
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

EWA Splatting

M. Zwicker, H. Pfister, J. van Baar, M. Gross

TR2002-49 September 2002

Abstract

In this paper, we present a framework for high quality splatting based on elliptical Gaussiansur-
face and volume data.

IEEE Transactions on Visualization and Computer Graphics

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2002
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

IEEE Transactions on Visualzation and Computer Graphics, July-September 2002

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 100

EWA Splatting
Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross

Abstract—In this paper, we present a framework for high quality splat-
ting based on elliptical Gaussian kernels. To avoid aliasing artifacts, we
introduce the concept of a resampling filter combining a reconstruction ker-
nel with a low-pass filter. Because of the similarity to Heckbert’s EWA (el-
liptical weighted average) filter for texture mapping, we call our technique
EWA splatting. Our framework allows us to derive EWA splat primitives
for volume data and for point-sampled surface data. It provides high image
quality without aliasing artifacts or excessive blurring for volume data, and
additionally features anisotropic texture filtering for point-sampled sur-
faces. It also handles non-spherical volume kernels efficiently, hence it is
suitable for regular, rectilinear, and irregular volume datasets. Moreover,
our framework introduces a novel approach to compute the footprint func-
tion, facilitating efficient perspective projection of arbitrary elliptical ker-
nels at very little additional cost. Finally, we show that EWA volume re-
construction kernels can be reduced to surface reconstruction kernels. This
makes our splat primitive universal in rendering surface and volume data.

Keywords— Rendering Systems, Volume Rendering, Texture Mapping,
Splatting, Antialiasing.

1 Introduction
Volume rendering is an important technique in visualizing ac-
quired and simulated datasets in scientific and engineering ap-
plications. The ideal volume rendering algorithm reconstructs
a continuous function in 3D, transforms this 3D function into
screen space, and then evaluates opacity integrals along line-of-
sights. In 1989, Westover [1], [2] introducedsplatting for in-
teractive volume rendering, which approximates this procedure.
Splatting algorithms interpret volume data as a set of particles
that are absorbing and emitting light. Line integrals are pre-
computed across each particle separately, resulting infootprint
functions. Each footprint, or splat, spreads its contribution in the
image plane. These contributions are composited back to front
into the final image.

On the other hand, laser range and image-based scanning
techniques have produced some of the most complex and visu-
ally stunning graphics models to date [3], resulting in huge sets
of surface point samples. A commonly used approach is gener-
ating triangle meshes from the point data and using mesh reduc-
tion techniques to render them [4], [5]. In contrast, recent efforts
have focused on direct rendering techniques for point samples
without connectivity [6], [7], [8]. Most of these approaches are
based on a splatting approach similar to splatting in volume ren-
dering.

In this paper, we present a framework for high quality splat-
ting. Our derivation proceeds along similar lines as Heckbert’s
elliptical weighted average(EWA) texture filter [9], therefore
we call our algorithmEWA splatting. The main feature of EWA
splatting is that it integrates an elliptical Gaussian reconstruc-
tion kernel and a low-pass filter, therefore preventing aliasing
artifacts in the output image while avoiding excessive blurring.

M. Zwicker and M. Gross are with the Computer Graphics Lab, Swiss Fed-
eral Institute of Technology (ETH), Zurich, Switzerland. E-mail:{zwicker,
gross}@inf.ethz.ch

H. Pfister and J. van Baar are with MERL, Cambridge MA. E-mail:{pfister,
jeroen}@merl.com

Moreover, we use the same framework to derive splat primitives
for volume as well as for surface data.

EWA volume splatting works with arbitrary elliptical Gaus-
sian reconstruction kernels and efficiently supports perspective
projection. Our method is based on a novel approach to com-
pute the footprint function, which relies on the transformation
of the volume data to so-calledray space. This transforma-
tion is equivalent to perspective projection. By using its local
affine approximation at each voxel, we derive an analytic ex-
pression for the EWA footprint in screen space. The EWA vol-
ume splat primitive can be integrated easily into conventional
volume splatting algorithms. Because of its flexibility, it can be
utilized to render rectilinear, curvilinear, or unstructured volume
datasets. The rasterization of the footprint is performed using
forward differencing, requiring only one 1D footprint table for
all reconstruction kernels and any viewing direction.

EWA surface splatting is equivalent to a screen space for-
mulation of the EWA texture filter for triangle rendering
pipelines [10]. Hence it provides high quality, anisotropic tex-
ture filtering for point-sampled surfaces. We will show that
EWA surface splatting can be derived from EWA volume splat-
ting by reducing Gaussian volume reconstruction kernels to sur-
face reconstruction kernels. Hence EWA splats are a universal
rendering primitive for volume and for surface data. For exam-
ple, we can perform high quality iso-surface rendering by flat-
tening the 3D Gaussian kernels along the volume gradient.

The paper is organized as follows: We discuss previous work
in Section 2. In Section 3 we review fundamental results from
signal processing theory that are needed to analyze aliasing. We
also present the general concept of an ideal resampling filter
that prevents aliasing during rendering by combining a recon-
struction kernel and a low-pass filter. Next, we describe how to
model volume rendering as a resampling process in Section 4,
leading to the formulation of an ideal volume resampling fil-
ter. Similarly, we derive an ideal resampling filter for render-
ing point-sampled surfaces in Section 5. In Section 6 we intro-
duce the EWA resampling filter, which uses elliptical Gaussians
as reconstruction kernel and as low-pass filter. We present ex-
plicit formulas for both the EWA volume resampling filter and
the EWA surface resampling filter. Moreover, we show how to
derive the surface resampling filter as a special case of the vol-
ume resampling filter by flattening the volume reconstruction
kernels. Finally, Sections 7 and 8 discuss our implementation
and results, and Section 9 concludes the paper.

2 Previous Work
The original work on splatting in the context of volume ren-
dering was presented by Westover [1]. Basic volume splatting
algorithms suffer from inaccurate visibility determination when
compositing the splats from back to front. This leads to visible
artifacts, such as color bleeding. Later, Westover [2] solved the
problem using an axis-aligned sheet buffer. However, this tech-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 101

nique is plagued by disturbing popping artifacts in animations.
Recently, Mueller and Crawfis [11] proposed to align the sheet
buffers parallel to the image plane instead of parallel to an axis
of the volume data. Additionally, they splat several slices of
each reconstruction kernel separately. This technique is similar
to slice-basedvolume rendering [12], [13] and does not suffer
from popping artifacts. Mueller and Yagel [14] combine splat-
ting with ray casting techniques to accelerate rendering with
perspective projection. Laur and Hanrahan [15] describe a hi-
erarchical splatting algorithm enabling progressive refinement
during rendering. Furthermore, Lippert [16] introduced a splat-
ting algorithm that directly uses a wavelet representation of the
volume data.

Additional care has to be taken if the 3D kernels are not ra-
dially symmetric, as is the case for rectilinear, curvilinear, or
irregular grids. In addition, for an arbitrary position in 3D, the
contributions from all kernels must sum up to one. Otherwise,
artifacts such as splotches occur in the image. For rectilinear
grids, Westover [2] proposes using elliptical footprints that are
warped back to a circular footprint. To render curvilinear grids,
Mao et al. [17] use stochastic Poisson resampling to generate a
set of new points whose kernels are spheres or ellipsoids. They
compute the elliptical footprints very similar to Westover [2].
As pointed out in Section 6.2, our technique can be used with
rectilinear, curvilinear, and irregular grids to efficiently and ac-
curately project and rasterize the elliptical splat kernels.

Westover’s original framework does not deal with sampling
rate changes due to perspective projections. Aliasing artifacts
may occur in areas of the volume where the sampling rate of
diverging rays falls below the volume grid sampling rate. The
aliasing problem in volume splatting has first been addressed by
Swan et al. [18] and Mueller et al. [19]. They use a distance-
dependent stretch of the footprints to make them act as low-pass
filters. In contrast, EWA splatting models both reconstructing
and band limiting the texture function in a unified framework.

The concept of representing surfaces as a set of points and
using these as rendering primitives has been introduced in a pi-
oneering report by Levoy and Whitted [20]. Due to the contin-
uing increase in geometric complexity, their idea has recently
gained more interest. QSplat [6] is a point rendering system that
was designed to interactively render large datasets produced by
modern scanning devices. Other researchers demonstrated the
efficiency of point-based methods for rendering geometrically
complex objects [7], [8]. In some systems, point-based repre-
sentations are temporarily stored in the rendering pipeline to ac-
celerate rendering [21], [22]. We have systematically addressed
the problem of representing texture functions on point-sampled
objects and avoiding aliasing during rendering in [23]. The sur-
face splatting technique can replace the heuristics used in previ-
ous methods and provide superior texture quality.

We develop EWA splatting along similar lines to the seminal
work of Heckbert [9], who introduced EWA filtering to avoid
aliasing of surface textures. We recently extended his frame-
work to represent and render texture functions on irregularly
point-sampled surfaces [23], and to volume splatting [24]. Sec-
tion 6.4 will show the connection between EWA volume and
surface splatting.

