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Abstract

The decoder of the sphinx-4 speech recognition system incorporates several new design strate-
gies which have not been used earlier in conventional decoders of HMM-based large vocabulary
speech recognition systems. Some new design aspects include graph construction for multi-
level parallel decoding with independent simultaneous feature streams without the use of com-
pound HMMs, the incorporation of a generalized search algorithm that subsumes Viterbi and
full-forward decoding as special cases, design of generalized language HMM graphs from gram-
mars and language models of multiple standard formats, that toggles trivially from flat search
structure to tree search structure etc. This paper describes some salient design aspects of the
Sphinx-4 decoder and includes preliminary performance measures relating to speed and accu-
racy.
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ABSTRACT
The decoder of the sphinx-4 speech recognition system incorpo-
rates several new design strategies which have not been used ear-
lier in conventional decoders of HMM-based large vocabulary
speech recognition systems. Some new design aspects include
graph construction for multilevel parallel decoding with indepen-
dent simultaneous feature streams without the use of compound
HMMs, the incorporation of a generalized search algorithm that
subsumes Viterbi and full-forward decoding as special cases,
design of generalized language HMM graphs from grammars and
language models of multiple standard formats, that toggles trivi-
ally from flat search structure to tree search structure etc. This
paper describes some salient design aspects of the Sphinx-4
decoder and includes preliminary performance measures relating
to speed and accuracy. 

1. INTRODUCTION

The Sphinx-4 speech recognition system is a state-of-art HMM
based speech recognition system being developed on open source
(cmusphinx.sourceforge.net) in the Java™ programming lan-
guage. It is the latest addition to Carnegie Mellon University’s
repository of Sphinx speech recognition systems. The Sphinx-4
decoder has been designed jointly by researchers from CMU,
SUN Microsystems and Mitsubishi Electric Research Laborato-
ries. Over the last few years, the demands placed on conventional
recognition systems have increased significantly. Several things
are now additionally desired of a system, such as the ability to
perform multistream decoding in a theoretically correct manner,
with as much user control on the level of combination as possible,
that of at least some degree of basic easy control over the system’s
performance in the presence of varied and unexpected environ-
mental noise levels and types, portability across a growing num-
ber of computational platforms, conformance to widely varying
resource requirements, easy restructuring of the architecture for
distributed processing etc. The importance of a good and flexible
user interfacing is also clear as a myriad of devices attempt to use
speech recognition for various purposes. The design of the
Sphinx-4 is driven by almost all of these current-day consider-
ations, resulting in a system that is highly modular, portable and
easily extensible, while at the same time incorporating several
desirable features by extending conventional design strategies or
inventing and incorporating new ones. Its design is quite a bit
more utilitarian and futuristic than most existing HMM-based sys-
tems. 

This paper describes selected set of important design innovations
in the Sphinx-4 decoder. The sections are arranged as follows:
section 2 describes the overall architecture of the decoder, and
some software aspects. Section 3 describes the design of the graph
construction module and design of the language-HMM graph for
parallel decoding. Section 4 describes the design of the search

module, and the generalized Bushderby [2] classification algo-
rithm used in it. Section 5 describes the design of the frontend and
acoustic scorer. Section 6 presents some performance measures
and lists the future remaining work on the decoder.

2. OVERALL ARCHITECTURE

The Sphinx-4 architecture has been designed with a high degree
of modularity. Figure 1 shows the overall architecture of the sys-
tem. Even within each module shown in Figure 1, the code is
extremely modular with easily replaceable functions. 

There are three main blocks in the design, which are controllable
by any external application: the frontend, decoder, and knowledge
base (KB). The frontend module takes in speech and parametrizes
it. Within it, the endpointer module can either endpoint the speech
signal, or the feature vectors computed from it. The decoder block
performs the actual recognition. It is comprised of a graph con-
struction module, which translates any type of standard language
model provided to KB by the application into an internal format
and, together with information from the dictionary and structural
information from one set or a set of parallel acoustic models, con-
structs the language HMM. The latter is then used by the search
module to decide the allowed path-extensions in the trellis which
is searched. The trellis is not explicitly constructed.Rather, it is an
implicit entity as in conventional decoders. The application can
tap the information in the tokens at each node to get search results
at various levels (such as state, phone or word-level lattices and
segmentations). The application can also control the level at
which scores from parallel feature streams are combined during
search, and how each information stream is pruned. The search
module requires likelihood scores for any current feature vector to
generate the active list. Likelihoods are computed by the state
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Figure 1.  Architecture of the Sphinx-4 system. The main blocks are
Frontend, Decoder and Knowledge base. Except for the blocks within
the KB, all other blocks are independently replaceable software mod-
ules written in Java. Stacked blocks indicate multiple types which can
be used simultaneously
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probability computation module which is the only module that has
access to the feature vectors. Score computation is thus an on-
demand task, carried out whenever the search module communi-
cates a state identity to the scoring module, for which a score for
the current feature (of a specific type) is desired. In Sphinx-4, the
graph construction module is also called the linguist, and the score
computation module is called the acoustic scorer

The system permits the use of any level of context in the definition
of the basic sound units. One by-product of the system’s modular
design is that it becomes easy to implement it in hardware.

