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ABSTRACT

We present algorithms for automatic feature selection and model
order identification based on our previous solution to unsupervised
structure discovery from video sequences. The overall problem
is presented as simultaneously finding the statistical descriptions
of structure and locating segments that matches the descriptions.
Structures in video was modelled with hierarchical hidden Markov
models, and model parameters was efficiently learned using EM.
We extend the previous model adaptation scheme to learning not
only the complexity of each structure, but also the total number
of structures in the stream. Feature selection iterates between a
wrapper and a filter method to partition the large feature pool into
consistent and compact subsets, where the subsets are then ranked
according to a normalized Bayesian Information criteria. Results
on soccer videos are very promising: the best feature set agrees
with manually identified significant features, the clusters are ex-
plainable with respect to manual labels, and the accuracy is com-
parable with previous works with supervised learning or manually
chosen feature sets.

1. INTRODUCTION

In this paper, we present algorithms for jointly discovering statis-
tical structures, identifying model orders, and finding informative
low-level features from video using unsupervised learning. We
define the structure of a time sequence as the repetitive segments
that possess consistent deterministic or stochastic characteristics.
Though this definition is general to various domains, here we are
mainly concerned with the particular domain of video where struc-
ture represent the syntactic level composition of the video stream.
Automatic detection of structures is an inseparable part of video
indexing, as it will help locate semantic events from low-level ob-
servations. Moreover, further facilitate summarization and navi-
gation of the content.

1.1. The structure discovery problem

Given a set of observations, the problem of identifying structure
consists of two parts: finding a description of the structure (a.k.a
the model), and locating segments that matches the description.
There are many successful cases where these two tasks are per-
formed in separate steps. The former is usually referred to as train-
ing, while the latter, classification or segmentation. Among vari-
ous possible models, hidden Markov model (HMM) is a discrete
state-space stochastic model with efficient learning algorithms that
works well for temporally correlated data streams. HMM has been
successfully applied to many different domains such as speech
recognition, handwriting recognition, motion analysis, or genome

sequence analysis. For video analysis in particular, it has been used
for distinguishing TV genres [5], and the high-level play/break
structure of soccer games [7].

The structure detection methods above belongs to the category
of supervised learning - the algorithm designers manually identify
important structures, collect labelled data for training, and apply
supervised learning tools to learn the classifiers. This methodol-
ogy works for domain-specific problems at a small scale, yet it
cannot be readily extended to large-scale data sets in heterogenous
domains, as is the case for many video archives. In our previ-
ous work [8], we proposed a new paradigm that uses fully unsu-
pervised statistical techniques and aims at automatic discovery of
salient structures and simultaneously recognizing such structures
in unlabelled data without prior expert knowledge. To the best of
our knowledge, it is the first system for unsupervised discovery
of temporal statistical structures in video, and it archives compa-
rable, or even slightly better accuracy in recognizing play/break
events from soccer video than its supervised counterpart.

In the previous work [8], we presented a unified framework
for modelling the temporal dependencies in video, and captur-
ing the generic structure of events. Under certain dependency as-
sumptions, we model the individual recurring events in a video as
HMMs, and the higher-level transitions between these events as
another level of Markov chain. This hierarchy of HMMs forms a
Hierarchical Hidden Markov Model (HHMM), its hidden state in-
ference and parameter estimation are efficiently learned using the
expectation-maximization (EM) algorithm. In addition, Bayesian
techniques are employed to learn the model complexity, where the
search over model space is done with Reverse-Jump Markov Chain
Monte Carlo (RJ-MCMC).

1.2. Automatic order identification and feature selection
In the HHMM with adaptation scheme presented above, HHMMs
were learned over a manually selected set of features with the num-
ber of higher-level concepts fixed. Moreover, the number of inter-
esting structures are often unknown a priori, then automatically
finding the optimal number of high-level concepts is also desir-
able and will improve the scalability of the learning algorithm to
diverse domains. Hence we extend the previous framework to in-
clude automatic identification of cluster order in the model adap-
tation steps, two more types of Monte Carlo moves were chore-
ographed to perform the split and merge of higher level concepts,
and the fitness of the new concept space is also evaluated with the
Bayesian Information Criteria (BIC).

