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Abstract

We propose a novel local appearance modeling method for object detection and recognition
in cluttered scenes. The approach is based on the joint distribution of local feature vectors
at multiple salient points and factorization with Independent Component Analysis (ICA). The
resulting non-parametric densities are simple multiplicative histograms. This leads to computa-
tionally tractable joint probability densities which can model high-order dependencies. Testing
and evaluation shows that the factorized density model with spatial encoding improves model-
ing accuracy and outperforms global appearance models in image/object retrieval. Furthermore,
experiments in detection of substantially occluded objects in cluttered scenes have demonstrated
promising results.
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Abstract

We propose a novel local appearance modeling
method  for object detection and recognition in cluttered
scenes. The approach is based on the joint distribution
of local feature vectors at multiple salient points and
factorization with Independent Component Analysis
(ICA). The resulting non-parametric densities are simple
multiplicative histograms. This leads to computationally
tractable joint probability densities which can model
high-order dependencies. Testing and evaluation shows
that the factorized density model with spatial encoding
improves modeling accuracy and outperforms global
appearance models in image/object retrieval.
Furthermore, experiments in detection of substantially
occluded objects in cluttered scenes have demonstrated
promising results

.

1. INTRODUCTION

For appearance based object modeling in images, the
choice of method is usually a trade-off determined by
the nature of the application or the availability of
computational resources. Existing object representation
schemes provide models either for global features[16],
or for local features and their spatial relationships
[13][1][15][7]. With increased complexity, the latter
provides higher modeling power and accuracy.

Among various local appearance and structure
models, there are those that assume rigidity of
appearance and viewing angle, thus adopting more
explicit models [15][13][11]; while others employ
stochastic models and use probabilistic distance and
matching metrics [7][10][1].

We construct a probabilistic appearance model with
an emphasis on the representation of non-rigid and
approximate local image structures. We use joint
histograms on k-tuples (k salient points) to enhance the
modeling power for local dependency, while reducing
the complexity by histogram factorization along the
feature components. Unlike [15], in which sub-region
dependency is intentionally ignored for simplicity, we

explicitly model the dependency by joint histograms.
Although, the gain in modeling power of joint densities
increases the computational complexity, we propose
histogram factorization based on an Independent
Component Analysis (ICA)  [2] to dramatically reduce
the histogram dimensionality, thus reducing the
computation to a level that can be easily handled by
today’s personal computers.

In this paper, we will focus our attention on the
modeling of images and objects through the use of joint
histograms. Figure 1 provides an overview diagram of
our histogram-based image and object model. More
detailed description is given in Section 2. This model has
been applied toward image retrieval and object detection
in cluttered scenes (Section 4) with promising results.

2.  METHODOLOGY

We propose multi-dimensional histograms as a non-
parametric approximation of the joint distribution of
image features at multiple image locations. Let i be the
index for elementary feature components in an image,
which can be pixels, corner/interest points [4][6], blocks,
or regions in an image. Let xi denote the feature vector
of dimension n at location i. xi can be as simple as { R,
G, B}  components at each pixel location or some
invariant feature vectors extracted at corner or interest
points [9][13][14] or even transform domain coefficients
at an image block, or any other local/ regional feature
vectors.

For model-based object recognition, we use the a
posteriori probability
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where Ml is the object model and T = { xi}  represents the
features found in the test image. Equivalently, by
assuming equal priors, classification/detection will be
based on maximum likelihood testing:
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For the class-conditional density in Equation (2), it is
intractable to model dependencies among all xi’ s (even if
correspondence is solved), yet to completely ignore
these dependencies will severely limit our modeling
power. Objects frequently distinguish themselves not by
individual regions (or parts), but by the relative location
and appearance of these regions. A tractable compromise
between these two modeling extremes (which also does
not require correspondence) is to model the joint density
of all k-tuples of xi’s in T.

2.1 Joint distribution of k-tuples

    Instead of  modeling the total joint likelihood of all x1,

x2, …, xI, which is an (I×n)-dimensional distribution, we
model of the distribution of all k-tuples as an
approximation:
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This becomes a (k×n)-dimensional distribution,
which is still intractable. For example, for 20 histogram
bins along each dimension, we have 20(k×n) bins.
Therefore, we factorize this distribution into a product of
low-dimensional distributions. We achieve this
factorization by transforming x into a new feature vector
S whose components are (mostly) independent. This is
where independent component analysis (ICA) comes in.

2.2 Histogram factorization based on ICA

ICA originated in the context of blind source
separation [8][2] to separate “ independent causes”  of a
complex signal or mixture. It is usually implemented by
pushing the vector components away from Gaussianity
by minimizing high-order statistics such as the 4th order
cross-cumulants. ICA is in general not perfect therefore
the IC’s obtained are not guaranteed to be completely
independent.

By applying ICA to { xi} , we obtain the linear
mapping

ASx ≈ (4)
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where A is a n-by-m matrix and Si is the “source signal”
at location i with nearly independent components.  The
original high-dimensional distribution is now factorized
into a product of m k-dimensional distributions, with
only small distortions expected. We note that this differs
from so-called “naïve Bayes”  where the distribution of
feature vectors is assumed to be factorizable into 1-D
distributions for each component. Without ICA the
model suffers since in general these components are
almost certainly statistically dependent.

