transforms, ifeg g — F'G,
surface splatting. and vice versa, i.efg — F ® G/2r.
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We analyze the sampling of a continuous signal using thg(x) Ad®)

Fourier transform and frequency domain representations, shown

in Figure 2. Sampling a continuous signralz) is performed a) > /
by multiplying it with an impulse trairi(z), which is a sum of

unit-spaced impulses, i.ei(z) = > o6(z — n) (Figure 2b). 4

This yields the discrete signal(z) = a.(z)i(z/T), where ~ continuousinput ~ x ' by ©
T is the sample distance. In the frequency domain, this re ™ i)

sults in the spectrum of the discrete signHlo) given by the
convolution A(w) = Ac(w) ® I(w)/2m. Since the Fourier

transform of the impulse traif{x/T") is another impulse train ) ' D

I{w) = wsi(w/ws), ws = 27/T, the spectrum of the discrete

signal consists of a superposition of replicas of the spectrum of =~ samplinggrid 7« oot O
the continuous signal spaced at a distang€Figure 2c). ax) A(w)

To reconstruct the continuous signal, we have to eliminate all
replicas ofA. from A except the central one. If the replicas do

not overlap, this is achieved by multiplying(w) with a box °) >

function H¥*(w) = 1 for w < w, and0 otherwise. H*+ is

called anideal low-pass filtewith cutoff frequencyw,, where T campledsignal | x o ®
ws/2 is also called the Nyquist frequency of the sampling grid. gy H(w)

In the spatial domain, the impulse responsefbf: is a sinc
function. However, if the maximum frequenay, in the spec-
trum of A, is higher thanv, as shown in Figure 2, the replicasd)
overlap and it is impossible to reconstruct the original spectrum
A, from A (Figure 2c). High frequencies from the replicas ap-
pear as low frequencies in the original spectrum (Figure 2e)(a® Sinc)00)
which is calledaliasing. ;

reconstruction filter x 0, ©

A(m)-H®(m)

3.2 Antialiasing

From the above discussion we conclude that there are two 3)p
proaches to reduce aliasing problems: we can either sampl
the continuous signal at a higher frequency, or we eliminate reconstructed signal (aliased) * 0 ®
frequencies above the Nyquist limit before sampling, which is

called prefiltering Since most signals of interest are not band Fig. 2. Frequency analysis of aliasing.

limited, sampling at a higher frequency will alleviate but not

completely avoid aliasing. Moreover, increasing the sampling,. We use the terraource space denote the domain gf (u).
frequency leads to higher memory and computational requireA\e interpret rendering an attribute function (1) as a resam-
ments of most algorithms. On the other hand, prefiltering ging process, involving the three steps illustrated in Figure 3:
performed by applying a low-pass filter to the signal before

sampling, hence it is the more theoretically justified antialiad- Projectf.(u) from source to screen space, yielding the con-
ing method. Using an ideal low-pass filter with cutoff frequencynuous screen space signa(x):

ws/2, the filtered signal will be band limited to the Nyquist fre-

quency of the sampling grid and thus it can be reconstructed 9e(x) = {P(fe)} (), (2)
exactly. In practice, prefiltering is implemented as a convolwherex are 2D screen space coordinates and projection is de-
tion in the spatial domain, hence prefilters with a small suppefdted by the projection operatd®. Note that the operators
are desirable for efficiency reasons. However, the widths offaused for rendering (Sections 4 and 5) are linear in their ar-
filter in the spatial and frequency domains are inversely relateiments (however, this do@st imply that the projection per-
therefore some aliasing will be inevitable during sampling.  formed by?P is a linear mapping). Therefore we can reformu-

3.3 Rendering and Ideal Resampling Filters Ialfir%)tlr)])é]lrl;srtnprOJectlng the reconstruction kernels before com-

In our framework, graphics models are represented as a sePof
irregularly spaced samples of multidimensional functions de- ge(x) = {P(Z wrrk) H(x) = Zwkpk(x), (3)
scribing object attributes such as volume opacity (Section 4) or kEN keN

surface textures (Section 5). We reconstruct the continuous
tribute functions by computing a weighted sum

iﬁ[?oducing the abbreviatiop, = Pr;, for the projected recon-

struction kernels.

fo(u) = Z wiry(u), (1) 2. Band limit the screen space signal using a prefiiteesult-
en ing in the continuous output functiayi(x):

wherer,, is called a reconstruction kernel centered at the sample ,

positionuy,, andwy, is a sample value, e.g., the diffuse color at 9e(x) = ge(x) ® h(x) = /RQ ge(mh(x —mdn. ()
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the following discussion, we will describe a forward mapping
technique. Mapping the data onto the image plane involves a
sequence of intermediate steps where the data is transformed
to different coordinate systems, as in conventional rendering
pipelines. We introduce our terminology in Figure 4. Note that
the termsspaceandcoordinate systerare synonymous. The fig-

ure summarizes Brward mapping volume rendering pipeline
where the data flows from the left to the right.

output
image

volume
dataset

= ge(X)={P(fc) }(x)

‘ viewing projective volume classification, viewport ‘
transformation mapping shading and integration| transformation
viewport

screen
space

source, i.e.,
object space

camera ray

space space

Fig. 4. The forward mapping volume rendering pipeline.

X X

As an overview, we briefly describe the coordinate systems
and transformations that are relevant for our technique. We
will deal in detail with the effect of the transformations in Sec-
tion 6.2. The volume data is initially given in source space,
which is usually calledbject spacén this context. To render
3. Sample the continuous output function by multiplying it withhe data from an arbitrary viewpoint, it is first mapped#mera
an impulse trairi to produce the discrete outpyix): spaceusing the viewing transformation. The camera coordinate
LN system is defined such that its origin is at the center of projec-
9(x) = g.(x)i(x). tion.

