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Abstract

The singular value decomposition (SVD) is fundamental to many data modeling/mining algo-
rithms, but SVD algorithms typically have quadratic complexity and require random access to
complete data sets. This is problematic in most data mining settings. We detail a family of
sequential update rules for adding data to a “thin” SVD data model, revising or removing data
already incorporated into the model, and adjusting the model when the data-generating pro-
cess exhibits nonstationarity. We also leverage the SVD to estimate the most probable com-
pletion of incomplete data. We use these methods to model data streams describing tables of
consumer/product ratings, where fragments of rows and columns arrive in random order and in-
dividual table entries are arbitrarily added, revised, or retracted at any time. These purely online
rules have very low time complexity and require a data stream cache no larger than a single
user’s ratings. We demonstrate this scheme in an interactive graphical movie recommender that
predicts and displays ratings/rankings of thousands of movie titles in real-time as a user adjusts
ratings of a small arbitrary set of probe movies. The system “learns” as it is used by revising the
SVD in response to user ratings. Users can asynchronously join, add ratings, add movies, revise
ratings, get recommendations, and delete themselves from the model.
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Fast online SVD revisions for lightweight recommender systems

Matthew Brand

Abstract housing, updating, and accessing such tables remain active

The singular value decompositios\(p) is fundamental to issues in database and datastructure research. Estimating a
many data modeling/mining algorithms, Bxp algorithms reasonably efficient, compact, and accurate prediction func-
typically have quadratic complexity and require randofiPn is an even harder problem that has attracted much atten-
access to complete data sets. This is problematic in m@@g in the data mining and machine learning communities.
data mining settings. We detail a family of Sequenti§|earest—neighbor methods, which effectively match against
update rules for adding data to a “thisvp data model, "aw data, have remained popular and effective despite high
revising or removing data already incorporated into tigearch costs and limited predictivity. More sophisticated
model, and adjusting the model when the data-generatiigdiction methods are often defeated by very high data di-
process exhibits nonstationarity. We also leveragetteto mensionality, high computational costs of model fitting, and
estimate the most probable completion of incomplete daf2€ inability to adapt to new or retracted data. Moreover,
We use these methods to model data streams descrisiij very sparsely populated tables, the data is often insuffi-
tables of consumerproduct ratings, where fragments ofient to support accurate parameter estimates in these mod-
rows and columns arrive in random order and individu&ls- Typically a dense subset of the table is constructed from
table entries are arbitrarily added, revised, or retractedt?¥® responses of a focus group, and the prediction function is
any time. These purely online rules have very low tinfXtrapolated from that.

complexity and require a data stream cache no larger than The very high dimensionality of this and other data

a single user's ratings. We demonstrate this schemeMiing problems has motivated explorations of multilinear
an interactive graphical movie recommender that predi&‘@dds such as the thin singular value decomposition (thin
and displays ratings/rankings of thousands of movie titi¥D), both as a compressed representation of the data and
in real-time as a user adjusts ratings of a small arbitra#§ basis for predictions via linear regression. Linear
set of probe movies. The system “learns” as it is us&gpression models generally have lower sample complexity
by revising thesvbp in response to user ratings. UserRer parameter than nonlinear and nonparametric models, and
can asynchronously join, add ratings, add movies, revi&? thus be expected to show better generalization. The

ratings, get recommendations, and delete themselves fioyp and related eigenvalue decompositi@vp) lie at the
the model. heart of thousands of data-analysis algorithms, where they

are used for dimensionality reduction, noise suppression,
Keywords: collaborative filtering; singular value clustering, factoring, and model-fitting. Several well-known
decomposition; online updating; real-time recom- recommender systems are based orstve/EvD [5, 14, 17,

mending; incomplete data. 11]. Unfortunately, computing agvD of a very large dataset
is an impractical affair, requiring complete data, run-time
1 The problem guadratic in the dataset size, and in-memory storage of the

Recommender systems use a small sample of customer p#8tire dataset. Many algorithms have been proposed to deal
erences to predict likes and dislikes over a much wider $dth some but not all of these problems. Adapting to new
of products_ The prediction function is estimated from & retracted data is also an iSSUG, thOUgh it is well understood
tabular database of custonroduct scores. In this pa-how to appendq, 16, 15, 22, 3] or delete P1] entire columns

per, we will focus on movie ratings. It is not unusual fop" rows, provided that they are complete.