3 Ideal Resampling
3.1 Sampling and Aliasing
Aliasing is a fundamental problem in computer graphics. Al-
though conceptually computer graphics often deals with contin-
uous representations of graphics models, in practice computer-
generated images are represented by a discrete array of sam-
ples. Image synthesis involves the conversion between contin-
uous and discrete representations, which may cause aliasing ar-
tifacts such as Moiŕe patterns and jagged edges, illustrated in
Figure 1, or flickering in animations.

Fig. 1. Aliasing artifacts. Note the Moiré patterns and jagged edges.

To study aliasing, it is useful to interpret images, surface tex-
tures, or volume data as multidimensional signals. In the follow-
ing discussion, we will focus on one-dimensional signals, and
return to multidimensional signals in Sections 4 and 5. When
a continuous signal is converted to a discrete signal it is evalu-
ated, orsampled, on a discrete grid. To analyze the effects of
sampling and to understand the relation between the continu-
ous and the discrete representation of a signal, we review some
definitions and results from signal processing theory.

A filter is a process that takes a signal as an input and gen-
erates a modified signal or aresponseas an output. The easiest
class of filters to understand arelinear space invariantfilters.
A linear space invariant filterL is uniquely characterized by its
impulse responseh(x), i.e., its output resulting from an impulse
input. As a consequence, the response of a linear space invari-
ant filter to any input signalf(x) is given by theconvolutionof
f(x) andh(x):

L{f(x)} =
∫ +∞

−∞
f(t)h(x− t)dt = (f ⊗ h)(x).

A fundamental approach to analyze a filter is to compute its
eigenfunctions and eigenvalues. The eigenfunctions of linear
time invariant filters arecomplex exponentials, and the eigenval-
ues are given by the Fourier transform of its impulse response,
which is calledfrequency response. The Fourier transform of
a signalf(x) is called thespectrumof the signal, denoted by
F (ω) whereω is the angular frequency. We writef(x)↔ F (ω)
to relate thespatialand thefrequency domainrepresentation of
the signal. One of the most useful properties of the Fourier trans-
form is that the Fourier transform of the convolution of two sig-
nals is the product of their Fourier transforms, i.e.,f⊗g ↔ FG,
and vice versa, i.e.,fg ↔ F ⊗G/2π.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 102

We analyze the sampling of a continuous signal using the
Fourier transform and frequency domain representations, shown
in Figure 2. Sampling a continuous signalac(x) is performed
by multiplying it with an impulse traini(x), which is a sum of
unit-spaced impulses, i.e.,i(x) =

∑
n δ(x − n) (Figure 2b).

This yields the discrete signala(x) = ac(x)i(x/T), where
T is the sample distance. In the frequency domain, this re-
sults in the spectrum of the discrete signalA(ω) given by the
convolutionA(ω) = Ac(ω) ⊗ I(ω)/2π. Since the Fourier
transform of the impulse traini(x/T) is another impulse train
I(ω) = ωsi(ω/ωs), ωs = 2π/T , the spectrum of the discrete
signal consists of a superposition of replicas of the spectrum of
the continuous signal spaced at a distanceωs (Figure 2c).

To reconstruct the continuous signal, we have to eliminate all
replicas ofAc fromA except the central one. If the replicas do
not overlap, this is achieved by multiplyingA(ω) with a box
functionHωs(ω) = 1 for ω ≤ ωs and 0 otherwise. Hωs is
called anideal low-pass filterwith cutoff frequencyωs, where
ωs/2 is also called the Nyquist frequency of the sampling grid.
In the spatial domain, the impulse response ofHωs is a sinc
function. However, if the maximum frequencyωa in the spec-
trum ofAc is higher thanωs as shown in Figure 2, the replicas
overlap and it is impossible to reconstruct the original spectrum
Ac from A (Figure 2c). High frequencies from the replicas ap-
pear as low frequencies in the original spectrum (Figure 2e),
which is calledaliasing.

3.2 Antialiasing
From the above discussion we conclude that there are two ap-
proaches to reduce aliasing problems: we can either sample
the continuous signal at a higher frequency, or we eliminate
frequencies above the Nyquist limit before sampling, which is
calledprefiltering. Since most signals of interest are not band
limited, sampling at a higher frequency will alleviate but not
completely avoid aliasing. Moreover, increasing the sampling
frequency leads to higher memory and computational require-
ments of most algorithms. On the other hand, prefiltering is
performed by applying a low-pass filter to the signal before
sampling, hence it is the more theoretically justified antialias-
ing method. Using an ideal low-pass filter with cutoff frequency
ωs/2, the filtered signal will be band limited to the Nyquist fre-
quency of the sampling grid and thus it can be reconstructed
exactly. In practice, prefiltering is implemented as a convolu-
tion in the spatial domain, hence prefilters with a small support
are desirable for efficiency reasons. However, the widths of a
filter in the spatial and frequency domains are inversely related,
therefore some aliasing will be inevitable during sampling.

3.3 Rendering and Ideal Resampling Filters
In our framework, graphics models are represented as a set of
irregularly spaced samples of multidimensional functions de-
scribing object attributes such as volume opacity (Section 4) or
surface textures (Section 5). We reconstruct the continuous at-
tribute functions by computing a weighted sum

fc(u) =
∑
k∈N

wkrk(u), (1)

whererk is called a reconstruction kernel centered at the sample
positionuk, andwk is a sample value, e.g., the diffuse color at

ωa

ac(x)

i(x)

a(x)

sinc(x)

Ac(ω)

I(ω)

A(ω)

(a ⊗ sinc)(x)

continuous input

sampling grid

sampled signal

reconstruction filter

reconstructed signal (aliased)

}
T

}

ωs=2π/T

}

ωs
Hωa(ω)

ωa

A(ω)⋅Hωa(ω)

ωa

a)

b)

c)

d)

e)

x

x

x

x

x

ω

ω

ω

ω

ω

Fig. 2. Frequency analysis of aliasing.

uk. We use the termsource spaceto denote the domain offc(u).
We interpret rendering an attribute function (1) as a resam-

pling process, involving the three steps illustrated in Figure 3:

1. Projectfc(u) from source to screen space, yielding the con-
tinuous screen space signalgc(x):

gc(x) = {P(fc)}(x), (2)

wherex are 2D screen space coordinates and projection is de-
noted by the projection operatorP. Note that the operators
P used for rendering (Sections 4 and 5) are linear in their ar-
guments (however, this doesnot imply that the projection per-
formed byP is a linear mapping). Therefore we can reformu-
late (2) by first projecting the reconstruction kernels before com-
puting the sum:

gc(x) = {P(
∑
k∈N

wkrk)}(x) =
∑
k∈N

wkpk(x), (3)

introducing the abbreviationpk = Prk for the projected recon-
struction kernels.
2. Band limit the screen space signal using a prefilterh, result-
ing in the continuous output functiong′c(x):

g′c(x) = gc(x)⊗ h(x) =
∫
R2
gc(η)h(x− η)dη. (4)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 103

xu

attribute function discrete output

warp sample

x x

filter

fc(u)
rk(u)
wk

g'c(x)
ρk(x)

g(x)

gc(x)={P(fc)}(x)
pk(x)
wk

projected attribute function band limited attribute function

Fig. 3. Projection, filtering, and sampling of a 1D attribute function.

3. Sample the continuous output function by multiplying it with
an impulse traini to produce the discrete outputg(x):

g(x) = g′c(x)i(x).

An explicit expression for the projected continuous output
function can be derived by expanding the above relations in re-
verse order:

g′c(x) =
∫
R2
{P(

∑
k∈N

wkrk)}(η)h(x− η) dη

=
∑
k∈N

wk

∫
R2
pk(η)h(x− η) dη

=
∑
k∈N

wkρk(x), (5)

where ρk(x) = (pk ⊗ h)(x). (6)

We call a projected and filtered reconstruction kernelρk(x) an
ideal resampling kernel, which is expressed here as a convolu-
tion in screen space. Exploiting the linearity of the projection
operator, Equation (5) states that we can first project and filter
each reconstruction kernelrk individually to derive the resam-
pling kernelsρk and then sum up the contributions of these ker-
nels in screen space.

In the following Sections 4 and 5, we will model the render-
ing process for volume data and for point-sampled surfaces, re-
spectively, as a resampling problem by expressing it in the form
of (5) and (6). Since this resampling technique is based on the
prefilteringapproach to antialiasing, it leads to high image qual-
ity with little aliasing artifacts irrespective of the spectrum of the
unfiltered screen space signal.

4 Volume Resampling
We distinguish two fundamental approaches to volume render-
ing: backward mapping algorithms that shoot rays through pix-
els on the image plane into the volume data, and forward map-
ping algorithms that map the data onto the image plane. In

the following discussion, we will describe a forward mapping
technique. Mapping the data onto the image plane involves a
sequence of intermediate steps where the data is transformed
to different coordinate systems, as in conventional rendering
pipelines. We introduce our terminology in Figure 4. Note that
the termsspaceandcoordinate systemare synonymous. The fig-
ure summarizes aforward mapping volume rendering pipeline,
where the data flows from the left to the right.

viewing
transformation

projective
mapping

volume classification,
shading and integration

viewport
transformation

volume
dataset

output
image

source, i.e.,
object space

camera
space

ray
space

screen
space

viewport

Fig. 4. The forward mapping volume rendering pipeline.

