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model with spatial encoding improves modeling accuracy and outperforms global ap-
pearance models in image/object retrieval. Furthermore, experiments in detection of
substantially occluded objects in cluttered scenes have demonstrated promising results.
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Factorization for Probabilistic Local Appearance Models
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Abstract

We propose a novel local appearance modeling
method for object detection and recognition in cluttered
scenes. The approach is based on the joint distribution
of local feature vectors at multiple salient points and
factorization with Independent Component Analysis
(ICA). The resulting non-parametric densities are simple
multiplicative histograms. This leads to computationally
tractable joint probability densities which can model
high-order dependencies. Furthermore, we propose a
distance-sensitive histograming technique for capturing
spatial dependencies which are otherwise lost in the
joint feature distributions. The advantages over existing
techniques include the ability to model non-rigid objects
and the flexibility in modeling spatial or structural
relationships between object parts. Testing and
evaluation shows that the factorized density model with
gpatial encoding improves modeling accuracy and
outperforms global appearance models in image/object
retrieval. Furthermore, experiments in detection of
substantially occluded objects in cluttered scenes have
demonstrated promising results.

1. INTRODUCTION

For appearance based object modeling in images, the
choice of method is usualy a trade-off determined by
the nature of the application or the availability of
computational resources. Existing object representation
schemes provide models either for global featureg16],
or for local features and their spatia relationships
[13][1][15][7]. With increased complexity, the latter
provides higher modeling power and accuracy.

Among various local appearance and structure
models, there are those that assume rigidity of
appearance and viewing angle, thus adopting more
explicit models [15][13][11]; while others employ
stochastic models and use probabilistic distance and
matching metrics [7][10][1].

We construct a probabilistic appearance model with
an emphasis on the representation of non-rigid and
approximate local image dtructures. We use joint
histograms on k-tuples (k salient points) to enhance the
modeling power for local dependency, while reducing

the complexity by histogram factorization along the
feature components. Unlike [15], in which sub-region
dependency is intentionally ignored for simplicity, we
explicitly model the dependency by joint histograms.
Although, the gain in modeling power of joint densities
can increase the computational complexity, we propose
histogram factorization based on an Independent
Component Analysis (ICA) [2] to dramatically reduce
the histogram dimensionality, thus reducing the
computation to a level that can be easily handled by
today’s personal computers.

For modeling local structures, we use distance-
sensitive histograming technique. In [7] and [1], the
distance information is explicitly captured into the
histogram bins. We argue in favor of collapsing the
distance axis and instead using weighted histogram bin
counts which are distance—dependent (proportional or
inverse-proportional) . For example, for articulated and
non-rigid object, any constraint on the structure or
distance between distant pointsregions can be
misleading. In this case, inverse-distance-weighted
histograming is the preferred method. The choice of
which weighting scheme to use is application-dependent.

In this paper, we will focus our attention on the
modeling of images and objects through the use of joint
histograms. Figure 1 provides an overview diagram of
our histogram-based image and object model. More
detailed description is given in Section 2. This model has
been applied toward image retrieval and object detection
in cluttered scenes (Section 4) with promising results.

2. METHODOLOGY

We propose joint multi-dimensional histograms as a
non-parametric approximation of the joint distribution of
image features at multiple image locations. Let i be the
index for elementary feature components in an image,
which can be pixels, corner/interest points [4][6], blocks,
or regions in an image. Let x; denote the feature vector
of dimension n at location i. x; can be as smple as {R,
G, B} components at each pixel location or some
invariant feature vectors extracted at corner or interest
points [9][13][14] or even transform domain coefficients
at an image block, or any other local/ regional feature
vectors.
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Figure 1 : Image local appearance modeling by joint histograms

For model-based object recognition, we use the a
posteriori probability

maxP(M, |T) D

where M is the object model and T = {x;} represents the
features found in the test image. Equivalently, by
assuming equa priors, classification/detection will be
based on maximum likelihood testing:

m|aXP(T M) )

For the class-conditional density in Equation (2), it is
intractable to model dependencies among all x;'s (even if
correspondence is solved), yet to completely ignore
these dependencies will severely limit our modeling
power. Objects frequently distinguish themselves not by
individual regions (or parts), but by the relative location
and appearance of these regions. A tractable compromise
between these two modeling extremes (which also does
not require correspondence) is to model the joint density
of al k-tuplesof x;'sinT.

21  Joint distribution of k-tuples

Instead of modeling the total joint likelihood of all x;,
X, ..., X, which is an (Ixn)-dimensional distribution, we
model of the distribution of all k-tuples as an
approximation:
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This becomes a (kxn)-dimensional distribution,
which is dtill intractable. For example, for 20 histogram
bins along each dimension, we have 20%" hins,
Therefore, we factorize this distribution into a product of
low-dimensional distributions. We achieve this
factorization by transforming x into a new feature vector
S whose components are (mostly) independent. This is

where independent component analysis (ICA) is used to
effectively factorize the joint probability density
function into a product of 1D marginal densities which
are captured by means of histograms (as opposed to
parametric models) for greatest flexibility in modeling.

