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Abstract: The performance of iterative decod-
ing algorithms for multi-step magority logic decod-
able (MSMLD) codes of intermediate length is inves-
tigated. We introduce a new bit-flipping algorithm
that is able to decode these codes nearly as well as a
mazximum likelihood decoder on the binary symmetric
channel. MSMLD codes decoded using bit-flipping al-
gorithms can out-perform comparable BCH codes de-
coded using standard algebraic decoding algorithms,
at least for high bit flip rates (or low and moderate
signal to noise ratios).
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1. Introduction

Recently, iterative decoding algorithms for low
density parity check (LDPC) codes have received a
great deal of attention. In [1],[2], a (J, L) LDPC code
is defined as an (N, K,d) linear block code whose
M x N parity check matrix H has J ones per col-
umn and L ones per row, where J and L are rela-
tively small numbers. For large N, it is quite easy
to avoid the occurrence of two check sums intersect-
ing on more than one position when constructing H.
In that case, the check sums are called orthogonal
and the Tanner graph representation [3] of H has
girth at least six. This is often considered to be an
important feature for good performance of iterative
decoding [4], [5].

In [6]-[9], it was shown that iterative decoding
of one-step majority logic decodable codes also per-
formed very well; indeed often better than for or-
dinary LDPC codes of similar blocklength and rate
for lengths up to a few thousand bits. Despite the
fact that the parity check matrix of these codes has
a higher density of ones than that of the original
LDPC codes, the geometric structure guarantees a
girth of six. Perhaps even more importantly, the
matrix H used for decoding is highly redundant, i.e.
M > N — K, and this feature seems to significantly
help iterative decoding algorithms.

In this paper, we investigate iterative decoding of
multi-step majority logic decodable (MSMLD) codes
for transmission over a binary symmetric channel

(BSC). With the use of redundant H matrices, these
codes have already been shown to perform relatively
well on the additive white Gaussian noise (AWGN)
channel [10]-[14]. However, whereas on the AWGN
channel the performance of iterative decoding does
not approach that of maximum likelihood decoding
(MLD), we find that on the BSC, fast and low com-
plexity bit flipping (BF) algorithms can achieve near
MLD performance.

The paper is organized as follows. After a brief re-
view of MSMLD codes in Section 2, an improved ver-
sion of the Gallager’s bit flipping algorithm B is pre-
sented and analyzed in Section 3. Different decoding
approaches exploiting the structure of MSMLD codes
are proposed in Section 4 and simulation results are
reported in Section 5. Possible extensions to itera-
tive decoding of these codes for the AWGN channel
are discussed in Section 6 and concluding remarks
are finally given in Section 7.

2. A Brief Review of Multi-Step Ma-
jority Logic Decodable Codes

The most famous MSMLD codes are the Reed-
Muller (RM) codes introduced in [15]. Motivated
by the efficient multi-step majority logic decoding
algorithm proposed in [16], several other classes of
MSMLD codes were developed in the 1960’s and 70’s.
Many of these are based on constructions derived
from finite geometries [17]-[20]. Unfortunately, the
minimum distance d of these codes does not compare
favorably to that of their counterpart BCH codes.
Consequently, when decoded using a t-bounded dis-
tance decoding (¢-BDD) algorithm (i.e., when de-
coded up to the guaranteed error correcting capa-
bility ¢ of the code), they are outperformed by BCH
codes also decoded by a t-BDD algorithm.

One-step majority logic decodable codes can also
be viewed as a special class of LDPC codes with or-
thogonal check sums. For example, a one step ma-
jority logic decodable Euclidean geometry (EG) code
of length N = 2™° — 1 over the finite field GF'(2?) is
also an LDPC code with
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Iterative decoding of these codes has been shown to
perform very well and most importantly for the BSC,
is able to correctly decode many error patterns with
considerably more than ¢ errors.

The main feature in the construction of one-step
majority logic decodable codes is the same as that
of LDPC codes, that is the fact that each bit can
be estimated by J check sums orthogonal on it. In
constructing a u-step majority logic decodable code,
this principle is generalized into p steps as follows:
at step 7, 1 < i < p, the modulo-2 sum of K; bits
is estimated by J; check sums orthogonal on these
K; positions, with K,, = 1, K; < K;_1, and J; >
d — 1. While p-step majority logic decoding directly
follows this construction method, its extension to an
iterative decoding method is not straightforward for
it > 2 because any graphical representation of H
necessarily contains many four-cycles corresponding
to check sums intersecting on K7 positions.