these tables to be enormoud®((0% — O(10") rows and In this paper we contemplate the followipgrely online
columns) but mostly empty, with most scores unknown. fiata mining scenario: Data arrives asynchronously (in no
fielded systems, the table is constantly changing, with roigrticular order) afragmentsof rows and columns. Rows,
columns, and individual scores constantly being added, §8lumns, and fragments thereof may be added, changed, or
vised, or censored. These edits may arrive asynchronougfjacted in any order. The ultimate size of the data matrix

from many distributed sources. Efficient methods for waris-unknown. The collected data will typically be very sparse,
but missing values cannot be presumed to be zeros. The task

“Mitsubishi Electric Research Labs, Cambridge, Massachusetts, USAS 10 compute the best running estimate of a thin raiskD
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of the true data matrix, without any storage or caching sfich as clustering, visualization, market segmentation, and
incoming data, and make recommendations (from predicfaiting of new products.
missing values) from thisvb on demand. Thesvbis most informative when the data has first been
To this end we develop an exact rank-1 update thHednslated so that it is centered on the origin. In that case,
provides very fast additions, deletions, and element-wige sSvD can be interpreted as a Gaussian covariance model
edits—fast enough for linear-time construction of the whot# the data that captures correlations between consumer’s
svD. When faced with missing data, we use an imputtastes. Centering allows proper Bayesian inference about
tive update that maximizes the probability of correct getypicality and missing values, as well as statistical tests to
eralization. We demonstrate experimentally that these methrify Gaussianity.
ods are much faster and at least as predictive as offme Centering aside, the main practical impediment to us-
approaches reported in the data mining literature. The raimg a thinsvb is the cost of computing it. State-of-the-art
1 updates are the main theoretical contribution of this paperethods are typically based on Lanczos or Ritz-Raleigh iter-
the main practical contribution is a demonstration of their uaéons. Run-time can can be linear in the number of nonzero
in a full-scale movie recommending system with a graphicgements in the data, but these methods require multiple
user interface in which users move sliders to rate movies grasses through the entire dataset to converge, and are not
see all other movies re-rated and ranked with millisecond seitable in online settings. Sequent&lD updating algo-
sponse times. The system “learns” from user’s query ratingthms have focussed on modifying a knoaw of dataX to

again, in real-time. obtain ansvD of the data with an appended colunKX (c]).
We recently introduced an exact (closed-form) update rule
2 Thesvbpin data mining [3] that can build a rank-svD of a low rankp x q matrix

The singular value decomposition factors a marito two  through sequential updates in linear tin(®(par) time for
orthogonal matriced, V and a diagonal matri$ = diag(s), the entire matrix), making a single pass through the columns
such thatusVv™ = X andUTXV = S. The elements of of the matrix, meaning that the data need not be stored. It can
s are called singular values and the columnsUgl/ are be shown that the method introduced in this paper contains
called the left and right singular vectors, respectively. If WIS as a special case and inherits its very favorable perfor-
sign and arrange these matrices such that the values onAgce. The rule given here generalizes to provide the re-
diagonal ofS are nonnegative and in descending order af#ining operations needed for a true online system: down-
the first nonzero element in each columnuds also positive, dating (removing rows and columns) revising (changing se-
then thesvD is unique (ignoring any zero singular valuesjected values in a row or column), and recentering. In an
The svD has the optimal truncation property: If we discar@nline setting, keeping thevb model centered is an acute
all but ther largest singular values and the correspondif§oblem, because the mean of the data is constantly drifting,
singular vectors, the product of the resulting thinned matride@ftly due to sample variation and, more importantly, due to
U'SV'T ~ X is the best rank-approximation ofX in the long-run nonstationarities such as changing market dynam-
least-squares sense. This is callethim svD. For this iCSand drifting tastes in a population.
reason, the matrik)’" X = S'V/T—the projection ofX onto
r orthogonal axes specified by the columnsWfi—is an 3 Background
excellent reduced-dimension representation of the data. svD updating has a literature spread over three decades
If X is a tabulation of consumeproduct affinity scores, [7, 6, 2, 10, 1, 8, 15, 22, 3] and is generally based on

