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Abstract—It has been predicted theoretically that for some en-
vironments, the capacity of wireless MIMO systems can become
very low even for uncorrelated signals; this effect has been termed
”keyhole” or ”pinhole”. In this paper the first measurements of
this effect are presented. The measurements were performed in
a controlled indoor environment that was designed to create a
keyhole effect. We analyze limitations for measurement-based
capacity calculations and keyhole investigations. We further
present error bounds for the capacity and eigenvalue distributions
due to measurement imperfections such as finite signal-to-noise
ratio and multipath leakage. The bounds are compared to the
measurement results and show excellent agreement.
Index Terms—Keyhole, MIMO, measurements, eigenvalue,

double complex Gaussian, pinhole, capacity.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) wireless communi-

cation systems are systems that have multi-element antenna
arrays at both the transmitter and the receiver side. It has
been shown that they have the potential for large information-
theoretic capacities, since the system can provide several
independent communication channels between transmitter and
receiver [1]. In an ideal multipath channel, the MIMO capacity
is approximately N times the capacity of a single-antenna
system, where N is the smaller of the number of transmit
or receive antenna elements. Correlation of the signals at
the antenna elements leads to a decrease in the capacity -
this effect has been investigated both theoretically [2][3] and
experimentally [4].
It has recently been predicted theoretically that for some

propagation scenarios, the MIMO channel capacity can be
low (i.e., comparable to the SISO capacity) even though the
signals at the antenna elements are uncorrelated [5][6]. This
effect has been termed ”keyhole” or ”pinhole”.1 It is related
to scenarios where rich scattering around the transmitter and
receiver lead to low correlation of the signals, while other
propagation effects, like diffraction or waveguiding, lead to a
rank reduction of the transfer function matrix. Several previous
measurement campaigns have searched for the keyhole effect
due to corridors, tunnels, or diffraction in real environments,
but the effect has been elusive and, to our knowledge, no mea-
surements of a keyhole have been presented in the literature.
1We are using in this paper the original definition of keyholes. Recently,

some authors have called ”keyhole” any scenario that shows a reduction of the
rank of the transfer function matrix (compared to the i.i.d. complex Gaussian
case). This definition would imply that any scenario with strong correlation
(small angular spread) is a ”keyhole”.

In this paper, we present the results of a measurement
campaign that for the first time shows the keyhole effect
experimentally. The measurements were performed in a con-
trolled indoor environment, where the propagation from one
room to the next could only occur through a waveguide or
a hole in the wall. The measurement results show almost
ideal keyhole properties; the capacity is low, the rank of the
transfer matrix is nearly one though the correlation between
the antenna elements is low. The experiments were based on a
theoretical analysis of the requirements on both the measure-
ment parameters and the considered environment, for finding
keyholes in MIMO measurement. We present this analysis,
error bounds for the capacity and eigenvalue distributions due
to measurement imperfections.

II. CAPACITIES AND KEYHOLES

With the assumption of flat fading, we use the conventional
MIMO model for the received signal vector as

y =Hx+N, (1)

where H is the channel transfer matrix normalized as,
E
h
kHk2F

i
= NRNT, x is the transmitted signal vector, and

N ∈CN ¡0,σ2
nI
¢
represents noise. For equal power allocation

between the transmitter elements the Shannon channel capac-
ity [bit/s/Hz] for the channel model in (1) can be calculated
as [1]
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where [·]† denotes the complex conjugate transpose, s(H)
k , is

the k :th singular value of H and γeval is the signal-to-noise
ratio (SNR) that the capacity is evaluated for. The latter is
defined as
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where E [·] is the expectation, hmm and nmm are the mm
entry inH andN respectively, σ2

h is the variance of the entries
in H. It is assumed that x has unity energy.
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It is well known that correlation between the antenna
elements at the transmitter and receiver reduces the capacity.
The channel transfer matrix is often modeled as [2][7][8]:

H = R
1/2
R GR

T/2
T , (5)

where R1/2
R and R1/2

T describes the correlation between the
signals at receiver and transmitter elements, respectively, and
G is a matrix with i.i.d. complex Gaussian entries, G ∈
CN (0, I). The square root is defined as R1/2

¡
R1/2

¢†
= R.

According to this model, the channel, and thus the capacity, is
completely determined by the correlations at transmitter and
receiver. However, in [5] it is shown that a more general model
is

H = R
1/2
R GRT

1/2GTR
T/2
T , (6)

where GR and GT are both i.i.d. complex Gaussian matrices,
and where T1/2 describes the transfer matrix between the
transmitter and receiver environments. For a perfect keyhole,
e.g. a single-mode waveguide [6] between the transmitter and
the receiver environment, T1/2 has rank one. This results in
a total channel transfer matrix, H, of rank one as well, even
though R1/2

R , R1/2
T , GR and GT have full rank.