In the following, we consider the family of u-step
majority logic decodable EG codes since the same de-
velopments apply to other families of majority logic
decodable codes.

3. Three-state Decoding Algorithm

In [1], [2], Gallager proposed two different BF al-
gorithms. These algorithms are designed for LDPC
codes with few check sums of low weight orthogonal
on each bit and therefore, careful attention must be
paid to the introduction of correlations in the itera-
tive process. In particular, in Gallager’s bit-flipping
algorithms, he takes care that the “message” from a
bit to its neighboring check should not directly de-
pend on the message sent by that check back to the
bit and vice versa. In our case, because of the very
large number of check sums intersecting on each bit,
we can neglect that refinement with negligible per-
formance degradation, and obtain the following al-
gorithm, which simplifies Gallager’s algorithm-B:

e For each check sum m and for each bit n in
check sum m, compute the modulo-2 sum o,,,
of the initial value of bit n and of the other bit
values computed at iteration-(i — 1).

e For each bit n, determine the number N, of
unsatisfied check sums o,,,, intersecting on it.
If N, is larger than some predetermined thresh-
old by, invert the original received bit n, other-
wise keep this value.

The use of a single threshold b; implies that bits
with very different values N, are viewed with the
same reliability at the next iteration. While for the
codes considered in [1], [2], N, can take only a few
different values, this is no longer the case for the
codes considered in this paper. It seems reasonable

to try to reflect the differing reliablities of the bits
in our algorithm. Consequently, we propose to mod-
ify the algorithm described above into the following
“three-state” algorithm, which also allows bits to be
erased and check sums to be de-activated.

e For each check sum m and for each bit n in
check sum m, compute the modulo-2 sum o,
of the initial value of bit n and of the other
bit values computed at iteration-(i —1). If any
of these bits is erased, the check sum is de-
activated.

e For each bit n, determine the number N,, of
unsatisfied activated check sums o,,,, intersect-
ing on it.

If Ny > by , invert the original received bit n.

If by > Nyq > ba, erase bit n.
Otherwise keep the original received bit n.

Empirically, we find that the three-state algo-
rithm performs best when the thresholds b; and b
are functions of the iteration number. Unfortunately,
there are many ways to do this, and we only could
roughly optimize to find the best schedules, but for-
tunately the performance seems to be a rather insen-
sitive function of the choice made. For our schedules,
we typically chose to begin at the first iteration with
b1 equal to the maximum possible number of unsat-
isfied checks J, and with by &~ by — J/15, and then
to decrease b; and by by the same small fixed inte-
ger (say one to five) at each iteration, continuing to
decrease their values until they reach zero.

The proposed three-state approach can also be
applied in a straightforward way to Gallager’s orig-
inal algorithm-B. In fact, for a theoretical analysis,
only this version is meaningful since the simplified
algorithm introduces correlation and it is not known
how to handle correlated values in the analysis of an
iterative decoding algorithm in general. In that case,
the three-state algorithm becomes a generalized ver-
sion of the algorithm described in [21, Example 5],
where by = by — 1. Consequently, if we assume the
graph representation of the code is a tree, the same
approach as in [21] can be used to analyze the three-
state algorithm.

4. Decoding Approaches
4.1. Fixed Cost Approaches

4.1.1. Direct Approach

A p-step majority logic decodable EG code can
be represented by its M x N incidence matrix H
in which rows represent p-flats and columns points,
with h;; = 1 if the j-th point belongs to the i-th
p-flat.



A straightforward approach is to run the BF al-
gorithm based on H. This matrix will be plagued
by many four-cycles, but fortunately it can also be
made very redundant with M >> N, and the weight
of each row of the parity check matrix need not be too
high. Furthermore, by exploiting the cyclic structure
of the code, a very balanced graph is obtained so that
the same speed of convergence can be expected in all
parts of the graph.

4.1.2. Multi-Step Approach

In [14], a general method was presented for mod-
ifying the parity check matrix of a code to make
it more suitable for iterative message-passing algo-
rithms. Using this method on a two-step majority
logic decodable EG code, one obtains a new par-
ity check matrix whose graphical representation con-
tains no four-cycles. It is a (M7 + Ma) x (N1 + N2)
matrix

(52w

in which the M; and M5 rows represent the plane
constraints and line constraints, respectively, and the
Ny and N> columns represent the points and lines,
respectively. As a result, Ms = Ny and C represents
the identity matrix, A is the all-0 matrix while the
remaining matrices B and D are free of four-cycles
(and so is H). Generalization of (1) to p-step ma-
jority logic decodable EG codes is straightforward.