then the subspace spanned by the column&)otan be iterative Lanczos or Ritz-Raleigh methods, or relationships
interpreted as a-dimensionakonsumer taste spacehere betweensvbs in a subspace and the full daap. The last
individuals are located according to the similarity of thegategory includes some very fast methods, but they are often
tastes. The relationship between a user’s ratings (represeafgaroximate 1] and/or vulnerable to loss of orthogonality
as a column vectoc) and his/her taste-space locatipris [22, 8, 15]. For example: Berrgt alia[1] propose to project
simply p = U'"c andc ~ U’p, where the approximation isthe problem into a previously estimated low-rank subspace,
squared-error-optimal for andimensional model. I is the but the resulting updates ignore any component of new data
nth column in the originaX, thenp is the i row in V'S that lies outside that subspace. Levy and Lindenniah [
If cis incomplete, various imputation methods (discusséfiow that one can incrementally compute the left singular
below) can estimatp and thence a completion of this is Vectors inO(pqr?) time; if p,q, andr are known in advance
the basis obvD-based recommending. One can also identify
people with similar tastes by their Euclidean distanptin ~ “For ap x gmatrix X and desiredsvo of rankr < O(y/min(p,q)), our
taste space (.91, 17]). Similarly, theproduct taste space upd_ates perform the entisevD in O(pgr) tlme—purely linear in thg size of ‘

, . the inputs and outputs. Other updating algorithms are quadratic in the size
V' contains products arranged by what sorts of people li

he outputs and/or must make multiple passes through the data and/or
them. Often these spaces are useful for subsequent analys€soe iterated to convergence.



| operation | known \ desired | a | b" |

update | USV',0]=[X,0] | USV'T =[X,d c [0,---,0,1]
downdate| USV' =[X,d] U'sV'T =x —c [0,---,0,1]

revise uUsv' = [X,d UsV'T=[X,d |d-c| [0,---,0,1]
recenter usv' =X USVT=X-m1" [ -m [ 17T =[1,---,]]

Table 1: Database operations expressed as rank-1 modificationsvbadSV' = X to giveU'SV'T =X +ab'.

and p > g > r, then the expected complexity falls tdrom all columns. These operations are summarized in ta-
O(pgr). However, orthogonality can decay quickly andlel1. In appendixA we show how any such low-rank modi-
results have only been reported for matrices having a fésation can be solved via operations in the low-dimensional
hundred columns. subspaces specified by the knogmb. The basic strategy
None of this literature contemplates missing valueis, that thenew svD can be expressed as a product of the
except insofar as they can be treated as zeros (€]p.,Ih old subspaces (slightly augmented) and a not-quite diagonal
batchsvD contexts, missing values are usually handled viare matrix, which can be rediagonalized by left and a right
subspace imputation, using an expectation-maximizationtation. These are small-matrix operations, and thus fast.
like procedure: Perform asvD of all complete columns, Applying the opposite rotations to the augmented old sub-
regress incomplete columns against theD to estimate spaces gives a negvD. Even this step can be made fast
missing values, then re-factor and re-impute the completgdaccumulating the small rotations over many updates in-
data until a fixpoint is reached (e.g2(]). This is extremely stead of applying them to the large subspace matrices. Thus
slow (quartic time) and only works if very few values aréor a rankr thin svD, the dominant computations scalerin
missing. It has the further demerit that the imputation doesich is typically very small relative to the size of the data.
not minimize effective rank. Other heuristics simply fill It can be shown that the special case of the rank-1 rule
missing values with row- or column-meanis/]. giving svD updates is algebraically equivalent to (and sim-
In the special case where a matrM is nearly pler than) an update rule we recently introduced in a related
dense, its normalized scatter matBmn = (MimMin)i computer vision paper3]. There we showed that through
((-)i=expectation w.r.t. known values in rajvmay be fully careful management of the computation, the update rule can
dense due to fill-in. A popular heuristic interpréfs eigen- build an exactsvD of a p x q rank+ matrix in purely lin-
vectors adM’s right singular vectors13. It can be shown earO(pqr) time when the rank is small relative to the size,
that this is strictly incorrect; there may not be any imputapecifically wherr ~ O(1/min(p,q)). This is borne out em-
tion of the missing values that is consistent witk eigen- pirically in figure 1, where a new implementation of our
vectorg. For the very sparse problems that we will considanethod is compared against a commercial Lanczos imple-
this approach is mooted by the fact tRais also incomplete mentation. When the matrix has rank, our method (and

and its eigenvectors undefined. any thinsvD algorithm) necessarily gives an approximation:
Each update will increase the rank of teegp by 1, until
4 Modifying the svD a user-specified ceiling is reached. At this point the update