III. MEASUREMENT SETUP
The measurements were performed with one antenna array

located in a shielded chamber, and the other array in the
adjacent room. A hole in the chamber wall was the only
propagation path between the rooms. We measured three
different hole configurations:
1) A hole of size 47 × 22 mm with a 250 mm long
waveguide attached (referred to as ”waveguide”).

2) A hole of size 47× 22 mm without waveguide (”small
hole”).

3) A hole of size 300×300 mm without waveguide (”large
hole”).

The large hole is intended as test measurement, in which we
do not anticipate a keyhole effect. Linear virtual arrays with
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Fig. 1. Overview of the measurement setup.

6 antenna positions and omnidirectional conical antennas are
used both at the transmitter and the receiver; the measurements
were done during night time to ensure a static environment. In

Fig. 1 an overview of the measurement setup is presented. The
measurements were performed using a vector analyzer (Rohde
& Schwarz ZVC) at 3.5−4.0 GHz, where M = 101 complex
transfer function samples spaced 5 MHz apart were recorded.
The received signal is amplified by 30 dB with an external
low noise power amplifier to achieve a high signal-to-noise
ratio (SNR). The measurement SNR was estimated to 26 dB,
where in this case noise include thermal noise, interference
and channel changes during the measurements.
The measurements yielded the elements of the channel

matrix H, and via Eq. 2, the outage capacity. We obtained
samples of H, and a capacity realization corresponds to
each of those realizations; this allow plotting a cumulative
distribution of the capacity and the determination of the outage
capacity [1].
In order to compare the capacity reduction due to correla-

tion to the capacity reduction due to the keyhole effect, we
first estimate the correlation matrices R̂T and R̂R from the
measurements as

R̂T =
1

MNT

MX
m=1

£
H†
mHm

¤T
, (7)

R̂R =
1

MNR

MX
m=1

HmH
†
m, (8)

and then we use the Kronecker model in Eq. (5). As an exam-
ple of the spatial correlation of the ”waveguide” measurements
we here present the first column of R̂T and R̂R

|r̂T| =
£
1.0 0.41 0.087 0.22 0.46 0.59

¤T (9)
|r̂R| =

£
1.0 0.42 0.37 0.24 0.17 0.18

¤T (10)
These values were obtained with a limited number of transfer
function samples (M = 101) due to the long duration of the
measurements. The correlation matrices allow a prediction of
the capacity decrease due to signal correlation (i.e., an effect
that is different from a keyhole effect). Inserting those results
into Eq. (5) gives the outage capacity in a correlated, non-
keyhole channel, where the correlation matrix corresponds to
measured correlations.

IV. CAPACITY ANALYSIS AND RESULTS
In this section we analyze the influence of using non-

ideal transfer function measurements when calculating the
capacity, and analyze their effect on our experiment. When
measuring a transfer matrix, the measured quantity will consist
of contributions not only from multi-path components (MPC)
but also from measurement noise. For keyhole measurements,
the measured transfer matrix will in addition to the noise and
the keyhole transfer matrix also consist of MPC leakage, as
described below. The measured keyhole transfer matrix can be
modelled as

Hmeas=Hkey+Hleak + Ñ, (11)

where Ñ ∈CN ¡0,σ2
ñI
¢
denotes the noise. For an ideal

keyhole the keyhole transfer matrix has rank one with en-
tries belonging to a double complex Gaussian distribution
[5]. The keyhole transfer matrix can therefore be mod-
eled as Hkey = gRg

†
T, where gR,gT are column vectors
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gR, gT∈CN
¡
0, σhkeyI

¢
. The MPC leakage describes MPCs

propagating between the transmitter and the receiver via other
paths than through the keyhole. The leakage matrix is modeled
as Gaussian and as a worst case assumption, in terms of
measuring a keyhole, it is assumed to have independent entries,
Hleak∈CN

¡
0,σ2

leakI
¢
.

We thus see that noise leads to the same destruction of
the keyhole effect as leakage. In order to check the effect
on the evaluated capacity, we lump the two effects into
a single matrix, Ň =Hleak + Ñ. Assume that Hkey, Hleak
and Ñ are independent, the ”measurement SNR” (including
leakage) from a keyhole measurement point of view, γmeas,
can therefore be defined as

γmeas =
σ2
hkey

σ2
ň

(12)

=
E
h
hmeas(m,m)h

†
meas(m,m)

i
E
h
hleak(m,m)h

†
leak(m,m)

i
+ E [ñ(m,m)ñ†(m,m)]

.