On the other hand, the computational front end in many real-
world scenarios extracts a large pool of observations (i.e. features)
from the stream, and at the absence of expert knowledge, pick-



ing a subset of relevant and compact features becomes a bottle-
neck. And automatically identifying informative features, if done,
will improve both the learning quality and computation efficiency.
Prior work in feature selection for supervised learning mainly di-
vides into filter and wrapper methods according to whether or not
the classifier is in-the-loop [4]. For unsupervised learning on spa-
tial data (i.e. assume samples are independent), Xing et. al. [9] it-
erated between cluster assignment and filter/wrapper methods for
known number of clusters; Dy and Brodley [2] used scatter separa-
bility and maximum likelihood (ML) criteria to evaluate fitness of
features. To the best of our knowledge, no prior work has been re-
ported for our problem of interest: unsupervised learning on tem-
porally dependent sequence with unknown cluster size.

We use a combination of filter and wrapper methods for fea-
ture selection. The first step is to wrap information gain criteria
around HHMM learning, and discover relevant feature groups that
are more consistent to each other within the group than across the
group; the second step is to find an approximate Markov blan-
ket for each group, thus eliminating redundant features that does
not contribute to uncovering the structure from sequence given its
Markov Blanket; and the last step is to evaluate each condensed
feature group with a normalized BIC, and rank the resulting mod-
els and feature sets with respect to their a posteriori fitness.

Evaluation against real video data showed very promising re-
sults: on two MPEG-7 soccer videos, the number of clusters that
the algorithm converges to is mostly two or three, matching man-
ually labelled classes with comparable accuracies in [8]; the op-
timal feature set includes the dominant color ratio, the intuitively
the most distinctive feature.

The rest of this paper is organized as follows, section 2 dis-
cusses the discovery of video structure using HHMM with model
adaptation, section 3 presents our feature selection scheme for un-
supervised learning on temporal sequences; section 4 includes the
test results on several sports videos; section 5 summarizes the work
and discusses open issues.

2. LEARNING HIERARCHICAL
HIDDEN MARKOV MODELS

Videos are temporally highly correlated streams with stochastic
observation in discrete concept space [8]. Our attention here is on
the subset of dense structure, where competing structure elements
can be modelled as the same parametric class, and representing
their alternation would be sufficient for describing the whole data
stream, without needing an explicit background model that delin-
eates sparse happenings from the majority of the background.

For efficient computation at the cost of minor modelling power,
we impose multi-level Markov assumptions [8] where each con-
cept is modelled as an HMM and transitions among concepts as
another level of Markov chain. These assumptions leads us to
HHMM, where the model structure, parameter learning and infer-
encing algorithms are summarized in section 2.1, and the model
order identification at both levels using MCMC are summarized in
section 2.2.

2.1. Hierarchical hidden Markov models

HHMM was first introduced [3] as a natural generalization to HMM
with hierarchical control structure. As shown in figure 1A, every
higher-level state symbol corresponds to a stream of symbols pro-
duced by a lower-level sub-HMM; a transition in the higher-level
is invoked only when the lower-level model enters an exit state
(shaded nodes in figure 1A); observations are only produced by
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Fig. 1. Graphical HHMM representation at level d and d + 1 (A)Tree-
structured representation; (B)DBN representation, with observations Xt

drawn at the bottom. Uppercase letters denote the states as random vari-
ables in time t; lowercase letters denote the state-space of HHMM, i.e.
values these random variables can take in any time slice. Shaded nodes are
auxiliary exit nodes that turns on the transition at a higher level.

the lowest level states. Figure 1B shows the equivalent Dynamic
Bayesian Network (DBN) representation of HHMM. In this repre-
sentation, the state of the model at time t is completely specified
by the hidden states Qd

t at levels d = 1, . . . D from top to bot-
tom, the observation sequence Xt, and the auxiliary level-exiting
variables Ed

t . Note Ed
t can be turned on only if all lower levels of

Ed+1:D
T are on.

If the maximum state-space size of any sub-HMM as Q, then
the entire configuration of all hierarchical states from the top to the
bottom can be represented as aQ-aryD-digit integer k. The whole
parameter set Θ of an HHMM then consists of (1) Markov chain
parameters Λd in level d indexed by the state configuration k(d−1),
i.e., transition probabilities Ad

k, prior probabilities πdk , and exiting
probabilities from the current level edk; (2) emission parameters B
that specifies the distribution of observations conditioned on the
state configuration, i.e., the means µk and covariances σk when
emission distributions are Gaussian.