An explicit expression for the projected continuous output We further transform the data tay space which is intro-

function can be derived by expanding the above relations in @isced in Section 4.1. Ray space is a non-cartesian coordinate
verse order: system that enables an easy formulation of the volume rendering
equation. In ray space, the viewing rays are parallel to a coordi-

projected attribute function W band limited attribute function

Fig. 3. Projection, filtering, and sampling of a 1D attribute function.

gL(x) = / {P(Z wirk) Hmh(x —n) dn nate axis, facilitating analytical integration of the volume func-
2 ken tion. We present the transformation from camera to ray space
in Section 6.2; it is a key element of our technique. Since its
= Z W /]R2 pr(mh(x —n) dn purpose is similar to the projective transform used in rendering
ke pipelines such as OpenGL, it is also called fiiejective map-
= ) wrpk(x), (5) ping.
kEN Evaluating the volume rendering equation results in a 2D im-

where pi(x) = (pr @ h)(x). ©6) age inscreen spaceln afinal_ step, this image i_s transformed to
viewport coordinates Focusing on the essential aspects of our

We call a projected and filtered reconstruction kemglx) an technique, we are not covering the viewport transformation in
ideal resampling kernelhich is expressed here as a convoluhe following explanations. However, it can be easily incorpo-
tion in screen space. Exploiting the linearity of the projectiopted in an implementation. Moreover, we do not discuss vol-
operator, Equation (5) states that we can first project and filighe classification and shading in a forward mapping pipeline,
each reconstruction kernej individually to derive the resam- pyt refer to [25] or [26] for a thorough discussion.
pling kernelsp;, and then sum up the contributions of these ker-
nels in screen space. 4.1 Splatting Algorithms

In the following Sections 4 and 5, we will model the rendefy/e review the low albedo approximation of the volume render-
ing process for volume data and for point-sampled surfaces, iy equation [27], [28] as used for fast, direct volume render-
spectively, as a resampling problem by expressing it in the folify [2], [29], [25], [30]. The left part of Figure 5 illustrates the
of (5) and (6). Since this resampling technique is based on i&responding situation in 2D. Starting from this form of the
prefilteringapproach to antialiasing, it leads to high image qualendering equation, we discuss several simplifying assumptions
ity with little aliasing artifacts irrespective of the spectrum of '[hféading to the well knowrsplatting formulation. Because of
unfiltered screen space signal. their efficiency, splatting algorithms [2], [25] belong to the most

. popular forward mapping volume rendering techniques.

4 Volume Resamp“ng We slightly modify the conventional notation, introducing our
We distinguish two fundamental approaches to volume rendeoncept of ray space. We denote a point in ray space by a col-
ing: backward mapping algorithms that shoot rays through pixmn vector of three coordinates = (z¢,x1,72)7. Given a
els on the image plane into the volume data, and forward magenter of projection and a projection plane, these three coordi-
ping algorithms that map the data onto the image plane. nates are interpreted geometrically as follows: The coordinates
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xo andz; specify a point on the projection plane. The ray ingsee Figure 4), yielding:

tersecting the center of projection and the pdint, z1) on the

projection plane is called a viewing ray. Using the abbreviation FL(x) = folo o (%)) = Z wiT (X), (8)

x = (zg, 1), we also refer to the viewing ray passing through k

(z0,x1) asx. The third coordinate:; specifies the Euclidean . P , , )
distance from the center of projection to a point on the viewirf§€rer:(x) = rr(¢ ™ (¢~ (x))) is a reconstruction kernel in
ray. Note that our notation does not distinguish between aray@y SPace. The mappingsandy will be discussed in detail in
and a point in ray space, however it will be clear from the con- S€ction 6.2. S _ o ,

text which one is meant. Furthermore, to simplify the notation, Because of the linearity of integration, substituting (8) into (7)
we will use any of the synonyms, (x, z2)7, or (zg, 21, z2)7 YIS
to denote a point in ray space.

I I

S| (fix.8) § } (% 8)
‘{(-;xx, &) {qk(x) which can be interpreted as a weighted sum of projected re-

¢(x)  construction kernels. So in terms of Equation (3) we have the
correspondencé = Y, wipr = g., and for consistency with
Section 3 we will usg,. from now on.

Ix) = ;wk( / " el (0. 6)

H e~ wi [g 5 (xp) dp d§> , 9)
J

—fﬂ s Lk To computgy, numerically, splatting algorithms make several
T "/11(1’””/‘1/(")) simplifying assumptions, illustrated in the right part of Figure 5.
> x > x Usually the reconstruction kerneig (x) have local support.

The splatting approach assumes that these local support areas do
not overlap along a ray, and the reconstruction kernels are or-
dered front to back. We also assume that the emission coefficient
is constant in the support of each reconstruction kernel along
a ray, hence we use the notatiop(zo,z1) = c(xg,x1,x2),

Fig. 5. Volume rendering. Left: lllustrating the volume rendering equation ir\{Vhere (ﬁo’xl’xQ) 1SN the supp_ort Ofr; Mor?m’er' We ap-
2D. Right: Approximations in typical splatting algorithms. proximate the exponential function with the first two terms of

its Taylor expansion, thus™® =~ 1 — z. Finally, we ignore

The volume rendering equation describes the light intensit§!i-occlusion. Exploiting these assumptions, we rewrite (9),