Updating, downda’[ing, re\/ising7 and recentering are all iﬁeases being eX.a(-:t because- the |aSt Singular Valug W||| have
and a knowrsvb USV' = X, what is thesvD of X +ab' ? Typically this singular value has tiny mass and the approxi-
Table 1 illustrates all cases. Typically is a binary vector Mmation errors will cancel out over many updates, so that in
indicating which columns should be modified, amis de- Practise our method often has numerical accuracy compet-
values d), or a mean valuen() which should be subtractedf@st, one can always build a rank+odel and use the rank-
submodel, which is typically accurate to machine precision.
ZEvidently this has been overlooked in the literature, so we offer a sh!)ﬁ'IShOUId also be noted that_When mining datasets of elicited
proof: Take a dense matrbd with one element set to zero, and computé€SPONSes such as user ratings, the values themselves are no-
its normalized scatter matrix as if the element were missing. The differediegiously unreliable (users show poor repeatability, with rat-
between the normalized scatter aits covariance will be zeroes except forings wandering up to 40% of the scale from day to%jago

one diagonal elgment qnd the row and column coqtaining it. If there is rgood low-rank approximation of the data has higher prob-
imputation consistent with the scatter, then the off-diagonal elements of

this. . . . .
row (or column) should be the product of the imputed value and the otl?ebmty of generallzatlon than a medium-rank model that per-

values in the vector. However, the corresponding elements of the sca@Gtly reconstructs the data.
matrix are computed without regard to other values of the vector, and so no
such relationship holds. 3Joseph Konstan, personal communication.



“Thin SVD of 10001000 matrix Thin SVD of 3000x3000 random matrix

online setting with a finite memory, some sensitivity to data
ordering is unavoidable. The strategy to minimize this sen-

— incremental SVD
a5t - - batch Lanczos SVD
(truncated batch SVD takes 213 seconds)

= AR e B sitivity in sequential updating algorithms is to select updates
L fuof that have the highest probability of correctly generalizing,
" P e usually by controlling the complexity of the model while
R maximizing the probability of the data.

. Our approach exploits the fact that the (squared) sin-

L v o @ o = « gularvalues and left singular vectors compriseeup of

. ) . . . ., the data’s covariance matrix. Under the generic assumption

Ili:r|1%l;rsetuzugé;?\eLgLigg:e(mrlgg: (;J::Ir?;ggl]irsg ;ue‘,:lgo;dfuthgt the data is normally but anisotropically distributed, the
g ' 095 can be interpreted as a Gaussian model of the data den-

tion of the number of singular vector/value triplets computeSIry, andsvD updating as sequential updating of that density.

from a random matrix. Each datapoint represents the av, {ding a complete vector is equivalent to updating the den-

age of 100 trials. In each Frlal, both algorllthms COrreCté’it with a point; adding an incomplete vector is equivalent
factor the same dense matrix. The sequential update sh9 S

. . . 10 Updating the density with a subspace whose axes corre-
clear linear scaling and speed advantages. The experimen !
SO . pond to the unknown elements of the vector. If $v is
graphed at left employed low-rank matrices; at right, full;.. . : .
. . > thin, then the imputed point may be further constrained to
rank matrices having reasonable low-rank approximations

- lIe"in the intersection of the data subspace and the missing
Our method shows similar speed advantages over other up- S : .
. . value subspace. Naive imputation schemes such as linear re-
dating algorithms (e.g.8[ 15, 16]), but produces more ac-

curate results. Experiments were performed in Matlab 6 %rﬁi]issisgonv;?ﬁ% 'Sj[uzt’)slgcgsosﬁ:iglsigggﬁjgzea?;l?:];T itshc(:alos—
an AlphaServer with a 600MHzPuU and 1@& RAM. g P P

est to the origin, essentially assuming that some unknowns
are zero-valued. Such imputations are not likely to be true,