The forward-backward algorithm of the HHMM [8, 6] is con-
ducted in a similar manner as those of HMM, essentially operat-
ing on the collapsed state space {k} taking into account additional
transition and control constraints. The state-inference and parame-
ter estimation are then easily built on top of the forward-backward
iterations, where the former is a form of multi-level Viterbi algo-
rithm, and the latter involves marginalizing the auxiliary variables
within and across difference levels. The complexity of these algo-
rithms is O(T ).

2.2. RJ-MCMC for order identification

We employ Markov chain Monte Carlo(MCMC) algorithm in ad-
dition to EM for learning HHMMs, in order to address the follow-
ing problems: (1)EM is known to converge to a local maximum on
the likelihood landscape, so it would be stuck in undesirable con-
figurations; (2)The complexity of each concept, i.e. the state-space
size of each bottom-level HMM is often unknown empha priori;
(3)The number of difference structure elements is unknown either.
Yet searching through the entire model space of different orders is
intractable. With an MCMC scheme tailored for HHMM, we are
able to learn the optimal state-space size of the HHMM model at
all levels while learning the parameters.

MCMC for learning statistical models usually iterates between
two steps: (1)The proposal step generates a new structure and a
new set of model parameters based on the data and the current



model(Markov chain) according to certain proposal distributions
(Monte Carlo); (2)The decision step computes an acceptance prob-
ability α of the proposed new model based on model posterior and
proposal strategies, and then this proposal is accepted or rejected
with probability α. The two measure spaces under comparison
must be aligned if the proposed model is of a different size as the
original model, to ensure Reversibility of the proposed Jump (RJ-
MCMC). MCMC will converge to the global optimum in proba-
bility if certain constraints [1] are satisfied for the proposal distri-
bution and if the acceptance probability are evaluated accordingly,
yet the speed of convergence largely depends on the goodness of
the proposals.

Model adaptation for HHMMs is choreographed as follows:
(1)Based on the current model Θ, compute a probability profile
Pθ = [pem, psw, pst, psb, pmt, pmb], then propose a move among
the types {EM, swap, split-top, split-bottom, merge-top, merge-
bottom} according to the profile Pθ . EM is regular parameter up-
date; Swap involves swapping the parents of two lower level states
associated with different higher-level nodes; split/merge-bottom
means splitting the emission probability of one of the current bot-
tom level states or merging two of them into one; and split-top
would randomly partition one higher level state into two and assign
its children to either one of the new high-level state, while merge-
top would collapse two higher-level states into one. (2)Acceptance
probability is then evaluated based on model posterior, computed
with the Bayesian Information Criteria; for split and merge, the
proposal likelihood and model space alignment also need to be
taken into account. Due to space constraint, the EM + RJ-MCMC
algorithm is detailed in [6].

Note we are using a mixture of the EM and MCMC, in place of
full Monte Carlo update of the parameter set and the model size.
This brings significant computational savings since EM is more
efficient than full MCMC, and the convergence behavior does not
seem to suffer in practice.

3. FEATURE SELECTION FOR
UNSUPERVISED LEARNING

Feature extraction schemes for audio-visual streams abound, and
we are usually left with a large pool of diverse features without
knowing which ones are relevant to the concepts in the data. A
few features can be selected manually if expert domain knowl-
edge exits, but more often we lack adequate domain knowledge,
or the connection between high-level expert knowledge and low-
level features are not obvious. Moreover, the task of feature selec-
tion is divided into eliminating irrelevant features and redundant
ones, where the former may disturb the classifier and degrade clas-
sification accuracy, the latter adds to computational burden with-
out bringing in new information. Furthermore, in the unsupervised
structure discovery scenario, different subsets of features may well
represent different concepts, and they should be described with
separate models rather than modelled jointly.

Hence the scope of our problem, is to select structurally rel-
evant and compact feature subset that fits the HHMM model as-
sumption in unsupervised learning over temporally highly corre-
lated data streams.