I,(x) at wavelength that reaches the center of projection alony€!ding:
the rayx with length L:

k—1

9e(x) = Y wrer(¥)ar(x) [] (1 - wja;(x)) (10)
k j=0

L
N X, L
I\(x) = / ex(x, ) fe(x, e Io Jebemdge, ()
0 wheregy, (x) denotes an integrated reconstruction kernel, hence:

where f/(x) is the extinction functionthat defines the rate of
light occlusion, and: (x) is an emission coefficient. The expo- gr(x) = / e (X, 22) das. (11)
nential term can be interpreted asattenuation factor Finally, R
the producte, (x) f;(x) is also called thesource tern{28], de-  Equation (10) is the basis for all splatting algorithms. West-
scribing the light intensity scattered in the direction of the rayer [2] introduced the terfootprint functionfor the integrated
x at the pointz,. In the following equations we will omit the reconstruction kernelg,. The footprint function is a 2D func-
parameten\, implying that (7) has to be evaluated for differention that specifies the contribution of a 3D kernel to each point
wavelengths separately. on the image plane. Since integrating a volume along a viewing
Now we assume that the extinction functiondhject space ray is analogous to projecting a point on a surface onto the image
(i.e., source spacej.(u) is given in the form of (1) as a plane, the coordinates = (z,, 1) are also calledcreen co-
weighted sum of coefficients), and reconstruction kernelsordinates and we say thaj.(x) andgy (x) are defined irscreen
rr(u). This corresponds to a physical model where the vadpace
ume consists of individual particles that absorb and emit light. Splatting is attractive because of its efficiency, which it de-
The reconstruction kernels; reflect position and shape of in-rives from the use of pre-integrated reconstruction kernels.
dividual particles. The particles can be irregularly spaced aftierefore, during volume integration, each sample point along
may differ in shape, hence the model is not restricted to reguawiewing ray is computed using a 2D convolution. In contrast,
datasets. Note that the extinction function in ray spfl¢&) is ray-casting methods require a 3D convolution for each sample
computed by concatenating a mappipdrom object space to point. This provides splatting algorithms with an inherent ad-
camera space and a mappifndrom camera space to ray spac&antage in rendering efficiency. Moreover, splatting facilitates



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 105

the use of higher quality kernels with a larger extent than the tri- Exploiting these simplifications, we can rewrite (12) to:
linear kernels typically employed by ray-casting. On the other

hand, basic splatting methods are plagued by artifacts because of (g0 ® h)(x)
incorrect visibility determination. This problem is unavoidably

introduced by the assumption that the reconstruction kernels do

not overlap and are ordered back to front. It has been success-

fully addressed by several authors as mentioned in Section 2.

In contrast, our main contribution is a novel splat primitive thato|lowing the terminology of Section 3.3 (Equation (6)) we call
provides high quality antialiasing and efficiently supports ellip-

tical kernels. We believe that our novel primitive is compatible Pk (%) = cror(qr @ h)(x) = (pr ® h)(x) (14)
with all state-of-the-art splatting algorithms.

Q

zk: Wi C Ok /]R2 qr(n)h(x —mn)dn
Z wrCrok(qr @ h)(x).
k

anideal volume resampling filtecombining a projected recon-

4.2 The Volume Resampling Filter struction kernep, = crorqr and a low-pass kernél. Hence,

) _ _ we can approximate the antialiased splatting equation (12) by
The splatting equation (10) represents the outputimageas-a rep|acing the footprint functiog in the original splatting equa-
tinuousscreen space signgd(x). In order to properly sample tjon (10) with the resampling filtes,. This means that instead
this fulnct|on to adscretgogtput image without allgsmg art- of pand limiting the output function.(x) directly, we band
facts, it has to be band limited to match the Nyquist frequengiit each footprint function separately. Under the assumptions
of the discrete image. According to Equation (4), we achieYfscribed above, we get a splatting algorithm that produces a
this band limitation by convolvingi.(x) with an appropriate pang limited output function respecting the Nyquist frequency
low-pass filters(x), yielding theantialiasedsplatting equation o the raster image, therefore avoiding aliasing artifacts. Re-

member that the reconstruction kernels are integrated in ray

'(x) = (g0 ® h)(x) = w / enlr space, resulting in footprint functions that vary significantly in
9e(x) = (g ) %: g R2 ()i (n) size and shape across the volume. Hence the resampling filter
k1 in (14) is stronglyspace variant
H (1 —w;q;(n)) h(x — ) dn. (12) Swan et al. presented an antialiasing technique for splat-

ting [18] that is based on a uniform scaling of the reconstruction
kernels to band limit the extinction function. Their technique

Unfortunately, the convolution integral in (12) cannot be confroduces similar results as our method for radially symmetric
puted explicitly because of the emission and attenuation terr§nels. However, for more general kernels, e.qg., elliptical ker-
Hence we make two simplifying assumptions to rearrange Rels, uniform scaling is a poor approximation of ideal low-pass

leading to an approximation that can be evaluated efficiently. filtering. Aliasing artifacts cannot be avoided without introduc-

First, we assume that the emission coefficient is appro>'<ri_]-g additional blurriness. On the other hand, our method pro-

. . . vides non-uniform scaling in these cases, leading to superior
mately constant in the support of each footprint functign . : . ) . K
y bp P in image quality as illustrated in Section 8. Moreover, our anal-

hencecy (x) = ¢ for all x in the support area. Together with™ " L S :
the assu(m)ption that the emission coefficient is constant in tha- above shows that band limiting the extinction function does

support of each reconstruction kernel alongiewing ray this not guarantee alias free images. Because of shading and edges,

means that the emission coefficient is constant in the complfr%quenCIes above the Nyquist limit persist. However, these ef-

3D supportof each reconstruction kernel. In other words, thisfaCtS are not discussed in [18].

corresponds to per-voxel evaluation of the shading model, or .

pre-shading [25], ignoring the effect of shading for antialiasin§ Surface Resamplmg

Note that prefiltering methods for surface textures usually igndféhen rendering point-sampled surfaces the data flows through

aliasing due to shading, too. a similar pipeline as in forward mapping volume rendering (Fig-
Additionally, we assume that the attenuation factor has an &5€ 4)- In Section 5.1, we first explain how continuous attribute

proximately constant valuey, in the support of each footprint functions are conceptually defined on point-sampled surfaces.