As an overview, we briefly describe the coordinate systems
and transformations that are relevant for our technique. We
will deal in detail with the effect of the transformations in Sec-
tion 6.2. The volume data is initially given in source space,
which is usually calledobject spacein this context. To render
the data from an arbitrary viewpoint, it is first mapped tocamera
spaceusing the viewing transformation. The camera coordinate
system is defined such that its origin is at the center of projec-
tion.

We further transform the data toray space, which is intro-
duced in Section 4.1. Ray space is a non-cartesian coordinate
system that enables an easy formulation of the volume rendering
equation. In ray space, the viewing rays are parallel to a coordi-
nate axis, facilitating analytical integration of the volume func-
tion. We present the transformation from camera to ray space
in Section 6.2; it is a key element of our technique. Since its
purpose is similar to the projective transform used in rendering
pipelines such as OpenGL, it is also called theprojective map-
ping.

Evaluating the volume rendering equation results in a 2D im-
age inscreen space. In a final step, this image is transformed to
viewport coordinates. Focusing on the essential aspects of our
technique, we are not covering the viewport transformation in
the following explanations. However, it can be easily incorpo-
rated in an implementation. Moreover, we do not discuss vol-
ume classification and shading in a forward mapping pipeline,
but refer to [25] or [26] for a thorough discussion.

4.1 Splatting Algorithms
We review the low albedo approximation of the volume render-
ing equation [27], [28] as used for fast, direct volume render-
ing [2], [29], [25], [30]. The left part of Figure 5 illustrates the
corresponding situation in 2D. Starting from this form of the
rendering equation, we discuss several simplifying assumptions
leading to the well knownsplatting formulation. Because of
their efficiency, splatting algorithms [2], [25] belong to the most
popular forward mapping volume rendering techniques.

We slightly modify the conventional notation, introducing our
concept of ray space. We denote a point in ray space by a col-
umn vector of three coordinatesx = (x0, x1, x2)T . Given a
center of projection and a projection plane, these three coordi-
nates are interpreted geometrically as follows: The coordinates

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 104

x0 andx1 specify a point on the projection plane. The ray in-
tersecting the center of projection and the point(x0, x1) on the
projection plane is called a viewing ray. Using the abbreviation
x = (x0, x1)T , we also refer to the viewing ray passing through
(x0, x1) asx. The third coordinatex2 specifies the Euclidean
distance from the center of projection to a point on the viewing
ray. Note that our notation does not distinguish between a rayx
and a point in ray spacex, however it will be clear from the con-
text which one is meant. Furthermore, to simplify the notation,
we will use any of the synonymsx, (x, x2)T , or (x0, x1, x2)T

to denote a point in ray space.

()

w

λ x ξ,

ξ

ξ

1 jqj x–
k 1

fc'

fc' w

'

Fig. 5. Volume rendering. Left: Illustrating the volume rendering equation in
2D. Right: Approximations in typical splatting algorithms.

The volume rendering equation describes the light intensity
Iλ(x) at wavelengthλ that reaches the center of projection along
the rayx with lengthL:

Iλ(x) =
∫ L

0

cλ(x, ξ)f ′c(x, ξ)e
−
∫ ξ
0 f
′
c(x,µ) dµ dξ, (7)

wheref ′c(x) is the extinction functionthat defines the rate of
light occlusion, andcλ(x) is an emission coefficient. The expo-
nential term can be interpreted as anattenuation factor. Finally,
the productcλ(x)f ′c(x) is also called thesource term[28], de-
scribing the light intensity scattered in the direction of the ray
x at the pointx2. In the following equations we will omit the
parameterλ, implying that (7) has to be evaluated for different
wavelengths separately.

Now we assume that the extinction function inobject space
(i.e., source space)fc(u) is given in the form of (1) as a
weighted sum of coefficientswk and reconstruction kernels
rk(u). This corresponds to a physical model where the vol-
ume consists of individual particles that absorb and emit light.
The reconstruction kernelsrk reflect position and shape of in-
dividual particles. The particles can be irregularly spaced and
may differ in shape, hence the model is not restricted to regular
datasets. Note that the extinction function in ray spacef ′c(x) is
computed by concatenating a mappingϕ from object space to
camera space and a mappingφ from camera space to ray space

(see Figure 4), yielding:

f ′c(x) = fc(ϕ−1(φ−1(x))) =
∑
k

wkr
′
k(x), (8)

wherer′k(x) = rk(ϕ−1(φ−1(x))) is a reconstruction kernel in
ray space. The mappingsφ andϕ will be discussed in detail in
Section 6.2.

Because of the linearity of integration, substituting (8) into (7)
yields

I(x) =
∑
k

wk

(∫ L

0

c(x, ξ)r′k(x, ξ)

∏
j

e−wj
∫ ξ
0 r
′
j(x,µ) dµ dξ

)
, (9)

which can be interpreted as a weighted sum of projected re-
construction kernels. So in terms of Equation (3) we have the
correspondenceI =

∑
k wkpk = gc, and for consistency with

Section 3 we will usegc from now on.
To computegc numerically, splatting algorithms make several

simplifying assumptions, illustrated in the right part of Figure 5.
Usually the reconstruction kernelsr′k(x) have local support.
The splatting approach assumes that these local support areas do
not overlap along a rayx, and the reconstruction kernels are or-
dered front to back. We also assume that the emission coefficient
is constant in the support of each reconstruction kernel along
a ray, hence we use the notationck(x0, x1) = c(x0, x1, x2),
where(x0, x1, x2) is in the support ofr′k. Moreover, we ap-
proximate the exponential function with the first two terms of
its Taylor expansion, thuse−x ≈ 1 − x. Finally, we ignore
self-occlusion. Exploiting these assumptions, we rewrite (9),
yielding:

gc(x) =
∑
k

wkck(x)qk(x)
k−1∏
j=0

(1− wjqj(x)) , (10)

whereqk(x) denotes an integrated reconstruction kernel, hence:

qk(x) =
∫
R

r′k(x, x2) dx2. (11)

Equation (10) is the basis for all splatting algorithms. West-
over [2] introduced the termfootprint functionfor the integrated
reconstruction kernelsqk. The footprint function is a 2D func-
tion that specifies the contribution of a 3D kernel to each point
on the image plane. Since integrating a volume along a viewing
ray is analogous to projecting a point on a surface onto the image
plane, the coordinatesx = (x0, x1)T are also calledscreen co-
ordinates, and we say thatgc(x) andqk(x) are defined inscreen
space.

Splatting is attractive because of its efficiency, which it de-
rives from the use of pre-integrated reconstruction kernels.
Therefore, during volume integration, each sample point along
a viewing ray is computed using a 2D convolution. In contrast,
ray-casting methods require a 3D convolution for each sample
point. This provides splatting algorithms with an inherent ad-
vantage in rendering efficiency. Moreover, splatting facilitates

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 105

the use of higher quality kernels with a larger extent than the tri-
linear kernels typically employed by ray-casting. On the other
hand, basic splatting methods are plagued by artifacts because of
incorrect visibility determination. This problem is unavoidably
introduced by the assumption that the reconstruction kernels do
not overlap and are ordered back to front. It has been success-
fully addressed by several authors as mentioned in Section 2.
In contrast, our main contribution is a novel splat primitive that
provides high quality antialiasing and efficiently supports ellip-
tical kernels. We believe that our novel primitive is compatible
with all state-of-the-art splatting algorithms.

4.2 The Volume Resampling Filter
The splatting equation (10) represents the output image as acon-
tinuousscreen space signalgc(x). In order to properly sample
this function to adiscreteoutput image without aliasing arti-
facts, it has to be band limited to match the Nyquist frequency
of the discrete image. According to Equation (4), we achieve
this band limitation by convolvinggc(x) with an appropriate
low-pass filterh(x), yielding theantialiasedsplatting equation

g′c(x) = (gc ⊗ h)(x) =
∑
k

wk

∫
R2
ck(η)qk(η)

k−1∏
j=0

(1− wjqj(η))h(x− η) dη. (12)

Unfortunately, the convolution integral in (12) cannot be com-
puted explicitly because of the emission and attenuation terms.
Hence we make two simplifying assumptions to rearrange it,
leading to an approximation that can be evaluated efficiently.

First, we assume that the emission coefficient is approxi-
mately constant in the support of each footprint functionqk,
henceck(x) ≈ ck for all x in the support area. Together with
the assumption that the emission coefficient is constant in the
support of each reconstruction kernel along aviewing ray, this
means that the emission coefficient is constant in the complete
3D supportof each reconstruction kernel. In other words, this
corresponds to per-voxel evaluation of the shading model, or
pre-shading [25], ignoring the effect of shading for antialiasing.
Note that prefiltering methods for surface textures usually ignore
aliasing due to shading, too.