We stress thagll of the operations introduced in thiand gen_erally reduce the predictivity of the model if incor-
paper—not just the update—have low computational coRfrated into thevo. . .
plexity and work in a pure streaming-data setting, with no Cléarly imputation requires some prior or learned
data warehousing and low storage overhead. The update&pewledge. In appendi® we introduce a fast imputative
quire only the currensvb matrices, the index of the current/Pdate for use when some of the values in a ratings vector
user or product, and the vector containing the new ratin§are unknown but assumed to lie within a known range—
Even for data tables with thousands of rows and columns, théommonplace in ratings data. The solution is exact in the
updates can keep everything on tteeU's on-board memory Sense that the updated D will reconstruct a matriX whose

cache, making for very fast performance. covariance statistics exactly match those obtained by inte-
grating over the uncertain values with a uniform prior. How-
5 Imputation and prediction ever, the bounds only add information if they are asymmet-

: . . . . ric about zero; otherwise we find that this imputative scheme
Ratings tables are typically incomplete; most entries aré . e .

. . actually slightly underperforms a probabilistic scheme intro-

unknown. Missing values present a serious problem for data__,~ o .

uced in B] and modified here for data mining.

mining algorithms based on matrix factorizations because We suggest that that imputation should be informed by

the decompositions are not uniquely defined: Even if a . : .
. o X . . the density of previously processed data. It was showA]in [
single value is missing, there is a continuous orbisabs . . L : i
) . - . . .that if one considers all points in the intersection subspace
consistent with the remaining known entries. The imputation

. 2 according to their likelihood vis-a-vis the data density with
problem—how to predict missing values—plays a key role In

. . . . a uniform prior, then the posterior mean estimate of the
computing thesvD and in making recommendations.

The literature is rich with proposed imputation schem missing values is given by choosing the point that lies the

. . SRwest standard deviations from the origin. This s illustrated
Most perform a smallsvb of a submatrix that is dense, . o . . o .
in figure 2. The calculation is quite simple and is given in

regress against thevo to |mpu_te missing values in SomeappendixB.l. For svD updating the full imputation is not
adjoining part of the submatrix, perform a largevb of

the dense and imputed values, and repeat until all missneeded, just the subspace coordinates of the imputed point.

values are filled in. This can have quartic complexity, a#;\%/as also shown that this imputation greedily minimizes the

. . . . rowth of the rank of thesvD, which is the complexity of
the result is very sensitive to the choice of regression met o X :
. : € model B]. This imputation was developed to predict the
and order of imputations. Other methods are based upon_.. . .
. L . . ~location of occluded features in computer vision problems,
the expectation-maximization algorithm and have similar

X e I o and happens to give good results in data mining tasks as well.
complexity and sensitivity to initial conditions. . h . !
N Lo The imputed ordinates are essentially predictions of how
Approximation theory teaches that when learning in an



Figure 2: lllustration of imputation in 3-space viewed from side (left) and top (right). S\ currently specifies a 2-

dimensional subspace indicated by the blue (tilted) plane; its axes (eigenvectors) are indicated by the small arrows and its

1 standard deviation probability isocontour is indicated by the green ellipse. The incompletecved®P®, 2] is depicted
by the red (level) plane. The intersection of the data subspace and the completion subspace sptuwe Hepicted as a

red line. On that line, the yellow point is the most probable imputation, having smallest Mahalonobis (but not Euclidean)

distance to the density peak at the origin.

a consumer would rate all products, equivalent to a lindass than 1% of all items, so there is little chance than any
mix of the ratings of all other consumers, weighted by th&m has been rated by two users until many users have used
correlations between their ratings and the few known ratinpe system. One way to work around this is to warehouse the
of the current consumer. Thus the same machinery is ufiest few hundred submitted ratings, then re-order the rows
for imputing and recommending. and columns of this matrix so that it is dense in one corner.
In moving from continuous-valued computer visioiThis can be done by rapid sorting@(pglog pq) time. The
problems to bounded-value data mining problems, we haed can be “grown” out of this corner by sequential updating
noted a potential pathology of the of density-based imputsith partial rows and columns. When it finally becomes
tion: Itis possible (though rare) that the intersection spaceniscessary to impute values (the algorithm has run out of
very far from the origin, in which case a large but improb@omplete partial rows and columns), these imputations are
ble vector will be added to thevD. If it is known a priori reasonably well constrained. This scheme defers imputations
that such vectors are impossible (e.g., values are boundatll they can be well constrained by previously incorporated
to lie in some small range), then such constraints can oftdata. It also enables factorings of extremely sparse datasets.
be expressed as a Gaussian prior anthaimum a posterior Figure3 illustrates this method with a synthetic toy problem
imputation made via least-squares methods. In the contexanél shows that it compares favorablyMatlab's batch thin
athinsvp, this is equivalent to assuming that all of the trursvp (with column-average imputations) in terms of rank,
cated singular values hage> 0 mass instead of zero mas#og-volume, flop count, and even numeric accuracy. In the
(equivalent to the Bayesian formulation of principal compaext section we apply it to a real full-scale data-mining
nents analysis; se&9)). In this case the imputed vector willproblem.
be much smaller but will lie slightly outside the taste-space,
requiring either an exact rank-1-increasing update or an &p- Application to collaborative filtering