2.2 Histogram factorization based on ICA

ICA originated in the context of blind source
separation [8][2] to separate “independent causes’ of a
complex signal or mixture. It is usually implemented by
pushing the vector components away from Gaussianity
by minimizing high-order statistics such as the 4™ order
cross-cumulants. ICA isin general not perfect therefore
the IC’s obtained are not guaranteed to be completely
independent.

By applying ICA to {x}, we obtain the linear
mapping
x= AS (@]
and
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where A is a n-by-m matrix and § is the “source signal”
at location i with nearly independent components. The
original high-dimensional distribution is now factorized
into a product of m k-dimensional distributions, with
only small distortions expected. We note that this
formulation differs from the so-called “naive Bayes’
approach whereby the distribution of individual feature
vector components is assumed to be already independent
and hence factorizable into 1-D distributions. Without
ICA factorization the resulting density model ultimately
suffers since in general the components of local image
features are almost certainly statistically dependent.
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Diagram A: Graphica Models: (a) fully-connected graph
denoting no independence assumptions (b) the ICA-factorized
model with pair-wise only dependencies

After factorization, each of the factored distributions
becomes manageable if k is smal, eg.,, k = 2 or 3.
Moreover, matching can now be performed individually
on these low-dimensiona distributions and the scores
are additively combined to form an overall score.

Diagram A is a graphica model showing the
dependencies between a pair of 3-dimensiona feature
vectors X; X, The joint distribution over all nodes is 6-
dimensiona and al nodes are (potentialy)
interdependent. The basic approach towards obtaining a
tractable distribution is to remove intra-component
dependencies (vertical and diagonal links) leaving only
inter-component  dependencies (horizontal  linkes).
Simultaneously, we seek to reduce the number of
components from n=3 to m=2 "sources'. ldedly, a
perfect ICA transform results in the graphica model
shown in the right diagram where the pair S; S, only
have  pair-wise inter-component  dependencies.
Therefore, the resulting factorization can be simply
modeled by only two 2-D histogramsin this case.*

2.3  Distance-Sensitive Histograms

For the joint distribution estimation of k-tuples, we
propose that not al the tuples should contribute equally
to the histograms. We argue that an object’s local
appearance or structure is best captured by distance-
sensitive  histograming, in  which the increment
contributed by each tuple into a histogram bin depends
upon the spatial adjacency structure among them.

For objects with fine-grain texture or structure, a
larger increment should be added to the histogram for
tuples with mutual distances on the order of the pattern
periodicity. Conversely, for objects with distinct outer
boundary structure, tuples with distances comparable to
the object size are most representative of appearance and
these should be given higher weights.

! We should note that in practice with an approximate
ICA transform, the diagonal links of the original model
arelesslikely to be removed than the vertical ones.

For k = 2, denoting the distance of the pair as d, the
alternative methods are inver se-distance-weighted (IDW)
histograming,

dZ

A=e o (6)
or distance-weighted (DW) histograming,
A=1-e7 ()
or simple hard-thresholding.
if  d=threshold

L,
A= )
Ep, if  d<threshold
for differently structured images/objects.

3. IMPLEMENTATION ISSUES

(8)

To deal with noise as well as small variations in pose
and lighting, the model histogram is passed through a
Gaussian smoothing filter of variable sizes to achieve
different trade-offs between accuracy and robustness.

In image database applications, the meta-data are
usually extracted beforehand. To make the histograms
from different images comparable, consistent
quantization boundaries (bin width, bin range, etc)
should be used across images. For some features such as
color this is not an issue; while for others with large
dynamic range, such as filter-bank responses, one must
exercise extra caution to maintain histogram resolution
and coverage. We used a large collection of images to
estimate the range and frequency and cut 3-5% of the
distribution tails before the quantization. This can
improve the resolution of the histograms by over 100%
in some cases with relatively little information loss.

4. EXPERIMENTS

We have tested the new model in the applications of
object detection and image retrieval. For object detection
we used synthetic “cluttered” images that are actually a
collage of multiple object images.

4.1  Object detection/localization
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Figure 2. Diagram for object detection and localization
(arrow indicates the same ICA basis is used)
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Figure 3 Synthetic "cluttered" scene and a detection example. (a) The synthetic test image of 20 objects
from COIL; (b) The rotated and occluded version of (a); (c) The likelihood map for detecting “piggy bank” in
(b). The white dots are the interest points. High-likelihood points are highlighted.

Figure 4 Harris interest point detections (left) and the 9
differential invariant Gaussian jets at all pixels (right)

First, tests on object detection in cluttered scenes were
conducted. Figure 2 shows the flow diagram for this
task. In Figure 2, note that we use the ICA mixing
matrix A of the model images on the test images for
direct computation of their 1C’s. This is based on the
intuition that if the test image is cluttered, its own
mixing matrix will not agree with that of the model. This
in turn can distort a potentiad candidate’'s ICA
components.