Additionally, we assume that the attenuation factor has an ap-
proximately constant valueok in the support of each footprint
function. Hence:

k−1∏
j=0

(1− wjqj(x)) ≈ ok (13)

for all x in the support area. A variation of the attenuation fac-
tor indicates that the footprint function is partially covered by
a more opaque region in the volume data. Therefore this varia-
tion can be interpreted as a “soft” edge. Ignoring such situations
means that we cannot prevent edge aliasing. Again, this is sim-
ilar to rendering surfaces, where edge and texture aliasing are
handled by different algorithms as well.

Exploiting these simplifications, we can rewrite (12) to:

(gc ⊗ h)(x) ≈
∑
k

wkckok

∫
R2
qk(η)h(x− η) dη

=
∑
k

wkckok(qk ⊗ h)(x).

Following the terminology of Section 3.3 (Equation (6)) we call

ρk(x) = ckok(qk ⊗ h)(x) = (pk ⊗ h)(x) (14)

an ideal volume resampling filter, combining a projected recon-
struction kernelpk = ckokqk and a low-pass kernelh. Hence,
we can approximate the antialiased splatting equation (12) by
replacing the footprint functionqk in the original splatting equa-
tion (10) with the resampling filterρk. This means that instead
of band limiting the output functiongc(x) directly, we band
limit each footprint function separately. Under the assumptions
described above, we get a splatting algorithm that produces a
band limited output function respecting the Nyquist frequency
of the raster image, therefore avoiding aliasing artifacts. Re-
member that the reconstruction kernels are integrated in ray
space, resulting in footprint functions that vary significantly in
size and shape across the volume. Hence the resampling filter
in (14) is stronglyspace variant.

Swan et al. presented an antialiasing technique for splat-
ting [18] that is based on a uniform scaling of the reconstruction
kernels to band limit the extinction function. Their technique
produces similar results as our method for radially symmetric
kernels. However, for more general kernels, e.g., elliptical ker-
nels, uniform scaling is a poor approximation of ideal low-pass
filtering. Aliasing artifacts cannot be avoided without introduc-
ing additional blurriness. On the other hand, our method pro-
vides non-uniform scaling in these cases, leading to superior
image quality as illustrated in Section 8. Moreover, our anal-
ysis above shows that band limiting the extinction function does
not guarantee alias free images. Because of shading and edges,
frequencies above the Nyquist limit persist. However, these ef-
fects are not discussed in [18].

5 Surface Resampling
When rendering point-sampled surfaces the data flows through
a similar pipeline as in forward mapping volume rendering (Fig-
ure 4). In Section 5.1, we first explain how continuous attribute
functions are conceptually defined on point-sampled surfaces.
Then we introduce an expression similar to Equation (7) for
the continuous output function (i.e., the rendered image) in Sec-
tion 5.2.

5.1 Attribute Functions on Point-Sampled
Surfaces

We represent point-sampled surfaces as a set of irregularly
spaced points{Pk} in three dimensional object space without
connectivity. A pointPk has a position and a normal. It is
associated with a reconstruction kernelrk and samples of the
attribute functions, e.g.,wrk, w

g
k, w

b
k that represent continuous

functions for red, green, and blue color components. With-
out loss of generality, we perform all further calculations with

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 106

scalar coefficientswk. Note that the basis functionsrk and co-
efficientswk can be determined in a pre-processing step as de-
scribed in [23].

We define a continuous function on the surface represented by
the set of points as illustrated in Figure 6. Given a pointQ any-

3D object space

Pk

Q
uuuu

uk
uu0

uu11

2D source space
local parameterization

reconstruction kernel rk(u)
small neighborhood
around Q

P3P1

P2

u111

uu2
u3

Fig. 6. Defining a texture function on the surface of a point-based object.

where on the surface in object space, shown left, we construct
a local parameterization of the surface in a small neighborhood
of Q, illustrated on the right. The pointsQ andPk havelocal
source space coordinatesu anduk, respectively. Using the pa-
rameterization, we can define the continuous attribute function
fc(u) on the surface as in Equation (1):

fc(u) =
∑
k∈N

wkrk(u). (15)

We will choose basis functionsrk that havelocal support or that
are appropriately truncated. Thenu lies in the support of a small
number of basis functions. Note that in order to evaluate (15),
the local parameterization has to be established in the union of
these support areas only, which is very small. Furthermore, we
will compute these local parameterizations on the fly during ren-
dering as described in Section 7.2.

5.2 The Surface Resampling Filter
Rendering a parameterized surface involves mapping the at-
tribute functionfc(u) from parameter, i.e., source space, to
screen space. As illustrated in Figure 7, we denote this 2D to 2D
mapping byx = m(u). It is composed of a 2D to 3D parame-
terization from source to object space and a 3D to 2D projection
from object to screen space, which are described in more detail
in Section 6.3. Usingm, we can write the continuous output
function as

gc(x) =
∑
k

wkc(x)r′k(x), (16)

wherer′k(x) = rk(m−1(x)) is a reconstruction kernel mapped
to screen space. As in Section 4,c is the emission term arising
from shading the surface.

Again we assume that emission is constant in the support of
eachr′k in screen space, which is equivalent to per-point shad-
ing, therefore ignoring aliasing due to shading. So the band lim-
ited output function according to (4) is

(gc ⊗ h)(x) =
∑
k

wkck(r′k ⊗ h)x). (17)

2D to 3D parameterization 3D to 2D projection

2D to 2D compound mapping x=m(u)

2D source space

u1

u0

2D screen space

x1

x0

rk(u) rk'(x)

3D object space

Fig. 7. Mapping a surface function from parameter space to screen space.

Similar as in Section 4.2, we call

ρk(x) = ck(r′k ⊗ h)(x) = (pk ⊗ h)(x) (18)

anideal surface resampling filter, combining a projected surface
reconstruction kernelpk(x) = ckrk(m−1(x)) and a low-pass
kernelh(x).

6 EWA Resampling Filters
For both volume and surface rendering, we choose elliptical
Gaussians as reconstruction kernels and low-pass filters since
they provide certain features that are crucial for our technique:
Gaussians are closed under affine mappings and convolution,
and integrating a 3D Gaussian along one coordinate axis re-
sults in a 2D Gaussian. These properties enable us to analyti-
cally compute the volume and surface resampling filters (Equa-
tions (14) and (18), respectively) as a single 2D Gaussian, as will
be shown in Section 6.2 and 6.3. In Section 6.1, we summarize
the mathematical features of the Gaussians that are exploited in
our derivation in the following sections. More details on Gaus-
sians can be found in Heckbert’s master’s thesis [9].

6.1 Elliptical Gaussian Filters
We define a 3D elliptical GaussianG3

V(x−p) centered at a point
p with a variance matrixV as:

G3
V(x− p) =

1
(2π)3/2|V| 12

e−
1
2 (x−p)TV−1(x−p), (19)

where|V| is the determinant ofV. In this form, the Gaussian
is normalized to a unit integral. In the case of a 3D Gaussian
V is a symmetric3× 3 matrix andx andp are column vectors
(x0, x1, x2)T and(p0, p1, p2)T , respectively. Similar to (19), an
elliptical 2D GaussianG2

V(x− p) is defined as:

G2
V(x− p) =

1
2π|V| 12

e−
1
2 (x−p)TV−1(x−p), (20)

whereV is a2× 2 variance matrix andx andp are 2D vectors.
Note that the normalization factor is different for 2D and 3D
Gaussians.

We can easily apply an arbitrary affine mappingu = Φ(x) to
a Gaussian of any dimensionn, denoted byGnV. Let us define the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 107

affine mapping asΦ(x) = Mx + c, whereM is an× n matrix
andc is a vector(c1, . . . , cn)T . We substitutex = Φ−1(u),
yielding:

GnV(Φ−1(u)− p) =
1

|M−1|
GnMVMT (u− Φ(p)). (21)

Moreover, convolving two Gaussians with variance matricesV
andY results in another Gaussian with variance matrixV + Y:

(GnV ⊗ GnY)(x− p) = GnV+Y(x− p). (22)

Finally, integrating a normalized 3D GaussianG3
V along one

coordinate axis yields a normalized 2D GaussianG2
V̂

, hence:∫
R

G3
V(x− p) dx2 = G2

V̂
(x̂− p̂), (23)

wherex̂ = (x0, x1)T andp̂ = (p0, p1)T . The2 × 2 variance
matrixV̂ is easily obtained from the3×3 matrixV by skipping
the third row and column:

V =

 a b c
b d e
c e f

⇔ (
a b
b d

)
= V̂. (24)

In the following, we will useGV to denote both 2D and 3D
Gaussians, the context clarifying which one is meant.

6.2 The EWA Volume Resampling Filter
In this section, we first describe how to map arbitrary ellipti-
cal Gaussian volume reconstruction kernels from object to ray
space. Our derivation results in an analytic expression for the
kernels in ray spacer′k(x) as in Equation (8). We will then
be able to analytically integrate the kernels according to Equa-
tion (11) and to convolve the footprint functionqk with a Gaus-
sian low-pass filterh as in Equation (22), yielding an elliptical
Gaussian resampling filterρk.