In Fig. 2 simulations of the 50% outage capacity for
three different measurement SNRs, versus the evaluated SNR
are plotted [9]. Additionally we plot the capacity for our
keyhole measurement, which, as mentioned before, has an
estimated measurement SNR of 26 dB. From the figure it
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Fig. 2. The estimated capacities for different simulated measurement SNRs
{20, 25, 30,∞} versus evaluation SNR [dB] togehter with the measured
keyhole with a estimated keyhole SNR of 26 dB.

can be concluded that the SNR of the keyhole measurement
has to be around 10 dB better than the SNR used in the
evaluation to give capacity values close to the ideal case.
For an evaluation SNR of 15 dB the contribution from noise
and leakage components has to be 25 dB lower than the
contributions from the keyhole. This can be difficult to find
for ”real-life” keyhole situations, e.g. tunnel waveguiding
or diffraction, which might explain the difficulty in finding
keyholes in previous measurement campaigns. The shielded
chamber in our measurements made sure that the leakage was
very small. The SNR (including leakage) was estimated to
26 dB. Therefore an evaluation SNR of 15 dB is appropriate
in this case.

In Fig. 3 the measured 50% outage capacities versus the
number of antenna elements, NR = NT , are shown for an
SNR of 15 dB. For comparison, the figures also presents the
i.i.d. capacity, the correlated capacity and the capacity for a
perfect theoretical keyhole. We see that the measured 50%
outage capacity for the ”waveguide” setup is very close to the
simulated perfect keyhole. With the ”large hole” the capacity
is close to an i.i.d. channel and its measured capacity is in
between the curves for the i.i.d. model and the correlated
model. The difference in 50% outage capacity between the
measured ”waveguide” and ”large hole” configuration is up
to 17 bit/s/Hz. The correlation model shows the decrease in
capacity related to the receive and transmit antenna correlation,
and shows a capacity that is more than 11 bit/s/Hz higher than
the ”waveguide” measurement. In this figure it can clearly be
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Fig. 3. 50% outage channel capacity vs. the antenna array size, where
NR = NT .

seen that the capacity for the ”waveguide” setup nearly follows
that of a perfect keyhole. The increase in capacity for more
antenna elements is due to the antenna gain of the receiver
array. The capacity of the ”large hole” increases almost as the
capacity for the i.i.d. channel. This shows that the keyhole
effect has disappeared entirely when the ”large hole” of size
300× 300 mm is the (only possible) path between transmitter
and receiver.

V. SINGULAR VALUE ANALYSIS AND RESULTS

The rank of an ideal keyhole is one, and in order to
characterize a measured keyhole it is therefore of interest to
study the distribution of the singular values (or eigenvalues).
Especially, the ratio between the largest and second largest
singular values should be large. For a measured keyhole,
however, this difference is dependent on the measurement SNR
of the keyhole, γmeas. Again we consider the leakage as part of
the noise, and add the leakage and the measured noise together
as, Ň =Hleak+ Ñ. The difference between the k :th singular
value of the measured transfer matrix (11), denoted s(

Hkey+Ň)
k ,

and the k :th singular value of the keyhole transfer matrix,
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s
(Hkey)
k , is limited by [10]¯̄̄̄

s
(Hkey+Ň)
k − s(Hkey)

k

¯̄̄̄
≤ s(Ň)1 , (13)

where the singular values for the rank one keyhole matrix,
Hkey, are (

s
(Hkey)
k > 0 , k = 1

s
(Hkey)
k = 0 , k > 1

. (14)

From (13) and (14) the second largest singular value of the
measured keyhole transfer matrix can now be upper bounded
as

s
(Hkey+Ň)
2 ≤ s(Ň)1 . (15)

With the variable transformation, 1√
γmeas

N̂ = Ň, where N̂ is

normalized as
°°°N̂°°°2

F
= NRNT, the second largest singular

value of the measured keyhole is upper bounded as a function
of the measurement SNR. The largest singular value of the
normalized noise matrix

s
(Hmeas)
2 ≤ 1√

γmeas
s
(N̂)
1 . (16)

This means that if the second largest singular value of the
measured transfer matrix exceeds the threshold (16), we do
not have a keyhole with ideal properties.