4.1.1 Local feature extraction

For our experiments, we used a Harris operator [6][14]
to detect interest points and extracted the first 9
differential invariant jets [9] at each point as the
corresponding feature vector x. An exampleis shownin

Figure 4. We must emphasize however that our
methodology is not restricted to differential invariant jets
and can in principal be used for any local set of features
for example, color, curvature, texture, edge-density,
texture moments, etc. ICA was then performed to get m
independent components. We used k = 2, resulting in a
set of 2-D histograms which were used to model 2-tuple

joint component densities. Inverse-distance-weighted
(IDW) histograming was applied in our experiments.

Test images were constructed using 20 objects from
the Columbia Object Image Library (COIL) [12] (Figure
3(a)). To test the invariance properties, each of the
objects is transformed by 3-D pose change, a planar
rotation, followed by 50% occlusion (Figure 3(b)).
Figure 3(c) shows the raw output for “piggy bank”
detection on (b) where high-likelihood points have
higher intensity.

4.1.2 Evaluation of Factorization

The effectiveness of ICA was evaluated by
comparing 1 through 9 1C’ s with the original 9 jets used
as the feature vector. Note that for the original 9 jets, the
histogram factorization along feature components is no
longer valid, since the independence assumption on the
differential invariant jets does not hold in genera.
Detection performance was measured by the average
rank of the accumulated regional likelihood for the
model abject (the ground truth object location was used).
Figure 5 depicts the improvement obtained by using the
first 3 ICs in detecting the car (the origina non-
factorized 9-Djets confuse this object with the vaseline
bottle).

By using 3 IC's the system achieved 100% “first
guess’ detection (average rank = 1) on Figure 3(a), and
an averaged rank of 1.2 for Figure 3(b), in which each
object is rotated and occluded. For pose change of 10°,
the average rank is 2.75, which means that an object is
detected on average within the first 3 locations checked.
However since the features we used are not inherently
invariant to scale changes, for a scale change of 50% the
average rank reached 6.45. One possible solution for
achieving scale invariance is to build object models at
multiple scales.
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Figure 5 The upper part shows an example of detecting the car using ICA of 3, 7, 9 independent components
as compared with no ICA; The lower part is the average detection rank of the target object using ICs (m = 1, 2,
... 9) vs. original 9-dimensional jets (shown as the rightmost bar). Dataset: COIL; 20 objects

4.1.3 Modeling Object Classes

It is necessary to test object detection performance
with greater variations such as that presented in Figure 6.
Here we tested the detection of “leopard” and “tiger” on
three images. Since we used window sizes of about 10
pixels for selecting interest points and jet computation,
which is small compared to the image size and object
sizes, this test is essentially equivalent to putting these
images together as one cluttered scene.

In Figure 6, first a single model image of a leopard
was used. The likelihood map, normalized to the range
[0,1], was multiplied by the test images to highlight the
high-probability regions. Shown in part (c) are the
detection results for leopard: the detection maps reveal a
high likelihood region in the first test image. It is aso
possible to form object class models by simply

combining histograms from several training images. For
example, we used six tiger images as training data and
simply averaged their histograms to obtain a model for
the class “tiger”, which proved as effective as a single
“prototype” model. In part (€), severa high likelihood
regions are detected in the third test image around the
face and the neck of the tiger.

42 ImageRetrieval

We also tested the new model for image retrieval on
two data sets: a subset of 20 objects from COIL, with 5
images at adjacent poses for each object; the other is a
subset of 70 images from COREL photo images, with 7
classes and 10 images from each class. Each image in
the set is used as the query and its histogram as the
model for comparison with al other images. The
averaged hit-rate for the first candidate returned (which



(b). Leopard model

(c). Detection maps for leopard

(e). Detection maps for tiger

Figure 6 Detecting Leopard and Tigers: The likelihood
maps are multiplied by the corresponding original images to
reveal the detected (high likelihood) local structure.

is aso the nearest neighbor classification accuracy) is
used as the performance measure. We compared
multiple distance metrics, including Kullback-Leibler
(KL) distance [3], Chi-squared distance [5], and
Histogram Intersection (HI) [16]. From our experiments,
we found out that these metrics yield statistically
comparable results.

Table 1 Comparing our local/spatial apperance model
with global features in image retrieval

Data set COIL COREL
Global Texture/Structure 96% 91%
Multi-Jet + Spatial HW 97% 96%

To compare our local method to a more traditional
global one, we combined wavelet moments as texture
features and water-filling features as structural features,
and used Euclidean distance measure. The comparison is
listed in Table 1. Here Histogram Intersection was used
as our distance measure. We see that the new
representation yields comparable, if not better, retrieval
results on these two data sets.

5 DISCUSSION

We proposed a novel probabilistic modeling scheme
based on factorization of high-dimensional distributions
of loca image features. Distance-sensitive k-tuple
histograming was used for capturing local spatia
dependencies. Our model exhibits an advantageous
flexibility in modeling spatial relationships and can
mediate a trade-off between non-rigid object modeling
and distribution accuracy. Experiments have yielded
promising results in image retrieval as well as in robust
object localization in cluttered scenes.
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