The Viewing Transformation The reconstruction kernels
are initially given in source space, orobject space, which has
coordinatesu = (u0, u1, u2)T . As in Section 4.1 we denote the
Gaussian reconstruction kernels in object space by:

rk(u) = GVk
(u− uk), (25)

whereuk are the voxel positions in object space. For regular
volume datasets, the variance matricesVk are usually identity
matrices. For rectilinear datasets, they are diagonal matrices
where the matrix elements contain the squared distances be-
tween voxels along each coordinate axis. Curvilinear and ir-
regular grids have to be resampled to a more regular structure in
general. For example, Mao et al. [31] describe a stochastic sam-
pling approach with a method to compute the variance matrices
for curvilinear volumes.

We denote camera coordinates by a vectort = (t0, t1, t2)T .
Object coordinates are transformed to camera coordinates us-
ing a mappingt = ϕ(u), calledviewing transformation. The
viewing transformation is usually an affine mapping defined by
a matrixW and a translation vectord asϕ(u) = Wu + d.

The Projective Transformation We will concatenate the
viewing transformation with a projective transformation that
converts camera coordinates to ray coordinates as illustrated in
Figure 8. Camera space is defined such that the origin of the
camera coordinate system is at the center of projection and the
projection plane is the planet2 = 1. Camera space and ray
space are related by the mappingx = φ(t). Using the definition
of ray space from Section 4.1,φ(t) and its inverseφ−1(t) are
therefore given by: x0

x1

x2

 = φ(t) =

 t0/t2
t1/t2

‖(t0, t1, t2)T ‖

 (26)

 t0
t1
t2

 = φ−1(x) =

 x0/l · x2

x1/l · x2

1/l · x2

 , (27)

wherel = ‖(x0, x1, 1)T ‖.

x2

(t0,t1)

t2

1

l

tk

xk

(x0,x1)

Fig. 8. Transforming the volume from camera to ray space. Top: camera space.
Bottom: ray space.

Unfortunately, these mappings are not affine, so we cannot
apply Equation (21) directly to transform the reconstruction ker-
nels from camera to ray space. To solve this problem, we intro-
duce thelocal affine approximationφk of the projective trans-
formation. It is defined by the first two terms of the Taylor ex-
pansion ofφ at the pointtk:

φk(t) = xk + Jk · (t− tk), (28)

wheretk is the center of a Gaussian in camera space andxk =
φ(tk) is the corresponding position in ray space. The Jacobian
Jk is given by the partial derivatives ofφ at the pointtk:

Jk =
∂φ

∂t
(tk) =

 1/tk,2 0 −tk,0/t2k,2
0 1/tk,2 −tk,1/t2k,2

tk,0/l
′ tk,1/l

′ tk,2/l
′

 , (29)

wherel′ = ‖(tk,0, tk,1, tk,2)T ‖.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 108

The local affine approximation of the compound mapping
from source to ray spacex = mk(u) is given by the concatena-
tion of t = ϕ(u) andx = φk(t):

x = mk(u) = φk(ϕ(u))
= JkWu + xk + Jk(d− tk).

We substituteu = m−1
k (x) in (25) and apply Equation (21) to

map the reconstruction kernels to ray space, yielding the desired
expression forr′k(x):

r′k(x) = GVk
(m−1(x)− uk)

=
1

|W−1J−1
k |
GV′k

(x−m(uk)), (30)

whereV′k is the variance matrix in ray coordinates. According
to (21),V′k is given by:

V′k = JkWVkWTJTk . (31)

Note that for uniform or rectilinear datasets, the product
WVkWT has to be computed only once per frame, sinceVk

is the same for all voxels andW changes only from frame to
frame. Since the Jacobian is different for each voxel position,
V′k has to be recalculated for each voxel, requiring two3 × 3
matrix multiplicationsV′k = Jk(WVkWT)JTk . In the case of
curvilinear or irregular volumes, each reconstruction kernel has
an individual variance matrixVk. Our method efficiently han-
dles this situation, requiring only one additional3 × 3 matrix
multiplication, i.e.,V′k = (JkW)Vk(JkW)T . In contrast, pre-
vious techniques [2], [31] cope with elliptical kernels by com-
puting their projected extents in screen space and then establish-
ing a mapping to a circular footprint table. However, this pro-
cedure is computationally expensive. It leads to a bad approxi-
mation of the integral of the reconstruction kernel as pointed out
in [14], [18].

As illustrated in Figure 9, the local affine mapping is exact
only for the ray passing throughtk or xk, respectively. The
figure is exaggerated to show the non-linear effects in the ex-
act mapping. The affine mapping essentially approximates the
perspective projection with an oblique orthographic projection.
Therefore, parallel lines are preserved, and approximation errors
grow with increasing ray divergence. However, the errors do not
lead to visual artifacts in general [14], since the fan of rays in-
tersecting a reconstruction kernel has a small opening angle due
to the local support of the reconstruction kernels.

A common approach of performing splatting with perspective
projection is to map the footprint function onto afootprint poly-
gonin camera space in a first step. In the next step, the footprint
polygon is projected to screen space and rasterized, resulting in
the so-calledfootprint image. As mentioned in [14], however,
this requires significant computational effort. In contrast, our
framework efficiently performs perspective projection by map-
ping the volume to ray space, which requires only the computa-
tion of the Jacobian and two3 × 3 matrix multiplications. For
spherical reconstruction kernels, these matrix operations can be
further optimized as shown in Section 7.1.

t2

rk'(x)

tttkk

xk xk

(t0,t1)

(xk,0,xk,1)

xk,2 xk,2

Fig. 9. Mapping a reconstruction kernel from camera to ray space. Top: camera
space. Bottom: ray space. Left: local affine mapping. Right: exact mapping.

Integration and Band Limiting We integrate the Gaussian
reconstruction kernel of (30) according to (11), resulting in a
Gaussian footprint functionqk:

qk(x) =
∫
R

1
|W−1J−1

k |
GV′k

(x− xk, x2 − xk2) dx2

=
1

|W−1J−1
k |
GV̂′k

(x− xk), (32)

where the2 × 2 variance matrixV̂′k of the footprint function
is obtained fromV′k by skipping the last row and column, as
shown in (24).

Finally, we choose a Gaussian low-pass filterh(x) =
GVh(x), where the variance matrixVh ∈ R2×2 is typically
the identity matrix. With (22) we compute the convolution
in (14), yielding theEWA volume resampling filter, or EWA vol-
ume splat:

ρk(x) = (pk ⊗ h)(x)

= ckok
1

|W−1J−1
k |

(GV̂′k
⊗ GVh)(x− xk)

= ckok
1

|W−1J−1
k |
GV̂′k+Vh(x− xk). (33)

6.3 The EWA Surface Resampling Filter
In this section, we first describe how to construct the local pa-
rameterizations that are needed to define surface attribute func-
tionsfc(u) (Section 5.1). Then we derive a mappingx = m(u)
involving parameterization, viewing transformation, and per-
spective projection that transforms the attribute function from
source to screen space, similar to Section 6.2.

Local Surface Parameterizations At each pointPk, a lo-
cal surface parameterizationψk is defined by two orthogonal
unit vectorse0

k ande1
k in the tangent plane of the surface. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 109

tangent plane is given by the surface normalnk stored with each
pointPk. Hence each pointu = (u0, u1)T in the parameter do-
main corresponds to a pointû = (û0, û1, û2)T on the surface in
object space:

û = ψk(u) = Pk + Sku,

whereSk is a3× 2 matrix consisting of the column vectorse0
k

ande1
k.

We denote the Gaussian surface reconstruction kernels in the
parameter domain byrk(u) = GVk

(u). The variance matrix
Vk has to be chosen appropriately to match the local density of
points aroundPk. Restricting ourselves to radially symmetric
kernels,Vk is a 2 × 2 identity matrixI scaled by a factorσ2,
i.e.,Vk = σ2I. The scalingσ depends on the distance between
Pk and its nearest neighbors; e.g., we chooseσ as the average
distance to the6 nearest neighbors. A more sophisticated anal-
ysis of the point distribution aroundPk could be used to find
suitable variance matrices of general elliptical kernels.

The Viewing Transformation The viewing transformation
that maps object coordinateŝu to camera coordinatest is de-
fined as in Section 6.2, i.e.,t = ϕ(û) = Wû + d.

Perspective Projection Surface pointst in 3D camera
space are projected to 2D screen spacex by dividing by the
depth coordinatet2. Hence we use the same mappingφ (Equa-
tion (26)) as for volumes, except that we do not need the third
coordinatex2: (

x0

x1

)
= φ(t) =

(
t0/t2
t1/t2

)
.

We use the same local affine approximationφk as in (28). Note
that here the JacobianJk is a2× 3 matrix:

Jk =
∂φ

∂t
(tk) =

(
1/tk,2 0 −tk,0/t2k,2

0 1/tk,2 −tk,1/t2k,2

)
. (34)

Concatenatingψk, ϕ, andφk, we get the local affine approx-
imationmk of the mapping from source space to screen space:

x = mk(u) = φk(ϕ(ψk(u)))
= JkWSku + xk.