Jj=0

function. Hence: Then we introduce an expression similar to Equation (7) for
the continuous output function (i.e., the rendered image) in Sec-
k—1 tion 5.2.
1—w;q,; ~ 13 . . .
g( wyd (X)) & ox 13) 51 Attribute Functions on Point-Sampled
Surfaces

for all x in the support area. A variation of the attenuation fadde represent point-sampled surfaces as a set of irregularly
tor indicates that the footprint function is partially covered bgpaced point§P} in three dimensional object space without
a more opaque region in the volume data. Therefore this vartamnnectivity. A pointP; has a position and a normal. It is
tion can be interpreted as a “soft” edge. Ignoring such situatioassociated with a reconstruction kermgland samples of the
means that we cannot prevent edge aliasing. Again, this is siattribute functions, e.gwl, w{,w? that represent continuous
ilar to rendering surfaces, where edge and texture aliasing aractions for red, green, and blue color components. With-
handled by different algorithms as well. out loss of generality, we perform all further calculations with
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N
-

scalar coefficientsy,,. Note that the basis functiong and co-
efficientsw;, can be determined in a pre-processing step as de-
scribed in [23].

We define a continuous function on the surface represented by
the set of points as illustrated in Figure 6. Given a p@yany-

local parameterization
3D object space » 2D source space I

)

2D source space 3D object space 2D screen space

—_— —_—
2D to 3D parameterization 3D to 2D projection

[

2D to 2D compound mapping x:m(u) o

Fig. 7. Mapping a surface function from parameter space to screen space.

reconstruction kernel rx(u)

around Q

Similar as in Section 4.2, we call
Fig. 6. Defining a texture function on the surface of a point-based object.
. . = L®h = h 18
where on the surface in object space, shown left, we construct pi(x) = ck(r @ h)(x) = (P @ h)(x) (18)
a Ioca_I parametenzatlon_of the surfac_:e in a small neighborhogfideal surface resampling filtecombining a projected surface
of Q, illustrated on the right. The poin§ andP) havelocal reconstruction kerneby (x) = exrp(m~1(x)) and a low-pass

source space coordinatesanduy, respectively. Using the pa- kernelh (x)
rameterization, we can define the continuous attribute function

f-(u) on the surface as in Equation (1): 6 EWA Resamp”ng Filters
For both volume and surface rendering, we choose elliptical
fe(u) = Zwkrk(u)' (15)  Gaussians as reconstruction kernels and low-pass filters since
keN

they provide certain features that are crucial for our technique:

We will choose basis functions, that havdocal support or that Gaus_sians are closed under_ affine mappings a”?' convol_ution,
are appropriately truncated. Tharies in the support of a small @d integrating a 3D Gaussian along one coordinate axis re-
number of basis functions. Note that in order to evaluate (15}t in @ 2D Gaussian. These properties enable us to analyti-
the local parameterization has to be established in the uniorgfy compute the volume and surface resampling filters (Equa-
these support areas only, which is very small. Furthermore, {&S (14) and (18), respectively) as a single 2D Gaussian, as wil

will compute these local parameterizations on the fly during refl€ Shown in Section 6.2 and 6.3. In Section 6.1, we summarize
dering as described in Section 7.2. the mathematical features of the Gaussians that are exploited in

our derivation in the following sections. More details on Gaus-
5.2 The Surface Resampling Filter sians can be found in Heckbert’s master’s thesis [9].

Rendering a parameterized surface involves mapping the @1 Elliptical Gaussian Filters
tribute funcﬂonfc(_u) from parameter, I.e., Source space, Qe gefine a 3D elliptical GaussigR, (x—p) centered at a point
screen space. As |IIustrat9d in Figure 7, we denote this 2D to %szith a variance matris as:
mapping byx = m(u). It is composed of a 2D to 3D parame-
terization from source to object space and a 3D to 2D projection
from object to screen space, which are described in more detai
in Section 6.3. Usingn, we can write the continuous output
function as where| V| is the determinant oV. In this form, the Gaussian
ge(x) = ZwkC(X)Tﬁc(X), (16) is normalized to a unit integral. In the case of a 3D Gaussian
& V is a symmetri3 x 3 matrix andx andp are column vectors

) . _ _ (xo,x1,22)T and(po, p1,p2)”, respectively. Similar to (19), an
wherer), (x) = ri(m . (x)) is a re.construc'.uor) kernel mafppe%lliptical 2D Gaussiag? (x — p) is defined as:
to screen space. As in Sectiondis the emission term arising

from shading the surface.

Again we assume that emission is constant in the support of
eachr;, in screen space, which is equivalent to per-point shad-
ing, therefore ignoring aliasing due to shading. So the band litthereV is a2 x 2 variance matrix anet andp are 2D vectors.

1

- —ix-pTV l(x-p)
(QW)3/2|V|%6 ’ (19)

| g%(X_P) =

_ 1
2m|V|2

Gy (x—p) e 3R TVIIeR) - (20)

ited output function according to (4) is Note that the normalization factor is different for 2D and 3D
Gaussians.
(9. ® h)(x) = Z wien(rh ® h)x). (17) We can easily apply an arbitrary affine mapping= ®(x) to

- a Gaussian of any dimensiandenoted by;y,. Let us define the
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affine mapping a®(x) = Mx + ¢, whereM is an x n matrix The Projective Transformation We will concatenate the

andc is a vector(cy, . ..,c,)T. We substitutex = ®~'(u), viewing transformation with a projective transformation that

yielding: converts camera coordinates to ray coordinates as illustrated in

Figure 8. Camera space is defined such that the origin of the
G (@ (u) — p) = %Q&VMT (u—®(p)). (21) camera coordinate system is at the center of projection and the
M~ projection plane is the plane = 1. Camera space and ray

space are related by the mapping- ¢(t). Using the definition

of ray space from Section 4.%(t) and its inverse)—'(t) are

therefore given by:

Moreover, convolving two Gaussians with variance matrives
andY results in another Gaussian with variance ma¥ix Y

(Gv @ Gy)(x —p) = Gy v (X = P). (22)

Zo to/to
Finally, integrating a normalized 3D Gaussigj) along one g1 = ¢(t)= t1/t2 . (26)
coordinate axis yields a normalized 2D Gaussjdn hence: o (o, t1,t2)" ||
) to . xo/l - T2
/ Gv(x —p)dzs = G (X — D), (23) t = ¢ X)=| =/l z2 |, (27)
R v tg 1/l )

whereg = (z,z1)" andp = (po,p1)”. The2 x 2 variance
matrix'V is easily obtained from thgx 3 matrix V by skipping
the third row and column:

wherel = ||(zo,21,1)" .