The expectation, E
·

1√
γmeas

s
(N̂)
1

¸
, of the largest singular

value of N̂ can be found from the density function of ordered
eigenvalues [11] of the semi definite Wishart matrix N̂†N̂,
since those eigenvalues are equal to the magnitude squared of
the singular values of, N̂, therefore

E

·¯̄̄̄
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(H+Ň)
2

¯̄̄̄¸
≤ 1√

γmeas
E

·
s
(N̂)
1

¸
(17)

=
1√
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¯̄̄̄
¯
s
E

·
λ
(N̂†N̂)
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¸¯̄̄̄
¯ , (18)

where s
E

·
λ
(N̂†N̂)
1

¸
=

sZ ∞
0

λ1fΛ1 (λ1) dλ1, (19)

and the marginal density function of the largest eigenvalue,
fΛ1 (λ1), is given in [11]. In Fig. 4 the bound for the second
largest singular value is plotted for different measurement
SNRs together with simulated values of the largest and second
largest singular values of an ideal keyhole with measured
additive white Gaussian noise, and our measured mean values
of the largest and second largest singular values.
In Fig. 5 the mean of the measured ordered eigenvalues

for the different channel setups are presented. It can be
clearly seen that the ”waveguide” channel is of low rank. The
difference between the mean of the largest and second largest
eigenvalue is almost 30 dB for the measured keyhole. As a
comparison, the difference between these eigenvalues for the
ideal i.i.d. channel is around 2 dB. The difference between the
largest and smallest eigenvalues (i.e., the condition number of
the matrix HmH

†
m) is almost 50 dB for the ”waveguide” and

around 20 dB for the i.i.d. channel.
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A. Keyhole capacity error

For a keyhole measurement the capacity from a theoretical
keyhole could be upper bounded in respect to measurement
SNR, γmeas, using the results in (16) and Jensen’s inequality
as

E[Ckey] < log2

µ
1 +

γeval
NT

E
h
s
(Hkey)
1

i2¶
(20)

+(K − 1) log2
Ã
1 +

γeval
NTγmeas

E

·
s
(N̂)
1

¸2
!
.

The discrepancy in capacity compared to a theoretical keyhole
could then be upper bounded from the results in (16) as

ε (E[Ckey]) < (K − 1) log2
Ã
1 +

γeval
NTγmeas

E

·
s
(N̂)
1

¸2
!
.

(21)
In Fig. 6 simulated errors and the error bounds are presented
for different measurement SNRs and evaluation SNRs for the
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case with K = 6 singular values. The bound is not that tight
in the region where γmeas/γeval < 10 dB.
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VI. ENVELOPE DISTRIBUTION
If no keyhole is present, then the amplitudes of the entries

in H follow a Rayleigh distribution. However, if a keyhole
exists, the transfer matrix T1/2 in (6) is the all one matrix
[5], and the amplitude statistics, a = |hkey (m,m)|, follow a
double-Rayleigh distribution. It can be shown that the PDF of
the envelope distribution can be expressed as

fA (a) =
aK0

³
a

σhkey

´
σ2
hkey

, (22)

where K0 (·) is the modified Bessel function and σ2
hkey

=

E
h
h (m,m)h (m,m)†

i
. In Fig. (7) we present histograms

of the received amplitudes in the experiment, both for the
”waveguide” case and the ”large-hole” case. As a reference
we have also shown the PDFs for the amplitude of a Rayleigh
variable and a double Rayleigh variable.
The received amplitudes with the ”waveguide” correspond

well to the double-Rayleigh distribution, which agrees with
theory. The received amplitudes for the ”large hole”, however,
correspond to a Rayleigh distribution since in this case the
channel can be described as one rich scattering channel though
all paths into the chamber is through the large hole.

VII. CONCLUSIONS
In this paper the first experimental evidence of the keyhole

effect in wireless MIMO systems is presented. Using a con-
trolled indoor environment, we found a keyhole with almost
ideal properties: the correlations at both the receiver and at the
transmitter are low but still the capacity is very low and almost
identical to a theoretical perfect keyhole. In our measurements
we use a waveguide, a small hole, and a hole of size 300 ×
300 mm as the only path between the two rich scattering
environments. For the waveguide case, we found almost ideal
keyhole properties, but for the large hole the capacity is almost
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Fig. 7. Envelope distribution for the ”waveguide” and for the ”large hole”
measurements.

as large as for a theoretical Gaussian channel with independent
fading between the antenna elements.
We then presented an analysis of the sensitivity with respect

to noise and alternative propagation paths. We found that
both the noise and the alternative propagation paths during
the channel sounding must be approximately 10 dB weaker
than the noise level considered for the capacity computations.
From this we can conclude that the keyhole effect due to real-
world waveguides like tunnels or corridors will usually be very
difficult to measure.
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