Decoding based on (1) can be realized in at least
two ways. First the BF algorithm can be run on
H with the N2 nodes corresponding to the lines ini-
tialized without a-priori knowledge. The drawback
of this approach is that nodes with no a priori in-
formation from the channel directly exchange highly
unreliable information with each other.

To overcome this problem, H can be modified so
that each row of B has weight one. If a plane is
composed of [ lines, this corresponds to duplicating
each plane [ times and viewing it as the union of
one line and of the points composing the remaining
[ — 1 lines. As a result, nodes without a-priori infor-
mation no longer directly exchange information, but
the graph representation of the resulting matrix A
now contains many four-cycles. The BF algorithm
can then be decomposed in two steps based on the
following scheduling: in step-1, only the top part
[AB] of H is used to estimate the Ny lines, while in
step-2, the bottom part [CD] is used to estimate the
N; points. We notice that this scheduling “mimics”
two-step majority logic decoding and can be easily
generalized to p steps for p-step majority logic de-
codable codes.

4.1.3. Decomposable Approach

By their construction, several p-step majority logic
decodable codes have a decomposable structure. For
example, Reed-Muller (RM) codes can be constructed
by the |u|u @ v| construction or the iterative squar-
ing construction [22]. For simplicity, we consider the
|u|u @ v| construction in the following. If C; and Cy
are two codes with parity check matrices H; and Hs,
respectively, then C = |C1|C; @ C2| has parity check
matrix
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Following the approach described in [23], [24], two
stage decoding based on (2) is performed as follows.
Assuming the received sequence corresponding to the
codeword |u1|ug Bus| is y = |y1|ya|, first y1 Dys is de-
coded by a BF algorithm based on Hs to estimate wo.
Then |y1 |y2 @ tso| is decoded by the three-state BF al-
gorithm of Section 2 based on H; to estimate ;. At
the initialization of this second decoding stage, the
values which coincide in y; and ys @1y are conserved,
while the other values are erased.

4.2. Variable Cost Approach

The matrix H used for decoding is generally highly
redundant, so that M >> N. If a sufficient num-
ber of check sums is used, then the BF algorithm
converges rapidly to its final solution while if not
enough check sums are used, the BF algorithm gen-
erally never converges to a codeword. In this latter
case, a decoding failure is detected.

This observation suggests a “call by the need”
algorithm in which, for M, < M, < --- < M, M,
check sums are initially used for N, iterations. If the
algorithm converges to a codeword, correct decoding
is assumed; otherwise, the algorithm is reinitialized
(not continued) and performed based on M; check
sums during NV, iterations. This process is repeated
until either a codeword is found, or all M check sums
have been used without success, in which case the
decoding fails.

5. Simulation Results

We assume a BSC obtained from BPSK signal-
ing, so that for a code of rate R, we have py =

Q (wREb/NO), where Ej /Ny is the signal to noise
ratio (SNR) per information bit.

5.1. (255,127,21) EG Code

In Figure 1, the simulated error performance of
three-state BF decoding of the (255,127,21) EG code
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Figure 1: BF decoding of the (255,127,21) EG code;
(a) low SNR regime.

with the direct approach of Section 4.1.1. is com-
pared to t-BDD of its (255,123,39) BCH code coun-
terpart as well as its (3, 6) Gallager LDPC code coun-
terpart. This EG code corresponds to a y = 2 Eu-
clidean geometry with 255 points and 5355 planes, so
we can construct a parity check matrix H with 5355
rows and 255 columns. We observe that three-state
BF decoding of the EG code not only outperforms
its counterparts at the SNR values represented, but
also remains quite close to the sphere packing bound
(SPB), also represented in Figure 1. In fact, a lower
bound on the MLD failure rate for this code was
computed by checking whether the decoding errors
were also MLD errors (with unbiased recording of the
ties). This bound is represented in Figure 1. One can
see that the performance of the three-state BF algo-
rithm must be very close (within a few tenths of a
dB) of MLD performance. The error performance
of the standard sum-product or ”belief propagation”
(BP) algorithm, initialized with the crossover prob-
ability po of the BSC is also shown in Figure 1. The
reasons for the much worse performance of BP at low
SNR’s are elaborated in Section 6.

We also mention that the advantage of the three-
state BF algorithm over Gallager’s algorithm B is a
reduction factor that ranges between two and five in
the number of errors. This gain is small, but remains
non-negligible in approaching MLD performance, es-
pecially since the three-state algorithm is not much
harder to implement than Gallager’s algorithm B.