(tp.1)

a b c b .
V=[1b d e <:><“ ):v_ (24) /
b d

c e f

In the following, we will useGy to denote both 2D and 3D
Gaussians, the context clarifying which one is meant.

6.2 The EWA Volume Resampling Filter

In this section, we first describe how to map arbitrary ellipti- X,
cal Gaussian volume reconstruction kernels from object to ra
space. Our derivation results in an analytic expression for the
kernels in ray space;,(x) as in Equation (8). We will then
be able to analytically integrate the kernels according to Equa; |
tion (11) and to convolve the footprint functign with a Gaus- o
sian low-pass filteh as in Equation (22), yielding an elliptical
Gaussian resampling filtey,.

X2

The Viewing Transformation The reconstruction kernelsFig. 8. Transforming the volume from camera to ray space. Top: camera space.
are initially given in source space, object spacewhich has Bottom: ray space.
coordinates: = (ug, ui, u2)?. As in Section 4.1 we denote the

Gaussian reconstruction kernels in object space by: Unfortunately, these mappings are not affine, so we cannot

apply Equation (21) directly to transform the reconstruction ker-
(25) nels from camera to ray space. To solve this problem, we intro-
duce thelocal affine approximation);, of the projective trans-
whereu;, are the voxel positions in object space. For regul&@rmation. It is defined by the first two terms of the Taylor ex-
volume datasets, the variance matridés are usually identity pansion o at the point;:
matrices. For rectilinear datasets, they are diagonal matrices
where the matrix elements contain the squared distances be- Or(t) = xp +Jp - (t —tr), (28)
tween voxels along each coordinate axis. Curvilinear and ir-
regular grids have to be resampled to a more regular structur&iperet;. is the center of a Gaussian in camera spacexane
general. For example, Mao et al. [31] describe a stochastic sarfitx) is the corresponding position in ray space. The Jacobian
pling approach with a method to compute the variance matrichsis given by the partial derivatives gfat the pointt:
for curvilinear volumes.

rr(u) = Gy, (u—uy),

We denote camera coordinates by a vetter (to,t,2)”. 06 1/tr2 0 —tr0/th o
Object coordinates are transformed to camera coordinates usdx = E(tk) = 0 tea —tea/tio |, (29)
ing a mappingt = ¢(u), calledviewing transformation The tro/l" tra/l! tro/l

viewing transformation is usually an affine mapping defined by
a matrixW and a translation vectat asp(u) = Wu + d. wherel’ = ||(tr.0. tk1, tro) 7.
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The local affine approximation of the compound mapping
from source to ray space= my(u) is given by the concatena-
tion of t = p(u) andx = ¢ (t):

)

TV

(to.t)

x = my(u) = ¢gr(p(u))
= JeWu +x; + Jp(d — tg).

We substituter = m;, *(x) in (25) and apply Equation (21) to
map the reconstruction kernels to ray space, yielding the desired N

expression for, (x): y 5 E

() = Gy, (m™(x) —w) =
1 Xi 0, —F °
_ ngk (X _ m(Uk)), (30) ( k, 0k, ]) ‘ l/ l’l/
k : ité
whereV/_ is the variance matrix in ray coordinates. According \ )

/A H . : '
to (21),V, is given by: Xz ri(X) Xp 2

1 T T
R =JeWVE W, (31) Fig. 9. Mapping a reconstruction kernel from camera to ray space. Top: camera
space. Bottom: ray space. Left: local affine mapping. Right: exact mapping.

Note that for uniform or rectilinear datasets, the product

WV, ;W has to be computed only once per frame, siNGe  |ntegration and Band Limiting We integrate the Gaussian

is the same for all voxels an& changes only from frame 10 g construction kernel of (30) according to (11), resulting in a
frame. Since the Jacobian is different for each voxel positioggssian footprint functiog,:

V. has to be recalculated for each voxel, requiring 8ve 3

matrix multiplicationsV}, = J,(WV,WT)JT. In the case of B 1

curvilinear or irregular volumes, each reconstruction kernel has ar(x) = /R |W—1J]:1|g"2- (x = Xk, 2 — y2) da

an individual variance matri¥ ;. Our method efficiently han- 1

dles this situation, requiring only one additiorfak 3 matrix = 79\7; (x — xx), (32)

111
multiplication, i.e.,.V} = (JL, W)V (J,W)T. In contrast, pre- (W=,
vious techniques [2], [31] cope with elliptical kernels by comy,
puting their projected extents in screen space and then establfg btained fromV’. by skipping the last row and column, as
ing a mapping to a circular footprint table. However, this P'%hown in (24) k ’

cedure is computationally expensive. It leads to a bad approxi- '