Programming language: The system is entirely developed on the
Java™ platform which is highly portable: once compiled, the
bytecode can be used on any system that supports the Java plat-
form. This feature permits a high degree of decoupling between
all modules. Each module can be exchanged for another without
requiring any modification of the other modules. The particular
modules to be used can be specified at run time through a com-
mand line argument, with no need to recompile the code. Also, the
garbage collection (GC) feature of Java simplifies memory man-
agement greatly, memory management is no longer done through
explicit code. When a structure is no longer needed, the program
simply stops referring to it. The GC frees all relevant memory
blocks automatically. Java also provides a standard manner of
writing multithreaded applications to easily take advantage of
multi-processor machines. Also, the Javadoc™ tool automatically
extracts information from comments in the code and creates html
files that provide documentation about the software interface.

3. GRAPH CONSTRUCTION MODULE

In an HMM-based decoder, search is performed through a trellis, a
directed acyclic graph (DAG) which is the cross product of a lan-
guage-HMM and time. The language-HMM is a series-parallel
graph, in which any path from source to sink represents the HMM
for a valid word sequence in the given language. This graph has
loops, permitting word sequences of arbitrary lengths. Language
probabilities are applied at transitions between words. The lan-
guage-HMM graph is a composition of the language structure as
represented by a given language model, and the topological struc-
ture of the acoustic models (HMMs for the basic sound units used
by the system). Figure 2 shows the relation between acoustic mod-
els, language-HMM, and the trellis which is searched, and also
shows intermediate level graphs which are used implicitly in the
composition of the language-HMM. 

The graph construction module in Sphinx-4, also called the lin-
guist, constructs the language-HMM using the output of another
module which interprets the language model provided by the
application as a part of the KB, and converts it into a single inter-
nal grammar format. This permits the external grammar to be pro-
vided by the application in any format, such as statistical N-gram,
CFG, FSA, FST, simple word lists etc. The internal grammar is a
literal translation of the external representation. For word lists all
words are linked parallely to a single source and sink node and a
loopback is made from the sink to the source. For N-gram LMs an
explicit bigram structure is formed where every word is repre-
sented by a node, and there are explicit links from every node to
every other node. The language-HMM accommodates parallel
feature streams as shown in Figure 3. The design does not use
compound HMMs [3] as in conventional systems, but maintains

separate HMMs for the individual feature streams. Time-synchro-
nization of paths is ensured at the boundaries of combined units,
during search.

The internal grammar is then converted to a language-HMM by
another module, which is independent of the grammar construc-
tion module. Note that in the architecture diagram both modules
are represented by a single graph construction module. In the for-
mation of the language-HMM, the word-level network of the
internal grammar is expanded using the dictionary and the struc-
tural information from the acoustic models. In this graph, sub-
word units with contexts of arbitrary length can be incorporated, if
provided. We assume, however, that silence terminates any con-
text - sub-word units that are separated from each other by an
intermediate silence context cannot affect each other. The linguist
converts the word graph to a Language-HMM either dynamically
or statically. In dynamic construction, the HMMs for grammar
nodes that can follow a current node and are not already instanti-
ated are constructed at run time using the appropriate context
dependent phonemes at the word boundaries. In static construc-
tion, the entire language-HMM is constructed statically. HMMs
are constructed for all words in the vocabulary. Each word HMM
is composed with several word-beginning context dependent
phones, each corresponding to possible crossword left context.
Similarly, each word HMM also has several word-ending context
dependent phonemes. Each word is connected to every other
word. In linking any two words, only the appropriate context-
dependent phones are linked.

There are a number of strategies that can be used in constructing
the language-HMM that affect the search. By altering the topology
of the language-HMM, the memory footprint, perplexity, speed
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Figure 2.  (a) Language graph for a simple language with a two word
vocabulary. (b) Language-phonetic graph derived from (a). (c) Lan-
guage-phonetic-acoustic graph derived from (b). (d) Trellis formed as
the crossproduct of (c) and a linear graph of observation data
vectors.
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Figure 3.  Graph construction with two parallel features.In the left
panel scores for words are combined at word boundaries. In the right
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and recognition accuracy can be affected. The modularized design
of Sphinx-4 allows different language-HMM compilation strate-
gies to be used without changing other aspects of the search. 