3.1. The feature selection algorithm

Denote the feature pool as F = {f1, . . . , fD}, the data sequence
as XF = X1:T

F , the feature selection algorithm proceeds through
these general steps:

(1) (Let i = 1 to start with) At the i-th round, produce a refer-
ence set F̃i ⊆ F at random, learn HHMM Θ̃i on F̃i with
model adaptation, perform Viterbi decoding of XF̃i

, get the

reference state-sequence Q̃i = Q̃1:T
F .

(2) For each feature fd ∈ F \F̃i, learn HHMM Θd of size |Θ̃i|,
get the Viterbi state sequence Qd compute the information
gain (sec. 3.2) of each feature on the Qd with respect to the
reference partition Q̃i. Find the subset F̂i ⊆ (F \ F̃i) with
significantly large information gain, and keep the union of

our reference set and the relevance set F̄i
4
= F̃i ∪ F̂i for

further processing.
(3) Use Markov blanket filtering in sec. 3.3, eliminate redun-

dant features within the set F̄i whose Markov blanket ex-
ists. We’re then left with a relevant and compact feature
subset Fi ⊆ F̄i. Learn HHMM Θi again with model adap-
tation on XFi .

(4) Eliminate the previous candidate set by setting F = F \ F̄i;
go back to step 1 with i = i+ 1 if F is non-empty.

(5) For each feature-model combination {Fi,Θi}i, evaluate their
fitness using the normalized BIC criteria in sec. 3.4, rank the
feature subsets, and interpret the meanings of the resulting
clusters.

3.2. Evaluating information gain
Information gain [9] measures the degree of agreement of each
feature to the reference partition. We label a partition Q of the
original set XF = X1:T

F as integers Qt
F ∈ {1, . . . , N}, let the

probability of each part be the empirical portion (eq. 1), and de-
fine similarly the conditional probability of the reference partition
Q0 given the partition Qf induced by a feature f (eq.2). The in-
formation gain of feature f with respect to Q0 is defined as eq.
3.

PQ(i) =
|{t|qt = i}|

T
; i = 1, . . . , N (1)

PQ0|Qf
(i | j) =

|{t|(qt0, q
t
f ) = (i, j)}|

|{t|qtf = j}|
; i, j = 1, . . . , N (2)

Ig
4
= H(PQ0

)−
∑

f

PQf
·H(PQ0|Qf

) (3)

Where H(·) is the entropy function. Intuitively, a higher in-
formation gain value for feature f suggests that the f -induced par-
tition Qf is more consistent with the reference partition Q0.

3.3. Finding a Markov Blanket
After the previous wrapper step, we are left with a subset of fea-
tures with consistency yet possible redundancy. A feature f is
said to be redundant if the partition of the data set is independent
to f given its Markov Blanket FM . In prior works [4, 9], Markov
blanket is identified with the equivalent condition that the expected
KL-divergence between class-posterior probabilities with or with-
out f should be zero.

For unsupervised learning over a temporal stream however,
this criteria cannot be readily employed since the temporal correla-
tion prevents us from estimating the posterior distributions by just
counting over every feature-label pair. Thus results in two difficul-
ties: (1)The dependency between adjacent observations and class-
labels makes the distribution of features and posterior distribution
of classes multi-dimensional, and summing over them quickly be-
comes intractable; (2)We will not have enough data to estimate
these high-dimensional distributions. We therefore use an alter-
native necessary condition that the optimum state-sequence C1:T



should not change conditioned on observing FM ∪ f or FM only.
Additionally, as few if any features will have a Markov Blanket of
limited size in practice, we sequentially remove features that in-
duces the least change in state sequence given the change is small
enough (< 5%).

Note the sequential removal will not cause divergence of the
resulting set [4]; and this step is a filtering step since we do not
need to retrain the HHMMs for each FM ∪ f , Viterbi decoding on
only the dimensions of interest would suffice.

3.4. Normalized BIC
Iterating over section 3.2 and section 3.3 results in disjoint small
subsets of features {Fi} that are compact and consistent with each
other. The HHMM models {Θi} learned over these subsets are
best-effort fits on the features, yet the {Θi}s may not fit the multi-
level Markov assumptions in section 2.