: : : . Finally, we choose a Gaussian low-pass filtefx) =
:1]6[122? Flfé?e integral of the reconstruction kernel as pointed oaxt/h (x), where the variance matri¥” € R2<2 is typically

the identity matrix. With (22) we compute the convolution

As illustrated in Figure 9, the local affine mapping is exagf, (14), yielding theEWA volume resampling filteor EWA vol-
only for the ray passing througt). or xj, respectively. The ... splat

figure is exaggerated to show the non-linear effects in the ex-

ere the2 x 2 variance matrixV, of the footprint function

act mapping. The affine mapping essentially approximates the p, (x) = (pr ® h)(x)

perspective projection with an oblique orthographic projection. 1

Therefore, parallel lines are preserved, and approximation errors = CkOkW(gv; ® Gyn)(x — Xk)
grow with increasing ray divergence. However, the errors do not k

lead to visual artifacts in general [14], since the fan of rays in- - Ckok%gv/ v (X — X). (33)
tersecting a reconstruction kernel has a small opening angle due (WL

to the local support of the reconstruction kernels. . .
A common approach of performing splatting with perspectiv%‘3 The EWA Surface Resampling Filter

projection is to map the footprint function ontdaotprint poly- N this section, we first describe how to construct the local pa-

gonin camera space in a first step. In the next step, the footpr;ﬁfneterizations that are needed to define surface attribute func-

polygon is projected to screen space and rasterized, resulting @RS /< (u) (Section 5.1). Then we derive a mappidg= m(u)

the so-calledootprint image As mentioned in [14], however, involving parameterization, viewing transformation, and per-

this requires significant computational effort. In contrast, o@Pective projection that transforms the attribute function from

framework efficiently performs perspective projection by majsource to screen space, similar to Section 6.2.

ping the volume to ray space, which requires only the computa-

tion of the Jacobian and tw® x 3 matrix multiplications. For Local Surface Parameterizations At each poinfPy, a lo-

spherical reconstruction kernels, these matrix operations carché surface parameterizatiafy, is defined by two orthogonal

further optimized as shown in Section 7.1. unit vectorse ande; in the tangent plane of the surface. The
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tangent plane is given by the surface normaktored with each  In (35), the resampling filter is a function in screen space.
point P,. Hence each point = (ug,u1)” in the parameter do- Since the mappingn, is affine and invertible, we can alterna-
main corresponds to a poifit= (o, i1, 42)” on the surface in tively express it as a function in source space, too. We use

object space: . .
i = Yp(u) =Py + Spu, x —my(ug) = JpJ, (x — my(ug)) = Jp(my " (x) — uyg),

whereS;, is a3 x 2 matrix consisting of the column vectoe§ and substitute this into (35), yielding:
ande;..
We denote the Gaussian surface reconstruction kernels in the Pr(X) = CkgvHM;lth;lT (u—uy).

parameter domain by, (u) = Gy, (u). The variance matrix _ . .
V, has to be chosen appropriately to match the local density gi'S 1S the well knowrsource spac&WA method [9] extended

points aroundP;,. Restricting ourselves to radially symmetrid©" irregular sample positions, which is mathematically equiv-
kernels,V,, is a2 x 2 identity matrixI scaled by a factor? alent to our screen space formulation. However, (36) involves

i.e., Vi, = oL The scalings depends on the distance betweeHaCkward mapping a point from screen to the object surface,
P,. and its nearest neighbors; e.g., we choesss the average which is impractical for interactive rendering. It amounts to ray
distance to thé& nearest neighbors. A more sophisticated ana{r-acmg the po_int cloud to_find surface iqt_ersections. Addition-
ysis of the point distribution aroun®,, could be used to find ally, the locationsu;, are irregularly positioned such that the

suitable variance matrices of general elliptical kernels. evaluation of the resampling kernel in object space is laborious.
On the other hand, Equation (35) can be implemented efficiently

The Viewing Transformation The viewing transformation for point-based objects as described in Section 7.2,

that maps object coordinatésto camera coordinatesis de- 6.4 Reduction from Volume to Surface Re-
fined as in Section 6.2, i.e.,= @(ﬁ) = Wiua +d. construction Kernels

Since our EWA volume resampling filter can handle arbitrary
Perspective Projection  Surface pointst in 3D camera Gaussian reconstruction kernels, we can represent the structure
space are projected to 2D screen spadey dividing by the of 3 volume dataset more accurately by choosing the shape of
depth coordinate;. Hence we use the same mappifi¢Equa-  the reconstruction kernels appropriately. For example, we can
tion (26)) as for volumes, except that we do not need the thigdhrove the precision of isosurface rendering by flattening the

coordinaters: reconstruction kernels in the direction of the surface normal. We
o to/ts will show below that an infinitesimally flat Gaussian volume
( 4 ) =¢(t) = ( 1/t ) kernel is equivalent to a Gaussian surface texture reconstruction

kernel. In other words, we can extract and render a surface rep-
We use the same local affine approximatignas in (28). Note resentation from a volume dataset directly by flattening volume
that here the Jacobiah, is a2 x 3 matrix: reconstruction kernels into surface reconstruction kernels. Our

derivation is illustrated in Figure 10.
9] 1/t 0  —tro/t:
3, = ¢5(tk) _ ( [th,2 k,0/tic o ) (34)

- E 0 1 /t k2 —tp1 /t2 object space, i.e., camera space screen space
? ’ k.2 source space
Concatenatingx, ¢, andg¢y, we get the local affine approx- ,
. . . X
imationmy, of the mapping from source space to screen space: { 2
x = mi(u) = dr(e(tr(u))) \s 1 [/ [
= JWS,u + xy. @" Y7—>(lo, i) ! b (X0, x;)
Substitutingu = m;l(x) and applying Equation (21) we get 3D viewing transform;on integration >
the Gaussian surface reconstruction kernel in screen space:
/ —1 A
ry(x) = Gv,(my (x)—u)
1 t X
= —Gv, (x —my(ug)), %
T v e = () |
with the variance matrixV), = M;V;MF, and M, = = W“a 1) B (X, X))
J. WSy € R - _
2D to 3D parameterizaion 3D to 2D projectionr
Band Limiting  With a Gaussian low-pass filtér= Gy,» and STree 2D to 2D compound mapping o
using (18), theEWA surface resampling filteor EWA surface
splat is: Fig. 10. Reducing a volume reconstruction kernel to a surface reconstruction
kernel by flattening the kernel in one dimension. Top: rendering a volume kernel.
(X)) = (T;c @ h)(x) Bottom: rendering a surface kernel.
1 We construct a flattened Gaussian reconstruction kernel in ob-
= Ck—gv;ﬂrvh (X — l’n}g(uk)). (35)

|M,;1| ject space by scaling an arbitrary Gaussian with variance matrix
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'V along the third coordinate axis, i.e., using a scaling matrimnplemented by Equation (31), and it results in the 3 vari-
diag(1,1,1/s). Applying (21), we find that the variance matrixance matrixV; of the Gaussian in ray space. Remember that