proximate fixed-rank update. The collaborative filtering problem takes an extremely sparse
) array of consumex product scores and asks for predictions
6 The bootstrapping problem of the missing scores. Sarwer alia[17] collected a 93.7%

The more mass in the singular values, the more constraieeapty matrix containing ratings of 1650 movies on a 1-5
the imputation is by previous inputs, and therefore the betsmale by 943 individuals, and split it 80%/20% into training
the estimatedsvD. This poses a problem in the beginningand test sets. They filled missing elements in the training
when thesvD has almost no mass because the first few useratrix with the average rating for each movie, centered the
have rated few items. In our application, users typically ratgatrix, then computed a series of thin, sparse Lanexos.



matrix with 75% missing values re—ordered matrix with SVD growth pattern
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Figure 3: Bootstrapping an imputatigyD of a mostly unknown matrix. @ LEFT. A rank-8 20x 40 matrix with 75% of

its entries randomly obliterated (setti@N). Dots indicate entries having valueso RIGHT. The matrix is rearranged and
partitioned into partial rows and columns for incremestab. The pattern of bars shows the order of updatesiME AND

BOTTOM LEFT: IncrementalsvD yields a rank-5 decomposition that reconstructs the surviving data to machine precision.
MIDDLE AND BOTTOM RIGHT: A batchsvb of the matrix with EM-imputed entries requires all 20 singular values to
reconstruct the surviving data to machine precision. Truncating the bamho rank 8 amplifies the residuals by 0

(not shown). The bottom graphs show how much of the volume of the associated Gaussians is explained by each singular
value/vectors triplet.

They found that a rank-14 basis best predicted the testtset with published reports of the performance of nearest-
as measured by average absolute ersoxe) and mean- neighbor based systems on the same dataseti(ggefhich
squared error. makes the subspace approach appealing because of its lower
We obtained their data and repeated their procedure watrerhead for storage, updates, and predictions.
similar (but not identical) numerical results: The rank-15ba- Not surprisingly, an incrementadvD of the whole
sis was marginally better than their reported result, with database indicated that the five largest singular values ac-
MAE of 0.7914 and a standard deviati®Dj of 0 = 0.9960. count for most of the variance in the data. In all cases
The difference is possibly due to different test/train splithe resulting predictor is within 1 rating point of the true
We then applied our incremental imputatiseb to the raw value more than 80% of the time and within 2 points more
training dataset and found a 5-dimensional subspace that tieth 99% of the time. This is probably more than accurate
even better prediction accuracy of 0.79%8€e, 1.0811sD enough, as raters often exhibit day-to-day inconsistencies of
(see figured). In each of 5 disjoint train/test splits, the incre1-2 points when asked to rate the same movies on differ-
mental algorithm produced a compact 4- or 5- dimensiorait days. The incremental algorithm also has the practical
basis that predicted at least as well as the best (but macvantages of being faster (GG5LOPS versus 1.&FLOPS),
larger) Lanczos-derived basis. These scores are compeatd opens the way to fast online updating of siw® as new



Collaborative filtering (matrix completion) prediction accuracy or remove her rat|ngs The demo version plctured in flg_

~~ Lanczos baich SVD (18 Gflops) L ure5 combines the recommender and thed operations in
0.98} — Incremental SVD (0.5 Gflops) . . . .
\ a standalone java applicatioayD updates average 50 mil-
0.96 ) liseconds. Some advantages of this approach are 1) real-time
0.941| 1 interactivity; 2) all of the computation for recommendations

is done on the client’s computer; 3) the basvg) is con-
stantly updated; 4) the user community “grows” the basis by
adding new movies and users.