Substitutingu = m−1
k (x) and applying Equation (21) we get

the Gaussian surface reconstruction kernel in screen space:

r′k(x) = GVk
(m−1

k (x)− uk)

=
1

|M−1
k |
GV′k

(x−mk(uk)),

with the variance matrixV′k = MkVkMT
k , and Mk =

JkWSk ∈ R2.

Band Limiting With a Gaussian low-pass filterh = GVh and
using (18), theEWA surface resampling filter, or EWA surface
splat, is:

ρk(x) = ck(r′k ⊗ h)(x)

= ck
1

|M−1
k |
GV′k+Vh(x−mk(uk)). (35)

In (35), the resampling filter is a function in screen space.
Since the mappingmk is affine and invertible, we can alterna-
tively express it as a function in source space, too. We use

x−mk(uk) = JkJ−1
k (x−mk(uk)) = Jk(m−1

k (x)− uk),

and substitute this into (35), yielding:

ρk(x) = ckGVk+M−1
k VhM−1T

k

(u− uk). (36)

This is the well knownsource spaceEWA method [9] extended
for irregular sample positions, which is mathematically equiv-
alent to our screen space formulation. However, (36) involves
backward mapping a pointx from screen to the object surface,
which is impractical for interactive rendering. It amounts to ray
tracing the point cloud to find surface intersections. Addition-
ally, the locationsuk are irregularly positioned such that the
evaluation of the resampling kernel in object space is laborious.
On the other hand, Equation (35) can be implemented efficiently
for point-based objects as described in Section 7.2.

6.4 Reduction from Volume to Surface Re-
construction Kernels

Since our EWA volume resampling filter can handle arbitrary
Gaussian reconstruction kernels, we can represent the structure
of a volume dataset more accurately by choosing the shape of
the reconstruction kernels appropriately. For example, we can
improve the precision of isosurface rendering by flattening the
reconstruction kernels in the direction of the surface normal. We
will show below that an infinitesimally flat Gaussian volume
kernel is equivalent to a Gaussian surface texture reconstruction
kernel. In other words, we can extract and render a surface rep-
resentation from a volume dataset directly by flattening volume
reconstruction kernels into surface reconstruction kernels. Our
derivation is illustrated in Figure 10.

(t0, t1)

t2 x2

(x0, x1)

3D viewing transformation integration

11/s

s ∞

(t0, t1)

t2 x2

(x0, x1)

2D to 3D parameterization 3D to 2D projection

1

2D to 2D compound mapping

object space, i.e.,

source space

camera space screen space

Fig. 10. Reducing a volume reconstruction kernel to a surface reconstruction
kernel by flattening the kernel in one dimension. Top: rendering a volume kernel.
Bottom: rendering a surface kernel.

We construct a flattened Gaussian reconstruction kernel in ob-
ject space by scaling an arbitrary Gaussian with variance matrix

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 110

V along the third coordinate axis, i.e., using a scaling matrix
diag(1, 1, 1/s). Applying (21), we find that the variance matrix
Vs of the scaled Gaussian is:

Vs =

 v0,0 v0,1 v0,2/s
2

v1,0 v1,1 v1,2/s
2

v2,0/s
2 v2,1/s

2 v2,2/s
2

 .

In the limit, if s = ∞, Vs is equivalent to a 2D Gaussian with
variance matrixV̂ that is parameterized onto the plane perpen-
dicular to the third coordinate axis, where

V̂ =
(
v0,0 v0,1

v1,0 v1,1

)
is the upper left2× 2 matrix inV. Since the plane is defined by
basis vectors(1, 0, 0)T and(0, 1, 0)T , parameterization yields: 1 0

0 1
0 0

 V̂
(

1 0 0
0 1 0

)
= Vs for s→∞. (37)

In the limit, the third row and column ofVs contain only ze-
ros. Therefore, projecting a GaussianGVs to screen space via
mapping to ray space (30) and integration (32), or using perspec-
tive projection as in (35), results in the same 2D variance matrix
of the reconstruction kernel in screen space. In other words, it
is equivalent to render the flattened Gaussian as a volume or as
a surface reconstruction kernel.

7 Implementation
7.1 EWA Volume Splatting
We implemented a volume rendering algorithm based on the
EWA splatting equation. Our implementation is embedded in
the VTK (visualization toolkit) framework [32]. We did not op-
timize our code for rendering speed. We use a sheet buffer to
first accumulate splats from planes in the volume that are most
parallel to the projection plane [2]. In a second step, the fi-
nal image is computed by compositing the sheets back to front.
Shading is performed using the gradient estimation functionality
provided by VTK and the Phong illumination model.

Algorithm We summarize the main steps that are required to
compute the EWA splat for each voxel:

1: for each voxel k {
2: compute camera coords. t[k];
3: compute the Jacobian J[k];
4: compute the variance matrix V[k];
5: project t[k] to screen coords. x[k];
6: setup the resampling filter rho[k];
7: rasterize and accumulate rho[k];
8: }

Fig. 11. The EWA volume splatting algorithm.

First, we compute the camera coordinatestk of the current
voxel k by applying the viewing transformation to the voxel
center. Usingtk, we then evaluate the JacobianJk as given
in Equation (29). In line 4, we transform the Gaussian recon-
struction kernel from object to ray space. This transformation is

implemented by Equation (31), and it results in the3 × 3 vari-
ance matrixV′k of the Gaussian in ray space. Remember that
W is the rotational part of the viewing transformation, hence it
is typically orthonormal. Additionally, for spherical kernels,Vk

is the identity matrix. In this case, evaluation of Equation (31)
can be simplified significantly. Next, we project the voxel center
from camera space to the screen by performing a perspective di-
vision ontk. This yields the 2D screen coordinatesxk. Now we
are ready to setup the resampling filterρk according to Equa-
tion (33). Its variance matrix is derived fromV′k by omitting
the third row and column, and adding a2× 2 identity matrix for
the low-pass filter. We compute the determinants1/|J−1

k | and
1/|W|−1 that are used as normalization factors, and we evaluate
the shading model yielding the emission coefficientck.

Rasterization Finally, we rasterize the resampling filter in
line 7. As can be seen from the definition of the elliptical Gaus-
sian (19), we also need the inverse of the variance matrix, which
is called theconic matrix. Let us denote the2 × 2 conic matrix
of the resampling filter byQ. Furthermore, we define the radial
index function

r(x̄) = x̄TQx̄ where x̄ = (x̄0, x̄1)T = x− xk.

Note that the contours of the radial index, i.e.,r = const. are
concentric ellipses. For circular kernels,r is the squared dis-
tance to the circle center. The exponential function in (19) can
now be written ase−

1
2 r. We store this function in a 1D lookup

table. To evaluate the radial index efficiently, we use finite dif-
ferencing. Sincer is biquadratic in̄x, we need only two addi-
tions to updater for each pixel. We rasterizer in a rectangular,
axis-aligned bounding box centered aroundxk as illustrated in
Figure 12. Typically, we use a thresholdc = 4 and evaluate the
Gaussian only ifr(x̄) < c. Heckbert provides pseudo-code of
the rasterization algorithm in [9].

x-0
x-1xk

r(x-) = c

rasterization bounding box

x

Fig. 12. Rasterizing the resampling filter.

7.2 EWA Surface Splatting
We can perform EWA surface splatting in our volume renderer
using flattened volume reconstruction kernels as described in
Section 6.4. We have also implemented a dedicated surface
splatting renderer [23]. The EWA surface splatting algorithm
essentially proceeds as described in 7.1.

However, the depth complexity of a scene is greater than one
in general, but only those splats that belong to the visible surface
must be accumulated in a pixel. Since back to front ordering of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 111

unstructured point clouds during rendering is prohibitive, an al-
ternative mechanism is required that separates the contributions
of different surfaces. We use a z-buffer approach, computing the
z value of the tangent plane atPk at each pixel that is covered
by the splat. This can be performed efficiently by forward dif-
ferencing, similar to the visibility splatting approach of [8]. To
determine whether a new contribution belongs to the same sur-
face as is already stored in a pixel, the difference between the
newz value and thez value stored in the frame buffer is com-
pared to a threshold. If the difference is smaller than the thresh-
old, the contribution is added to the pixel. Otherwise, given that
it is closer to the eye-point, the data of the frame buffer is re-
placed by the new contribution. It is straightforward to extend
this approach to a multi-layered z-buffer [33] (similar to an A-
buffer [34]) that allows the display of semitransparent surfaces
and edge antialiasing [23].