V¢ of the scaled Gaussian is: W is the rotational part of the viewing transformation, hence it
) is typically orthonormal. Additionally, for spherical kerne;,
.\ 0,0 vo,1 “02/52 is the identity matrix. In this case, evaluation of Equation (31)
V= Yo o VL1, ”172/52 : can be simplified significantly. Next, we project the voxel center
v2,0/8% v21/8" v22/s from camera space to the screen by performing a perspective di-

In the limit, if s = oo, V* is equivalent to a 2D Gaussian WithViSion ont;. This yields the 2D screen coordinat_e§. Now we
variance matrix¥/ that is parameterized onto the plane perpelfil—re ready to setup the resa.mplmg f."mr accor/dlng to Equa-
dicular to the third coordinate axis. where tion (33). Its variance matrix is derived froivi; by omitting
' the third row and column, and addin@ & 2 identity matrix for
v (w0 i the low-pass filter. We compute the determinantsJ; *| and
- 1/|W|~! that are used as normalization factors, and we evaluate
the shading model yielding the emission coefficignt

is the upper lef2 x 2 matrix in V. Since the plane is defined by

basis vectorgl,0,0)" and(0, 1,0)", parameterization yields: Rasterization ~ Finally, we rasterize the resampling filter in
line 7. As can be seen from the definition of the elliptical Gaus-
sian (19), we also need the inverse of the variance matrix, which
is called theconic matrix Let us denote the x 2 conic matrix

of the resampling filter b¥). Furthermore, we define the radial
index function

V1,0 V1,1

10
0 1 \‘/( Lo O)VS for s—oco. (37)
010
00
In the limit, the third row and column 6¥° contain only ze-

ros. Therefore, projecting a Gaussig{s to screen space via
mapping to ray space (30) and integration (32), or using perspec-
tive projection as in (35), results in the same 2D variance matfpte that the contours of the radial index, ie.= const. are

of the reconstruction kernel in screen space. In other wordsg@ncentric ellipses. For circular kernelsjs the squared dis-

is equivalent to render the flattened Gaussian as a volume ofafte to the circle center. The exponential function in (19) can

r(®) =xTQx where % = (zo,71)7 =x — xz.

a surface reconstruction kernel. now be written ag—2". We store this function in a 1D lookup
) table. To evaluate the radial index efficiently, we use finite dif-
7 |mp|ementat|0n ferencing. Since is biquadratic ink, we need only two addi-
7.1 EWA Volume Splatting tions to update- for each pixel. We rasterizein a rectangular,
We implemented a volume rendering algorithm based on t )éis-aligned bqunding box centered aroungas illustrated in
EWA splatting equation. Our implementation is embedded gure_12. Typ|_caII_y, we use athreshezld:_4 and evaluate the
aussian only if-(x) < ¢. Heckbert provides pseudo-code of

the VTK (visualization toolkit) framework [32]. We did not op—th rasterization algorithm in [9]
timize our code for rendering speed. We use a sheet buffer 6 9 '
first accumulate splats from planes in the volume that are most —
parallel to the projection plane [2]. In a second step, the fi-

nal image is computed by compositing the sheets back to front.
Shading is performed using the gradient estimation functionality
provided by VTK and the Phong illumination model.

Algorithm  We summarize the main steps that are required to
compute the EWA splat for each voxel:

1: for each voxel k {

2:  compute camera coords. t[k];

3: compute the Jacobian JIK];

4: compute the variance matrix V[K];
5:

6

7

8

rasterization bounding box

project t[k] to screen coords. X[K]; Fig. 12. Rasterizing the resampling filter.
setup the resampling filter rho[K];
: i | ho[K]; .
) rasterize and accumulate rho[k]; 7.2 EWA Surface Splattlng
We can perform EWA surface splatting in our volume renderer
Fig. 11. The EWA volume splatting algorithm. using flattened volume reconstruction kernels as described in

Section 6.4. We have also implemented a dedicated surface
First, we compute the camera coordinatgsof the current splatting renderer [23]. The EWA surface splatting algorithm
voxel k by applying the viewing transformation to the voxekssentially proceeds as described in 7.1.
center. Usingt;, we then evaluate the Jacobidp as given However, the depth complexity of a scene is greater than one
in Equation (29). In line 4, we transform the Gaussian recoimgeneral, but only those splats that belong to the visible surface
struction kernel from object to ray space. This transformationiisust be accumulated in a pixel. Since back to front ordering of
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minification magpnification anisotropic

unstructured point clouds during rendering is prohibitive, an al- minification-magnification
ternative mechanism is required that separates the contributions "51 6 .

of different surfaces. We use a z-buffer approach, computing té 2] o ¢ .

z value of the tangent plane By, at each pixel that is covered 'U ZO /)
by the splat. This can be performed efficiently by forward difs| e &/ ’ e ° b
ferencing, similar to the visibility splatting approach of [8]. Tos B -

determine whether a new contribution belongs to the same sur- B -

face as is already stored in a pixel, the difference between the
new z value and ther value stored in the frame buffer is com-_
pared to a threshold. If the difference is smaller than the thresh-
old, the contribution is added to the pixel. Otherwise, given th%t T e
it is closer to the eye-point, the data of the frame buffer is r&
placed by the new contribution. It is straightforward to extend
this approach to a multi-layered z-buffer [33] (similar to an A=
buffer [34]) that allows the display of semitransparent surfaces
and edge antialiasing [23].