Since this code is two-step majority logic decod-
able, the two-step approach of Section 4.1.2. was
also implemented. The decomposition of [14] gives
an 32,130 x 5610 matrix. Each row corresponding
to one of the of 26,775 plane constraints in this ma-

trix has to be duplicated four times to have weight
one in the B-part of (1). The final matrix H given
by (1) becomes an 112,455 x 5610 matrix. Unfortu-
nately, despite the large increase in complexity, only
a tiny improvement was obtained by this approach.
One explanation is that the multi-step approach can
be viewed as a particular scheduling of the direct
approach in which hidden nodes are introduced as
intermediary states. As a result, the information ini-
tially available is used in successive steps rather than
at once as in the direct approach. In the case of a
binary erasure channel (BEC), the increased num-
ber of constraints and erasures associated with the
multi-step approach helps in improving the decoding
as information can only be improved [14]. However,
for the BSC (or other channels introducing errors),
erroneous decisions can propagate through the hid-
den nodes so that using all available information at
once in a suboptimum way becomes as good as using
it partially in a more optimum (but still subopti-
mum after iteration-1) way. The only advantage of
the multi-step approach is its guarantee to perform
no worse than t-BDD since its first iteration can be
made equivalent to multi-step majority logic decod-

In Figure 2, we plot the performance of the three-
state BF decoding algorithm for the (255,127,21) EG
code into the very high SNR, or low decoding fail-
ure, regime. These plots actually show the perfor-
mance of the two-step algorithm described above,
but as mentioned already, the difference in perfor-
mance between the direct 3-state algorithm and the
more complex two-step algorithm is tiny. At all word
error rates (WERs) down to 1072°, this difference is
less than 0.1 dB.

To obtain these performance curves, we randomly
generated random errors of fixed weight w, w > ¢ and
for each weight w, evaluated the corresponding error
performance Pg(w). The overall error performance
P, was then obtained by the average

Po= Y R ) -m )

w=t+1

The results are reported in Figure 3. Since for WERs
larger than 107¢, no reliable evaluation of Ps(w) is
possible, we computed: (a) an upper bound on (3)
by assuming the same P, (wmm) as the smallest sim-
ulated for weights w,t < w < Whin (b) a lower
bound on (3) by assummg P,(w') = 0 for weights
wit<w < Wrnin and (c) an approx1mat10n by ex-
trapolatlng Py (w ) for weights w , t < W < Wpin. A
pessimistic lower bound on MLD was also obtained
from the lower bound on P;. From Figure 2, we con-
clude that the three-state BF for the (255,127,21)
EG code outperforms ¢t-BDD of its BCH counterpart
down to a WER of about 10! for the two-step ap-
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Figure 2: BF decoding of the (255,127,21) EG code;
(b) high SNR regime.

proach (and 1072 for the direct approach).

5.2. (511,256,31) EG (RM) Code

Figure 4 depicts the error performance of three-
state BF decoding of the (511,256,31) EG (or RM)
code with the direct approach of Section 4.1.1. and
the decomposable approach of Section 4.1.3. based
on the |u|u @ v| construction. For comparison, the
SPB and ¢-BDD of the counterpart (511,250,63) BCH
code have also been represented.

For the direct approach, M = 76,650 and M =
511,000 have been considered (corresponding to 150
and 1000 different cyclic shifts of weight-32 code-
words of the dual code, respectively). Also the pro-
gressive method was used to speed up each decoding.
In both case, we chose five different sizes of the set of
check sums used, namely, M, = 5110; M, = 12,775;
M. = 22,550; and My = 51,000. For each size,
at most 10 iterations were performed. The value
b1 was set to the maximum number of unsatisfied
check sums at each initial iteration and decreased
by one (or a small number) at each subsequent it-
eration while we chose by = b; — 20. Again these
values were not thoroughly optimized so that addi-
tional secondary gains should be achievable.

The application of the progressive method is val-
idated by the fact that for M = 76,650, no unde-
tected error was recorded at all simulated SNR val-
ues. For M = 511,000, at the SNR value of 4.5
dB, about 10% of the errors were undetected (all
of them occurring when all check sums were consid-
ered) and at this SNR value, one out of the 100 errors
recorded was recognized as an MLD error. At lower
SNR values, no undetected errors and no MLD er-
rors were recorded. While a reasonably good error
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Figure 3: BF decoding of the (255,127,21) EG code-
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Figure 4: BF decoding of the (511,256,31) EG (or
RM) code.



performance is achieved, we are clearly not able to
obtain a tight bound on MLD performance. Because
the three-state BF algorithm has a very low word er-
ror rate even for error patterns with a number of bit
flips far beyond the guaranteed error-correcting ca-
pability ¢ of the code, we are also not able to mean-
ingfully repeat the analysis of the very high SNR
regime. We also observe that despite the fact that
the minimum distance of this code is about half of
that of its BCH counterpart, iterative BF decoding
of this EG code can easily outperform ¢-BDD of its
BCH counterpart and approaches relatively closely
the SPB at the WERs represented in Figure 4.