The recommending engine and interface are lightweight
enough that they could be served as a javascript web-page. It
is even practical to combine them with tegD update in a
web-served client: Instead of using a central server to update

mean absolute error (on test set)
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087\3\‘ - | the basis, users could simply broadcast their ratings to each
' . 4ﬁ B TRET R ye—ra— other and do autonomous updates. This offers the possibility
# basis vectors used (from train set) of totally decentralized collaborative filtering.

Figure 4: Prediction error of a held-out test set from th Discussion

svDs of a training set with 93.7% of all values missing. Thg this paper we introduced family of rank€lvD revision
incremental method finds a 5-dimensional basis that begfes and showed that they efficiently allow a thsinD to

the 15-dimensional basis found by the Lanczos method (aft@imic” database operations on tables of consurmpduct
column imputations). scores: adding, deleting, and revising rows, columns, and
fragments thereof. In addition th&vD can be recentered
as the mean of the data stream drifts. All operations have

movies or viewers are added to the database. (Collaboralf¥ time and storage complexity, and run fast enough for

filtering systems typically require large overnight comput&ollaborative filtering and recommending to be a real-time
tions to incorporate new data.) graphical interaction with the model of communal tastes.

We also introduced a new imputation rule and revised a

7.1 The instant movie recommenderBecause thesyp highly successful probabilistic imputation rule in light of
basis is small and the computations are lightweight, \f@nstraints on the range of values that can be imputed.
found it practical to implement a real-time interactive collab-
orative filtering system in java, shown in figuée To query 8-1 Changing tastesA particularly interesting issue is
the system, a user selects a small number of movies by df@ to handle nonstationarity in online learning systems.
ging their titles into a rating panel, where each can be ratéd2 fielded system, it is likely that a repeat user will add
by moving a pointer along a sliding scale. Imputed ratings 8W ratings and change old ones. This is accommodated
all the other movies and a sorted list of recommendations HtEough revisions and recenterings of thep, which are
updated and displayed in real-time: As the slider moves, sifigsirable because tastes change andste should not
ers next to all other movie titles move. It takes an averagel§f anchored to “stale” ratings. These operations are exact
6 milliseconds to re-rate all movies, so the user experienéfis the table truly has rankr), yielding a model which
instantaneous feedback. One advantage of instant anim&¥@s equal weight to the most recent opinions of all users.
visual feedback is that the user can see how strongly the gi@wever, if tastes really do change, then older ratings should
dicted rating of any movie is correlated or anticorrelated wiftf discounted, because the taste subspace is nonstationary
that of the movie whose rating is currently being varied. Se&2d should be tracked over time. For large-sample processes,
ond, if the system makes a prediction that the user disagréé$ is properly accommodated by gradually forgetting the
with, she can drag that movie into the rating panel and c8@St: In the context of sequent&/d updating, the singular
rect the system. A few such iterations quickly yields a ryalues would be made to decay exponenti&lk- AS (0 <
bust (overconstrained) estimate of the user’s location in tadte- 1) on each update so that the weight of experience
space, leading to improved recommendations and a morellierally, the mass of the singular values) does not grow
formative ratings vector to be incorporated into thep. We 0 overwhelm the weight of new information (literally, the
find that users naturally engage in this kind of interaction. "Orm of a new ratings vector). When and how fast we may
When the user is done, her ratings can be sent baclaligw singular values to decay is an important question that
a central server for immediate updating of thep basis. We hope to answer in a future paper with the tools of large
A user can also obtain a persistent identifier (e.g., her c@gviation theory.
umn index) so that she can come back and review, revise, Readers may also be interested in our work on nonlinear