The choice between static and dynamic construction of language
HMMs depends mainly on the vocabulary size, language model
complexity and desired memory footprint of the system, and can
be made by the application

4. SEARCH MODULE

Search in Sphinx-4 can be performed using conventional Viterbi
algorithm, or full-forward algorithm, so far as the latter can indeed
be approximated in the compact language HMM graphs used by
conventional. HMM-based decoders, including sphinx-4. How-
ever, the unique feature about search in Sphinx-4 is that these con-
ventional algorithms are merely special cases of a more general
algorithm called Bushderby [2], which performs classification
based on free energy, rather than the Bayesian rule. Likelihoods
are used in the computation of free energy, but do not constitute
the main objective function used for classification. The theoretical
motivations for this algorithm are described in [2]. 

From an engineering perspective, the algorithm can be viewed as
the application of a single-parameter function in the trellis
which operates on path scores. The parameter can take
meaningful values in (0, ], and is user-controllable.
Mathematically, the function performs an -norm over the
score of a set of  edges incident on a node  in the trellis
that is being searched for the best hypothesis as:

(1)

When , this reduces to full-forward or Bayesian decoding:

(2)

When , it reduces to viterbi decoding:

(3)

For values of  which are not equal to either 1 or , the expres-
sion in equation (1) has no bayesian interpretation. However, it
can be related to free energy. Classification over mismatched data
can directly be controlled through this Bushderby parameter, and
has been shown to yield significant improvements in recognition
performance.

The search module constructs a tree of hypotheses using a token-
passing algorithm, which is used in many conventional decoders
[1]. The token tree consists of a set of tokens that contain informa-
tion about the nodes traversed in the trellis and provides a com-
plete history of all active paths in the search. Each token contains
the overall acoustic and language scores of the path at a given
point, a Language HMM reference, an input feature frame identifi-
cation, and a reference to the previous token, thus allowing back-
tracing. The Language HMM reference allows the search manager
to relate a token to its senone, context-dependent phonetic unit,
pronunciation, word, and grammar state. The search module also

communicates with the state probability estimation module, also
called the acoustic scorer, to obtain acoustic scores for the current
data, which are only seen by the acoustic scorer.

This module maintains an active list.list of tokens. Active lists are
selected from currently active nodes in the trellis through pruning.
Sphinx-4 performs both relative and absolute pruning, and also
pruning for individual features when decoding with parallel fea-
ture streams. The pruning thresholds are controllable by the appli-
cation. Search can be performed in either depth-first or breadth-
first manner. Depth-first search is similar to conventional stack
decoding, where the most promising tokens are expanded in time
sequentially. Thus, paths from the root of the token tree to cur-
rently active tokens can be of varying lengths. In breadth-first
search, all active tokens are expanded synchronously, making the
paths from the root of the tree to the currently active tokens of
equal in length. The Bushderby algorithm used during search cur-
rently applies to breadth-first search.

Sphinx-4 provides a beam pruner that constrains the scores to a
configurable minimum relative to the best score, while also keep-
ing the total number of active tokens to a configurable maximum.
New implementations can easily be created that provide alterna-
tive methods of storing and pruning the active list. The garbage
collector automatically reclaims unused tokens, thus simplifying
the implementation of the pruner by merely allowing a token to be
removed from the set of active tokens. 

When parallel streams of features are being decoded, token stacks
are used at the node sin the trellis. The search module combines
weighted scores from the features at appropriate nodes, at the spe-
cific level in the graph as specified by the application. Scores are
combined from tokens which have identical word histories, word
entry, and exit times. This is done under the assumption that paral-
lel features derived from the speech signal must at least traverse a
word in the speech signal at concurrent times For decoding with
parallel feature streams, the pruning strategy has to be very care-
fully designed, as it can lead to serious problems during search. A
schematic representation of such a problem for the case of two
feature streams is shown in Figure 4. To avoid this problem, the
search module switches to a different pruning scheme in the case
of parallel features. In this scheme, pruning is done at two levels.
One level consists of wide-beam or loose pruning which is done
separately for separate features. This is possible since each token
in the stack at each node carries scores for individual features as
well as the combined score. The second level of pruning is done at
the specific user defined levels at which scores combine, and is
done only with respect to the combined scores. This pruning uses
much narrower beams. Also, features are combined in a weighted
manner, with weights that can be application controlled either
directly or through any application-enforced learning algorithm.

The result generated by the search module is in the form of a token
tree, which can be queried for the best recognition hypotheses, or
a set of hypotheses. the tree also encodes the recognition lattice at
all levels, senones, phoneme, word etc.

5. FRONT END AND ACOUSTIC SCORER

The sequence of operations performed by the Sphinx-4 front-end
module in its default configuration is very similar to what other
speech recognition systems do, creating mel-cepstra from an audio
file. It is however parallelizable, and can currently simultaneously
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compute MFCC and PLP cepstra from speech signals, with easy
extensibility to other feature types. 