8 Results
The EWA resampling filter has a number of useful properties,
as illustrated in Figure 13. When the projection to screen space
minifies the attribute function (i.e., the volume or point-sampled
surface), size and shape of the resampling filter are dominated
by the low-pass filter, as in the left column of Figure 13. In the
middle column, the attribute function is magnified and the re-
sampling filter is dominated by the reconstruction kernel. Since
the resampling filter unifies a reconstruction kernel and a low-
pass filter, it provides a smooth transition between magnification
and minification. Moreover, the reconstruction kernel is scaled
anisotropically in situations where the volume is stretched in
one direction and shrinked in the other, as shown in the right
column. In the bottom row, we show the filter shapes result-
ing from uniformly scaling the reconstruction kernel to avoid
aliasing, as proposed by Swan et al. [18]. Essentially, the recon-
struction kernel is enlarged such that its minor radius is at least
as long as the minor radius of the low-pass filter. For spheri-
cal reconstruction kernels, or circular footprint functions, this
is basically equivalent to the EWA resampling filter. However,
for elliptical footprint functions, uniform scaling leads to overly
blurred images in the direction of the major axis of the ellipse.

We compare our method to Swan’s method in Figure 14. The
images on the left were rendered with EWA volume splats, those
on the right with Swan’s uniformly scaled kernels. We used rect-
angular zebra textures withx andy dimensions of1024×512 (in
the first row), and1024× 256 (in the second row), and mapped
the textures to a square. This leads to elliptical reconstruction
kernels with a ratio between the length of the major and minor
radii of 2 to 1 and4 to 1, respectively. Clearly, the EWA filter
produces a crisper image and at the same time does not exhibit
aliasing artifacts. As the ratio between the major and minor radii
of the reconstruction kernels increases, the difference to Swan’s
method becomes more pronounced. For strongly anisotropic
kernels, Swan’s uniform scaling produces excessively blurred
images, as shown on the right in Figure 14. Each frame took ap-
proximately 6 seconds to render on an 866 MHz PIII processor.

In Figure 15, we compare EWA splatting using volume ker-
nels on the left to surface reconstruction kernels on the right.
The texture size is512 × 512 in x andy direction. Typically,
the perspective projection of a spherical kernel is almost a cir-

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

–6

–4

–2

0

2

4

6

–6 –4 –2 2 4 6

–6

–4

–2

0

2

4

6

–6 –4 –2 2 4 6

–6

–4

–2

0

2

4

6

–6 –4 –2 2 4 6

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

–2

–1

0

1

2

–2 –1 1 2

–2

–1

0

1

2

–2 –1 1 2

–2

–1

0

1

2

–2 –1 1 2

minification magnification anisotropic
minification-magnification

fo
ot

pr
in

t f
un

ct
io

n
lo

w
-p

as
s

fil
te

r
re

sa
m

pl
in

g
fil

te
r

–2

–1

0

1

2

–2 –1 1 2

–6

–4

–2

0

2

4

6

–6 –4 –2 2 4 60

0. 5

1

1. 5

–1.5 0.5 1 1.5–0.5–1

–0.5

–1

–1.5

S
w

an
's

 r
ec

on
st

ru
ct

io
n

ke
rn

el

⊗

=

Fig. 13. Properties of the EWA resampling filter.

cle. Therefore, rendering with volume kernels does not ex-
hibit anisotropic texture filtering and produces textures that are
slightly too blurry, similar to isotropic texture filters such as tri-
linear mipmapping. On the other hand, splatting surface kernels
is equivalent to EWA texture filtering. Circular surface kernels
are mapped to ellipses, which results in high image quality be-
cause of anisotropic filtering.

In Figure 16, we show a series of volume renderings of the
UNC CT scan of a human head (256 × 256 × 225), the UNC
engine (256 × 256 × 110), and the foot of the visible woman
dataset (152 × 261 × 220). The texture in the last example is
rendered using EWA surface splatting, too. The images illustrate
that our algorithm correctly renders semitransparent objects as
well. The skull of the UNC head, the bone of the foot, and the
iso-surface of the engine were rendered with flattened surface
splats oriented perpendicular to the volume gradient. All other
voxels were rendered with EWA volume splats. Each frame took
approximately 11 seconds to render on an 866 MHz PIII proces-
sor.

Figure 17 shows results of EWA surface splatting, which were
rendered using a dedicated surface splatting renderer [23]. The
face in Figure 17(a) was acquired by a laser range scanner. Fig-
ure 17(b) illustrates high quality texturing on terrain data, and
Figure 17(c) shows semi-transparent surfaces on the complex
model of a helicopter. Table I shows the performance of our un-
optimized software implementation of EWA surface splatting.
The frame rates were measured on a 1.1 GHz AMD Athlon sys-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 112

EWA Volume Splatting Swan et al.

Fig. 14. Comparison between EWA volume splatting and Swan et al. Top two rows:1024× 512× 3 volume texture. Bottom two rows:1024× 256× 3 volume
texture.

EWA Volume Splatting EWA Surface Splatting

Fig. 15. EWA volume splatting versus EWA surface splatting;512× 512× 3 volume texture.

(a) UNC Head (b) UNC Engine (c) Visible Woman Foot

Fig. 16. Semitransparent objects rendered using EWA volume splatting. The skull of the UNC head, the iso-surface of the engine, and the bone of the foot are
rendered with flattened surface splats.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 113

(a) Scanned Head (b) Textured Terrain Data (c) Semi-Transparent Surfaces

Fig. 17. EWA surface splatting of a scan of a human face, textured terrain, and a complex point-sampled object with semi-transparent surfaces.

tem with 1.5 GByte memory. We rendered to a frame buffer with
a resolution of 256× 256 and 512× 512 pixels, respectively.

Data # Points 256× 256 512× 512
Scanned Head 429075 1.3 fps 0.7 fps
Matterhorn 4782011 0.2 fps 0.1 fps
Helicopter 987552 0.6 fps 0.3 fps

TABLE I

Rendering performance for frame buffer resolutions 256× 256 and 512× 512.

9 Conclusions
We present a new splat primitive called the EWA resampling fil-
ter. Using a general signal processing framework, we derive a
formulation of the EWA resampling filter for both volume and
surface splatting. Our primitive provides high quality antialias-
ing, combining an elliptical Gaussian reconstruction kernel with
a Gaussian low-pass filter. We use a novel approach of com-
puting the footprint function for volume rendering. Exploiting
the mathematical features of 2D and 3D Gaussians, our frame-
work efficiently handles arbitrary elliptical reconstruction ker-
nels and perspective projection. Therefore, our primitive is suit-
able to render regular, rectilinear, curvilinear, and irregular vol-
ume datasets. Our formulation of the EWA surface resampling
filter is equivalent to Heckbert’s EWA texture filter. It provides
high quality, anisotropic texture filtering for point-sampled sur-
faces. Hence we call our primitiveuniversal, facilitating the
rendering of surface and volume data.

We have not yet investigated whether other kernels besides
elliptical Gaussians may be used with this framework. In princi-
ple, a resampling filter could be derived from any function that
allows the analytic evaluation of the operations described in Sec-
tion 6.1 and that is a good approximation of an ideal low-pass
filter.

To achieve interactive frame rates, we are currently investigat-
ing the use of graphics hardware to rasterize EWA splats as tex-
ture mapped polygons. Programmable vertex shaders of modern
GPUs (graphics processing units) provide all operations to com-
pute EWA resampling filters completely in hardware. To render
non-rectilinear datasets we are investigating fast back-to-front
sorting algorithms. Furthermore, we want to experiment with

our splat primitive in a post-shaded volume rendering pipeline.
The derivative of the EWA resampling filter could be used as a
band-limited gradient kernel, hence avoiding aliasing caused by
shading for noisy volume data.

Acknowledgements
We would like to thank Paul Heckbert for his encouragement
and helpful comments, and Ron Perry and Liu Ren for many
stimulating discussions. Many thanks to Lisa Sobierajski Avila
for her help with our implementation of EWA volume splatting
in vtk. Thanks to Jennifer Roderick Pfister and Martin Roth for
proofreading the paper.

References
[1] L. Westover, “Interactive volume rendering,” inProceedings of the Chapel

Hill Workshop on Volume Visualization, C. Upson, Ed., Chapel Hill, NC,
May 1989, pp. 9–16, University of North Carolina at Chapel Hill.

[2] L. Westover, “Footprint evaluation for volume rendering,” inComputer
Graphics, Aug. 1990, Proceedings of SIGGRAPH 90, pp. 367–376.

[3] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk,
“The digital michelangelo project: 3d scanning of large statues,” inCom-
puter Graphics, Los Angeles, CA, July 2000, SIGGRAPH 2000 Proceed-
ings, pp. 131–144.

[4] H. Hoppe, T. DeRose, T. Duchampt, J. McDonald, and W. Stuetzle, “Sur-
face reconstruction from unorganized points,” inComputer Graphics,
Chicago, IL, July 1992, SIGGRAPH ’92 Proceedings, pp. 71–78.

[5] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” inComputer Graphics, New Orleans, LA,
Aug. 1996, SIGGRAPH ’96 Proceedings, pp. 303–312.

[6] S. Rusinkiewicz and M. Levoy, “Qsplat: A multiresolution point rendering
system for large meshes,” inComputer Graphics, Los Angeles, CA, July
2000, SIGGRAPH 2000 Proceedings, pp. 343–352.