There are two criteria proposed in prior work [2], scatter sep-
arability and maximum likelihood (ML). Note the former is not
suitable to temporal data since multi-dimensional Euclidean dis-
tance does not take into account temporal dependency, and it is
non-trivial to define another proper distance measure for temporal
data; while the latter is also known [2] to be biased against higher-
dimensional feature sets. We use a normalized BIC criteria(eq. 4)
as the alternative to ML, which trades off normalized data likeli-
hood L̃with model complexity |Θ|. Note the former has weighting
factor λ in practice; the latter is modulated by the total number of
sample values log(DT ); and L̃ for HHMM is computed in the
same forward-backward iterations, except all the emission proba-
bilities P (X|Q) are replaced with P ′X,Q = P (X|Q)1/D , i.e. nor-
malized with respect to data dimension D, under the naive-Bayes
assumption that features independent given the hidden states.

B̃IC = L̃ · λ−
1

2
|Θ| log(DT ) (4)

Initialization and convergence issues exist in the iterative parti-
tioning of the feature pool. The strategy for producing the random
reference set F̃i in step (1) affects the result of feature partition, as
different F̃i may result in different final partitions. If the dimen-
sion of F̃i is too low for example, the resulting structure may not
be significant and it tends to result in many small feature clusters;
on the other hand, if F̃i is too large, structures may become too
complex, feature subsets maybe too few, and the the result will be
hard to interpret.

4. EXPERIMENTS AND RESULTS

The proposed algorithms are tested on two soccer videos taken
from MPEG-7 CD, where clip Korea is 25 minutes long and Spain
is 15 minutes. The two semantic events labelled are play and
break [7], defined according to the rules of soccer game. A nine-
dimensional feature vector sampled at every 0.1 seconds are taken
as the initial feature pool, this include: Dominant Color Ratio
(DCR) and Motion Intensity (MI), the least-square estimates of
camera translation (MX, MY), and five audio features - Volume,
Spectral roll-off (SR), Low-band energy (LE), High-band energy
(HE), and Zero-crossing rate (ZCR). We run the feature selection
+ model learning algorithm on each video stream for five times,
with one randomly selected initial reference feature. After elimi-
nating degenerate cases such as there are only one feature in the
resulting set, we look at the feature-model pair that has the largest
Normalized BIC value as described in section 3.4.

For clip Spain, the selected feature set is {DCR, Volume},
there are two high-level states in the HHMM, each with five lower-
level children. Evaluation against the play/break labels showed

74.8% accuracy. For clip Korea, the selected feature set is {DCR,
MX}, with three high-level states and {7, 3, 4} children states
respectively. If we assign each of the three clusters the majority
ground-truth label it corresponds to (which would be {play, break,
break} respectively), per-sample accuracy would be 74.5%. This
three-cluster results actually matches the previous results [8] with
fixed two clusters and manually-selected feature set {DCR, MI},
since the horizontal camera panning contribute to a majority of the
whole motion intensity in soccer video, especially when the cam-
era is tracking the ball movement in wide angle. The accuracies
are comparable to their previous counterparts [8] without varying
the cluster order or the feature set (75%). Yet the small discrep-
ancy may due to:(1) Variability in EM, or the algorithm is yet to
converge when maximum iteration is reached; (2)Possible inherent
bias may still exist in equation 4 although we are using the same
λ = 1/16 for both algorithms.

5. CONCLUSION

In this paper we propose algorithms for automatic order identifi-
cation and feature selection in unsupervised learning of statisti-
cal structure on temporal sequences. We model the structures in
video with hierarchical hidden Markov models, the model order
at multiple levels with Monte Carlo sampling techniques. In addi-
tion, we employed an iterative wrapper-filter algorithm that selects
the subset of features that is relevant, compact, and consists the
best fit to the HHMM model assumptions. We evaluated this algo-
rithm on soccer videos, and results are very promising: the clusters
matches manually labelled classes, the intuitively the most distinc-
tive feature is in the optimal feature set, and evaluation against
manually identified structure showed comparable accuracies as its
supervised-learning counterpart.

Open issues abound, however: The effectiveness of this model
applied to other video domains, interpretation of clusters where no
pre-defined label is available, and modelling sparse structures are
all interesting directions for further investigation.
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