The module is organized as a sequence of independent replaceable
communicating blocks, each with an input and output that can be
tapped. (e.g., a pre-emphasizer, a spectrum analyser). Thus out-
puts of intermediate blocks can be easily fed into the state compu-
tation module, for example. Features computed using independent
sources by the application, such as visual features, can also be
directly fed into the State probability computation module, either
in parallel with the features computed by the frontend for parallel
decoding, or independently. Moreover, one can easily add a pro-
cessor between two existing processors, making it very easy to
add a noise cancellation or compensation module.

The communication between blocks follows a pull design. In this
design, a block requests input from an earlier block when needed,
as opposed to the more conventional push design, where a block
gives data to the succeeding block as soon data are available to it.
At a global level, in a pull design, more speech is captured only
when recognition is requested. In a push design, recognition is
requested after speech is captured.

Each block operates in response to control signals which are inter-
preted from the data requested from the predecessor. The control
signal might indicate the beginning or end of speech, might indi-
cate data dropped or some other problem. If the incoming data are
speech, they are processed and the output is buffered, waiting for
the successor block to request it. Handling of control signals such
as start or end of speech are essential for livemode operation. This
design allows the system to be used in live or batchmode without
modification. 

In addition to being responsive to a continuous stream of input
speech, the frontend is capable of three other modes of operation:
(a) fully endpointed, in which explicit begining and end points of
a speech signal are sensed (b) click-to-talk, in which the user indi-
cates the beginning of a speech segment, but the system deter-
mines when it ends, (c) push-to-talk, in which the user indicates
both the beginning and the end of a speech segment. Currently,
endpoint detection is performed by a simple algorithm that com-
pares the energy level to three threshold levels. Two of these are
used to determine start of speech, and one for end of speech. 

Acoustic scorer: This is the State output probability computation
module shown in the architecture diagram of Sphinx-4. Its opera-
tion is straight forward: given a set of acoustic models and a

request from the search module to score a particular state, it per-
forms the mathematical operations required for score computa-
tion. It matches the acoustic model set to be used against the
feature type in case of parallel decoding with parallel acoustic
models. There are no restrictions on the allowed topology for the
HMMs used in parallel scoring.

The scorer retains all information pertaining to the state output
densities. Thus, the search module need not know the scoring is
done with continuous, semi-continuous or discrete HMMs. Any
heuristic algorithms incorporated into the scoring procedure for
speeding it up can be performed locally within the search module. 

6. EXPERIMENTAL EVALUATION

The performance of Sphinx-4 is compared with Sphinx-3 on the
on the speaker independent portion of the Resource Management
database (RM1) [4] in Table 1. Sphinx-3 builds the language-
HMM dynamically, while the code for dynamic construction in
Sphinx-4 is not yet fully operational. In any decoder, static con-
struction of a language-HMM takes far longer than dynamic con-
struction. Hence graph construction times have been factored out
of the real-time numbers reported in Table 1. Acoustic models
were 3 state, 8 Gaussians/state HMMs with 1000 tied states,
trained with the RM training data using the training module of
Sphinx-3. Test results are reported using statistical N-gram lan-
guage models: a flat unigram, a unigram, and a bigram. The Lams
were created from the LM training data provided with the RM
database. Sphinx-4 is currently also capable of working from an
external FST language model. We do not report those results here,
although they are consistently better than n-gram results.

Table 1 shows both word error rate (WER) and decoding speed in
times real time. All experiments were run on a Sun Blade™ 1000
workstation with dual 750 MHz UltraSPARC® III processors.

The Sphinx-4 performance has not been optimized on the bigram
and trigram tasks at the time of this submission. As such, the eval-
uation of medium vocabulary tasks is ongoing, and large vocabu-
lary tasks will be approached shortly. The optimized trigram tasks
and the completed medium and large vocabulary evaluations will
be completed by the time the paper is presented. They will also be
reported on SourceForge as and when they are completed.
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Figure 4.  The pruning problem encountered by the search module in
decoding parallel feature streams. If pruning is based on combined
scores, paths with different contributions from the multiple feature
streams get compared for pruning.

Type of N-gram LM
Speed (xRT) WER (%)
S3 S4 S3 S4

Flat unigram 3.0 13.7 18.7 17.3
Unigram 2.9 15.3 13.1 14.5
Bigram 2.8 19.0 2.0 3.3

Table 1: Performance comparison between Sphinx-3 (S3) and
Sphinx-4 (S4). The speeds do not include loading time, which
are vastly different for s3 (dynamic language-HMM
construction) and s4 (currently static language-HMM
construction) 
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