The decomposable approach of Section 4.3 was
also tried with C; and Cs being the (255,163,15)
and (255,93,31) RM codes, respectively (resulting in
a (510,256,30) code). At each stage, at most M; =
M, = 255,000 check sums were considered. Again
the progressive approach was used with all previous
sizes of check sum sets divided by two. When de-
coded separately with M = 255,000, about 95% of
the errors are undetectable errors, and about 40% of
the errors are MLD errors for the (255,163,15) RM
code. For the (255,93,31) RM code, about 80-90% of
the errors are undetectable errors while about 10%
are MLD errors. However, despite these near MLD
individual performances, the resulting two-stage de-
coding is not as good as expected. This is mostly due
to the dominance of undetected errors at stage-1 in
conjunction with the suboptimality of this approach
(a slight improvement can be obtained by choosing
My > M; since the performance of stage-1 dom-
inates the overall error performance). Hence, the
applications of the techniques developed in [25]-[28]
to iterative decoding should provide interesting error
performance improvements.

At a given code rate, as N increases, the weight of
the rows of the parity check matrix H also increases
for the class of MSMLD codes. This causes the num-
ber of redundant rows in H to grow to a very large
number if near MLD peformance is required, as is
already apparent for the results we present for the
(511,256,31) code. Consequently, this approach does
not seem to scale up very well with V despite the fact
that iterative decoding is used. This is not totally
surprising, as in general, the decoding complexity of
MLD increases exponentially with V.

6. Extension to Iterative Decoding for
the AWGN Channel

A very natural extension of these results is to re-
place the BSC by an AWGN channel. Although as
already stated in the introduction, relatively good
results for iterative decoding of MSMLD codes have
been previously reported for the AWGN channel, all
these results fall short of near MLD. The main rea-

son we believe is the large dynamical range taken by
the a-posteriori values evaluated after few iterations
due to the large correlation propagated by feedback
(note that in the BF algorithms, the values at the
bit nodes are always the same at the beginning of
each iteration). As a result, there is no longer much
difference between soft information and hard infor-
mation with erasure. Indeed, the same conclusions
also hold for BP decoding over the BSC, although in
that case, no significant degradation can be expected
at high enough SNR, as observed in Figure 1.

Using a heuristic extension of the decomposition
proposed in [29], the a-posteriori information L;q
evaluated at iteration-(i + 1) can be represented as
the sum of the a-priori information Lq and a function
of approximated extrinsic information values Ef de-
rived (and observable) at iteration-i. In graphs with
cycles, L¢ can be viewed as the sum of the true ex-
trinsic information L§ and additional correlated val-
ues Lf, so that

Liyi = Lo+ f(L%)
with  L¢ = L¢+L¢,

Consequently, the influence of correlation can be re-
duced by modifying the function f() in several ways
g() such as scaling (fog = af, 0 < a < 1), off-
setting (f o g — sga(f) max{|f| — §,0}), damping
(Ffog=afi+(1—a)fi1,0<a<1),or clipping
(f o g = sgn(f)min{|f|,C}). However, these modi-
fications affect both L and L{ while hypothetically,
it would be desirable to reduce L only. This is in-
deed a much difficult task as we have direct access
to Ef only. For example, all best approaches used to
iteratively decode the (255,127,21) EG code over the
AWGN channel felt short of MLD by about 0.8 dB.

7. Conclusion

In this paper, we have shown that iterative BF
algorithms can achieve near MLD of intermediate
length MSMLD codes despite the presence of four-
cycles in their graph representation. This drawback
is overcome by the very large number of redundant
low weight check sums. The most straightforward
parity check matrix representation of these codes in
conjunction with a “call by the need” decoding seems
to provide the best compromise between error per-
formance and decoding complexity.

In principle, the three-state BF decoding approach
could be applied to any other intermediate length
linear code. One “merely” needs to find a sufficient
number of redundant low weight codewords in the
dual code to construct a useful parity check matrix
H. Unfortunately, this does not appear to be an easy
task for codes that are not as nicely structured as the
families of codes considered in this paper [30], [31].
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