[7] J. P. Grossman and W. Dally, “Point sample rendering,” inRendering
Techniques ’98, Vienna, Austria, July 1998, pp. 181–192, Springer, Wien.

[8] H. Pfister, M. Zwicker, J. van Baar, and M Gross, “Surfels: Surface ele-
ments as rendering primitives,” inComputer Graphics, Los Angeles, CA,
July 2000, SIGGRAPH 2000 Proceedings, pp. 335–342.

[9] P. Heckbert, “Fundamentals of texture mapping and image warping,” M.S.
thesis, University of California at Berkeley, Department of Electrical En-
gineering and Computer Science, June 17 1989.

[10] N. Greene and P. Heckbert, “Creating raster omnimax images from mul-
tiple perspective views using the elliptical weighted average filter,”IEEE
Computer Graphics & Applications, vol. 6, no. 6, pp. 21–27, June 1986.

[11] Klaus Mueller and Roger Crawfis, “Eliminating popping artifacts in sheet
buffer-based splatting,” IEEE Visualization ’98, pp. 239–246, October
1998, ISBN 0-8186-9176-X.

[12] A. Van Gelder and K. Kim, “Direct volume rendering with shading via
three-dimensional textures,” inACM/IEEE Symposium on Volume Visual-
ization, San Francisco, CA, Oct. 1996, pp. 23–30.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2002 114

[13] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware,” in1994
Workshop on Volume Visualization, Washington, DC, Oct. 1994, pp. 91–
98.

[14] Klaus Mueller and Roni Yagel, “Fast perspective volume rendering with
splatting by utilizing a ray-driven approach,”IEEE Visualization ’96, pp.
65–72, October 1996, ISBN 0-89791-864-9.

[15] D. Laur and P. Hanrahan, “Hierarchical splatting: A progressive refine-
ment algorithm for volume rendering,” inComputer Graphics, Las Vegas,
NV, July – August 1991, SIGGRAPH ’91 Proceedings, pp. 285–288.

[16] L. Lippert and M. H. Gross, “Fast wavelet based volume rendering by
accumulation of transparent texture maps,”Computer Graphics Forum,
vol. 14, no. 3, pp. 431–444, August 1995, ISSN 1067-7055.

[17] X. Mao, “Splatting of non rectilinear volumes through stochastic resam-
pling,” IEEE Transactions on Visualization and Computer Graphics, vol.
2, no. 2, pp. 156–170, June 1996.

[18] J. E. Swan, K. Mueller, T. M̈oller, N. Shareef, R. Crawfis, and R. Yagel,
“An anti-aliasing technique for splatting,” inProceedings of the 1997 IEEE
Visualization Conference, Phoenix, AZ, October 1997, pp. 197–204.

[19] K. Mueller, T. Moeller, J.E. Swan, R. Crawfis, N. Shareef, and R. Yagel,
“Splatting errors and antialiasing,”IEEE Transactions on Visualization
and Computer Graphics, vol. 4, no. 2, pp. 178–191, April-June 1998.

[20] M. Levoy and T. Whitted, “The use of points as display primitives,” Tech.
Rep. TR 85-022, The University of North Carolina at Chapel Hill, Depart-
ment of Computer Science, 1985.

[21] T. W. Mark, L. McMillan, and G. Bishop, “Post-rendering 3d warping,” in
1997 Symposium on Interactive 3D Graphics. Apr. 1997, pp. 7–16, ACM
SIGGRAPH.

[22] J. Shade, S. J. Gortler, L. He, and R. Szeliski, “Layered depth images,”
in Computer Graphics, Orlando, FL, July 1998, SIGGRAPH ’98 Proceed-
ings, pp. 231–242.

[23] M. Zwicker, H. Pfister., J. Van Baar, and M. Gross, “Surface splatting,”
in Computer Graphics, Los Angeles, CA, July 2001, SIGGRAPH 2001
Proceedings.

[24] Matthias Zwicker, Hanspeter Pfister, Jeroen VanBaar, and Markus Gross,
“Ewa volume splatting,” IEEE Visualization 2001, pp. 29–36, October
2001.

[25] K. Mueller, T. Moeller, and R. Crawfis, “Splatting without the blur,” in
Proceedings of the 1999 IEEE Visualization Conference, San Francisco,
CA, October 1999, pp. 363–370.

[26] C. Wittenbrink, T. Malzbender, and M. Goss, “Opacity-weighted color
interpolation for volume sampling,”IEEE Symposium on Volume Visual-
ization, 1998, pp. 431–444, October 1998, ISBN 0-8186-9180-8.

[27] James T. Kajiya and Brian P. Von Herzen, “Ray tracing volume densities,”
Computer Graphics (Proceedings of SIGGRAPH 84), vol. 18, no. 3, pp.
165–174, July 1984, Held in Minneapolis, Minnesota.

[28] N. Max, “Optical models for direct volume rendering,”IEEE Transactions
on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108, June
1995.

[29] P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp
factorization of the viewing transform,” inComputer Graphics, July 1994,
Proceedings of SIGGRAPH 94, pp. 451–457.

[30] M. Levoy, “Display of surfaces from volume data,”IEEE Computer
Graphics & Applications, vol. 8, no. 5, pp. 29–37, May 1988.

[31] X. Mao, L. Hong, and A. Kaufman, “Splatting of curvilinear volumes,” in
IEEE Visualization ’95 Proc., Oct. 1995, pp. 61–68.

[32] W. Schroeder, K. Martin, and B. Lorensen,The Visualization Toolkit,
Prentice Hall, 2 edition, 1998.

[33] N. Jouppi and C. Chang, “z3: An economical hardware technique for
high-quality antialiasing and transparency,” inProceedings of the Euro-
graphics/SIGGRAPH Workshop on Graphics Hardware 1999, Los Ange-
les, CA, Aug. 1999, pp. 85–93.

[34] L. Carpenter, “The a-buffer, an antialiased hidden surface method,” in
Computer Graphics, July 1984, vol. 18 ofSIGGRAPH ’84 Proceedings,
pp. 103–108.

Matthias Zwicker is in his last year of the PhD pro-
gram at the Computer Graphics Lab at ETH Zürich,
Switzerland. He has developed rendering algorithms
and data structures for point-based surface representa-
tions. He has also extended this work towards high
quality volume rendering. Other research interests
concern compression of point-based data structures,
acquisition of real world objects, and texturing of
point-sampled surfaces.

Hanspeter Pfisteris Associate Director and Research
Scientist at MERL - Mitsubishi Electric Research
Laboratories - in Cambridge, MA. He is the chief ar-
chitect of VolumePro, Mitsubishi Electric’s real-time
volume rendering hardware for PCs. His research in-
terests include computer graphics, scientific visual-
ization, and computer architecture. His work spans
a range of topics, including point-based rendering
and modeling, 3D scanning and 3D photography, and
computer graphics hardware. Hanspeter Pfister re-
ceived his Ph.D. in Computer Science in 1996 from

the State University of New York at Stony Brook. He received his M.S. in
Electrical Engineering from the Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland, in 1991. Dr. Pfister has taught courses at major graphics
conferences including SIGGRAPH, IEEE Visualization, and Eurographics. He
is Associate Editor of the IEEE Transactions on Visualization and Computer
Graphics (TVCG), member of the Executive Committee of the IEEE Technical
Committee on Graphics and Visualization (TCVG), and has served as a member
of international program committees of major graphics conferences. Dr. Pfister
is the general chair of the IEEE Visualization 2002 conference in Boston. He
is member of the ACM, ACM SIGGRAPH, IEEE, the IEEE Computer Society,
and the Eurographics Association.

Jeroen van Baar is working at MERL - Mitsubishi
Electric Research Labsoratories - in Cambridge, MA,
as a Member of Technical Staff. Jeroen van Baar re-
ceived a M.S. in computer science from Delft Univer-
sity of Technology, the Netherlands, in 1998. His ar-
eas of interest include the broad fields of computer
graphics, scientific visualization, and computer vi-
sion.

Markus Gross is a professor of computer science and
the director of the computer graphics laboratory of
the Swiss Federal Institute of Technology (ETH) in
Zürich. He received a degree in electrical and com-
puter engineering and a Ph.D. on computer graph-
ics and image analysis, both from the University of
Saarbr̈ucken, Germany. From 1990 to 1994 Dr. Gross
was with the Computer Graphics Center in Darmstadt,
where he established and directed the Visual Com-
puting Group. His research interests include physics-
based modeling, point based methods and multireso-

lution analysis. He has widely published and lectured on computer graphics and
scientific visualization and he authored the book ”Visual Computing”, Springer,
1994. Dr. Gross has taught courses at major graphics conferences including
SIGGRAPH, IEEE Visualization, and Eurographics. He is associate editor of
the IEEE Computer Graphics and Applications and has served as a member of
international program committees of major graphics conferences. Dr. Gross was
a papers co-chair of the IEEE Visualization ’99 and Eurographics 2000 confer-
ences. He is a member of IEEE, ACM, and of the Eurographics Association.

	Title Page
	Title Page
	page 2

	EWA Splatting
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