After factorization, each of the factored distributions
becomes manageable if k is small, e.g., k = 2 or 3.
Moreover, matching can now be performed individually
on these low-dimensional distributions and the scores
are additively combined to form an overall score.
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Figure 1 : Image local appearance modeling by joint histograms
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Figure 2 Graphical Models: (a) fully-connected graph
denoting no independence assumptions (b) the ICA-
factorized model with pair-wise only dependencies.



Figure 2 is a graphical model showing the
dependencies between a pair of 3-dimensional feature
vectors x1, x2.  The joint distribution over all nodes is 6-
dimensional and all nodes are (potentially)
interdependent. The basic approach towards obtaining a
tractable distribution is to remove intra-component
dependencies (vertical and diagonal links) leaving only
inter-component dependencies (horizontal links).
Simultaneously, we seek to reduce the number of
components from n=3 to m=2 "sources". Ideally, a
perfect ICA transform results in the graphical model
shown in the right diagram where the pair S1, S2 only
have pair-wise inter-component dependencies.
Therefore, the resulting factorization can be simply
modeled by only two 2-D histograms in this case.1

3. EXPERIMENTS

We have tested the new model in the applications of
object detection and image retrieval. For object detection
we used synthetic “cluttered”  images that are actually a
collage of multiple object images.

3.1 Object Detection
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Figure 3.  Diagram for object detection and localization
(arrow indicates the same ICA basis is used)

First, tests on object detection in cluttered scenes
were conducted. Figure 3 shows the flow diagram for
this task. In Figure 3, note that we use the ICA mixing
matrix A of the model images on the test images for
direct computation of their IC’s. This is based on the
intuition that if the test image is cluttered, its own
mixing matrix will not agree with that of the model. This
in turn can distort a potential candidate’s ICA
components.

                                                          
1 We should note that in practice with an approximate ICA
transform, the diagonal links of the original model are less
likely to be removed than the vertical ones.

In our experiments we used a Harris operator [6][14]
to detect interest points and computed the first 9
differential invariant jets [9] at each point as the
corresponding feature vector x. We must emphasize
however that our methodology is not restricted to
differential invariant jets and can in principal be used for
any local set of features; for example, color, curvature,
texture, edge-density, texture moments, etc. An ICA was
then performed to get m independent components. We
used k = 2, resulting in a set of 2-D histograms which
were used to model 2-tuple joint component densities.

Test images were constructed using 20 objects from
the Columbia Object Image Library (COIL) [12] (Figure
4(a)). To test the invariance properties, each of the
objects is transformed by 3-D pose change, a planar
rotation, followed by 50% occlusion (Figure 4(b)).
Figure 4(c) shows the raw output for “piggy bank”
detection on (b) where high-likelihood points have
higher intensity.

The effectiveness of ICA was evaluated by
comparing 1 through 9 IC’s with the original 9 jets as
the feature vector. For the original 9 jets, the histogram
factorization along feature components is no longer valid
(leading to "naïve Bayes") since the independence
assumption on the jets does not hold in general.

Detection performance was measured by the average
rank of the accumulated regional likelihood for the
model object (the ground truth object location was used).
Figure 5 depicts the clear improvement introduced by
ICA. By using 3 IC’s the system achieved 100% “first
guess”  detection (average rank = 1) on Figure 4(a), and
an averaged rank of 1.2 for Figure 4(b), in which each
object is rotated and occluded. For pose change of 10o,
the average rank is 2.75, which means that an object is
detected on average within the first 3 locations checked.

 

  
(a)                     (b)                     (c)

Figure 4  Synthetic "cluttered" scene and a detection example.
(a) The synthetic test image of 20 objects from COIL; (b) The
rotated and occluded version of (a); (c) The likelihood map for
detecting “piggy bank” in (b). The white dots are the interest
points. High-likelihood points are highlighted.



3.2 Image Retrieval

We also tested the new model for image retrieval on
two data sets: a subset of 20 objects from COIL, with 5
images at adjacent poses for each object; the other is a
subset of 70 images from COREL photo images, with 7
classes and 10 images from each class.

Each image in the set is used as the query and its
histogram as the model for comparison with all other
images. The averaged hit-rate for the first candidate
returned (which is also the nearest neighbor
classification accuracy) is used as the performance
measure. We compared multiple distance metrics,
including Kullback-Leibler (KL) distance [3], Chi-
squared distance [5], and Histogram Intersection (HI)
[16]. From our experiments, we found out that these
metrics yield statistically comparable results.

Table 1 Performance of the factorized local apperance
model against a global feature method for image retrieval
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To compare our local method to a more traditional
global one, we combined wavelet moments as texture
features and water-filling features as structural features,
and used Euclidean distance measure. The comparison is
listed in Table 1. Here Histogram Intersection was used
as our distance measure. We see that the new
representation yields comparable, if not better, retrieval
results on both data sets.

5 DISCUSSION

A novel probabilistic modeling scheme was proposed
based on factorization of high-dimensional distributions

of local image features. We argued in favor of the k-
tuple histograming scheme for the purpose of capturing
local spatial dependencies. A distinct advantage of the
proposed method is the flexibility in modeling spatial
relationships (by varying k). Experiments have yielded
promising results in image retrieval as well as in robust
object localization in cluttered scenes.  In the future, we
plan to explore a more explicit way to incorporate spatial
adjacency into the factorized local appearance model via
graph matching or with local shape descriptors.
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 Figure 5. The average detection rank of the target object
using ICs (m = 1, 2, … 9) vs. original 9-dimensional jets
(shown as the rightmost bar). Dataset: COIL; 20 objects
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