Vel

8 Results

The EWA resampling filter has a number of useful propertieé,
as illustrated in Figure 13. When the projection to screen spacge -5
minifies the attribute function (i.e., the volume or point-sampleg
surface), size and shape of the resampling filter are dominated N
by the low-pass filter, as in the left column of Figure 13. In thg A(
middle column, the attribute function is magnified and the rez

5] 1 205 0] 05 1/ 1s e R 28 B0 1%

ampling filter

—

sampling filter is dominated by the reconstruction kernel. Singg i B &/4 R
the resampling filter unifies a reconstruction kernel and a low- . - ]
pass filter, it provides a smooth transition between magnificatign “is - h

and minification. Moreover, the reconstruction kernel is scaled

anisotropically in situations where the volume is stretched in Fig. 13. Properties of the EWA resampling filter.

one direction and shrinked in the other, as shown in the right
column. In the bottom row, we show the filter shapes result- ) )
ing from uniformly scaling the reconstruction kernel to avoid€: Therefore, rendering with volume kernels does not ex-
aliasing, as proposed by Swan et al. [18]. Essentially, the rec&;plt anisotropic tex.ture f||ter|ng anq produce§ textures that are
struction kernel is enlarged such that its minor radius is at leSSgntly too blurry, similar to isotropic texture filters such as tri-
as long as the minor radius of the low-pass filter. For sphelf€ar mipmapping. On the other hand, splatting surface kemels
cal reconstruction kernels, or circular footprint functions, thi§ eduivalent to EWA texture filtering. Circular surface kernels
is basically equivalent to the EWA resampling filter. Howevef"® Mapped to ellipses, which results in high image quality be-
for elliptical footprint functions, uniform scaling leads to overlyF@use of anisotropic filtering.
blurred images in the direction of the major axis of the ellipse. In Figure 16, we show a series of volume renderings of the
We compare our method to Swan’s method in Figure 14. TRINC CT scan of a human head56 x 256 x 225), the UNC
images on the left were rendered with EWA volume splats, thogegine 256 x 256 x 110), and the foot of the visible woman
on the right with Swan’s uniformly scaled kernels. We used re¢lataset {52 x 261 x 220). The texture in the last example is
angular zebra textures wittandy dimensions 01024 x 512 (in  rendered using EWA surface splatting, too. The images illustrate
the first row), and 024 x 256 (in the second row), and mappedhat our algorithm correctly renders semitransparent objects as
the textures to a square. This leads to elliptical reconstructifgll. The skull of the UNC head, the bone of the foot, and the
kernels with a ratio between the length of the major and mintso-surface of the engine were rendered with flattened surface
radii of 2 to 1 and4 to 1, respectively. Clearly, the EWA filter splats oriented perpendicular to the volume gradient. All other
produces a crisper image and at the same time does not exhgiels were rendered with EWA volume splats. Each frame took
aliasing artifacts. As the ratio between the major and minor ra@ipproximately 11 seconds to render on an 866 MHz PIII proces-
of the reconstruction kernels increases, the difference to Swa¥P$:
method becomes more pronounced. For strongly anisotropid-igure 17 shows results of EWA surface splatting, which were
kernels, Swan’s uniform scaling produces excessively blurreghdered using a dedicated surface splatting renderer [23]. The
images, as shown on the right in Figure 14. Each frame took dgee in Figure 17(a) was acquired by a laser range scanner. Fig-
proximately 6 seconds to render on an 866 MHz PIII processare 17(b) illustrates high quality texturing on terrain data, and
In Figure 15, we compare EWA splatting using volume kefigure 17(c) shows semi-transparent surfaces on the complex
nels on the left to surface reconstruction kernels on the rightodel of a helicopter. Table | shows the performance of our un-
The texture size i$12 x 512 in x andy direction. Typically, optimized software implementation of EWA surface splatting.
the perspective projection of a spherical kernel is almost a cithe frame rates were measured on a 1.1 GHz AMD Athlon sys-
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Swan et al.

EWA Volume Splatting

—

Fig. 14. Comparison between EWA volume splatting and Swan et al. Top two 10&4:x 512 x 3 volume texture. Bottom two row$024 x 256 x 3 volume
texture.

EWA Volume Splatting EWA Surface Splatting

Fig. 15. EWA volume splatting versus EWA surface splattiig x 512 x 3 volume texture.

(a) UNC Head (b) UNC Engine (c) Visible Woman Foot

Fig. 16. Semitransparent objects rendered using EWA volume splatting. The skull of the UNC head, the iso-surface of the engine, and the bone of the foot
rendered with flattened surface splats.
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(a) Scanned Head (b) Textured Terrain Data (c) Semi-Transparent Surfaces

Fig. 17. EWA surface splatting of a scan of a human face, textured terrain, and a complex point-sampled object with semi-transparent surfaces.

tem with 1.5 GByte memory. We rendered to a frame buffer witbur splat primitive in a post-shaded volume rendering pipeline.
a resolution of 256« 256 and 512« 512 pixels, respectively. The derivative of the EWA resampling filter could be used as a
Data #Points | 256 < 256 | 512 < 512 band-limited gradient kernel, hence avoiding aliasing caused by

Scanned Head 429075 1.3fps 0.7 fps shading for noisy volume data.
Matterhorn 4782011 0.2fps 0.1 fps
Helicopter 987552 0.6 fps 0.3 fps ACknOWIedgementS
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