& Instant Recommender -0l x|

W ‘Recommendations
ltern Name [attrit..]  Attibutez | Rating (1-8) | ltern Narne | atributel | Atributez | Rating (-5 |
Starwars 1877... Sei-Fi |Adtican Queen, The 1851-Jan Romance 0 |4
Toy Story 1995... Animation |aerglow 1997-Dec Comedy = &
Scream 1996... Harrar Age of Innocence, The 1983-Jan Drama [—l |
Liar Liar 1097, Comedy airBud 1997-Aug Family ———
Independence Day 1996... Sci-Fi Air Force One 1997-Jan Thriller g
Fargo 1997... Drama &ir LUp There, The 1994-Jan Comedy e
English Patient, The 19486... Romance |airmeads 1984-Jan Comedy 3=
Faiders ofthe Lost Ark 1981... Action Aladdin 1992-Jan Animatian —E——
Willy Wonka and the Chocolate . 1871... Family “|#addin and the King of Thieves... 1986-Jan Animation g
Farrest Gump 1094... Drama alaska 1996-Aug Drama ———
Terminator, The 1984... Sei-Fi 7| |Mice in Wanderland 1951-Jan Animation =
Sound of Music, The 1965... Farnily Alien 18749-Jan Sei-Fi =
Ran 1985.. Drama mien3 1992-Jan SeirFi —=——in
Akira 1828... Animation Alien: Resurraction 1997-Jan Sei-Fi —h
“|aliens 1986-Jan Sci-Fi 3
All About Eve 1950-Jan Drarna e
“|ai Dogs Goto Heaven 2 1996-Mar Anirnation B
| Delete || Clear | |aiphavite, a Strange Asverture . 1965-Jan Sci-Fi o
| —— | | e | | Apply | / Armadeus 1984-Jan Drama . ||
AAmateur 1994-Jan Comedy — s

10 ms to add your 14 ratings to IncSvD. MPVisualizer

1648 items evaluated 2 & times, in an avg of 5 ms.

Figure 5: The Instant Movie Recommender. Moving the slider next to any movie in the left panel causes all movies on
the right to be re-rated in real-time. This double image shows how ratings change as the user raises the rating of “Ran.”
In the user community, liking “Ran” is strongly correlated with liking “The Age of Innocence,” anti-correlated with liking

“Air Bud,” and uncorrelated with liking “Alphaville.” Movies on the right can also be sorted by recommendation score in
real-time. The rating set can be changed at any time. When the user is done, her query (ratings) are used to update the basis.
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A Low-rank modifications (1.8) {dlag(s) m} ,
VD, 0 p

Let Udiage) VT “¥D" X with UTU = VTV = | be a rank-
r thin singular value decompositiors\{p) of matrix X € Which can be done i®(r?) time [10].

RP*4. This appendix shows how to updatgs,V to the Settingy = 0 effectively downdates thevb by zeroing
svD of X +AB ', whereA, B havec columns. The original the column selected bly. In this caserHs equation {.4)
matrix X is not needed. Efficient rank-1 updates allow singfmplifies to

columns (or rows) oK to be revised or deleted without the _ T
entireV (resp.U) matrix. (1.9) [dlag(s) 0} [UTA} {VTB}

Let P be an orthogonal basis ¢f — UUT)A = A — 0 O Ra Re
UUTA, the component of orthogonal toJ, as one would diag(s) 0 n n T
obtain from theQr-decomposition (1.10) = { 0 0} (I — [0} {m] )
lUTA] OR
(2.1) [U.P] [0 Ra } = UAL P is unused, and) = (b —Vn)/v1—nTn is used only

which can computed via the modified Gram-Schmidt proc'g-UpdatmgV' Note that downdating the"" column only

i ; +h
dure (165) [9, 85.2.8].Ra is upper-triangular. Similarly, let "€quires knowing theé" row of V. _ _
Q be an orthogonal basis 8— VV TB. Then The special structure and near diagonalityreifs equa-
tions (L.4-1.10 license additional numerical efficiencies.
(1.2) [U,P]"(X+AB")[V,Q] For example, lefl equalrHs equation {.10. ThenJJ' =



diag(s)? — (diags)n)(diagis)n) T is a symmetric diagonal-y; # +z. %, hasevb WAW T = 3, that can be computed
plus-rank-1 matrix. for such matrices it is knowh8[ 9, in O(k?) time directly from the vectory + z,y — z, using
section 8.5.3] that the eigenvalues—dgif—can be found the Newton method mentioned above. Updating $hve
quickly via Newton iterations for the roots df(s{z) =1— USV' =X with kvectors whose missing values are set to the
5| ;an;z while the eigenvectors%" (ﬂ —are proportional columns ofWAY2 will duplicate the second-order statistics
i of XU ¥/, and therefore completes the imputative update.
to (diag(s)” —s?I)~*n. Equation (.7) leads to a diagonal- g g itis equivalent to updating tisvo with ni.i.d. samples
plus-rank-2 symmetric eigenproblem, requiring more Sfom 9/, each scaled by/n, asn — . A single update using

phisticated solution methods. just the column ofVAY2 with the largest norm will give the
_ . . _ best single-vector approximation of the imputation.
A2 Controlling complexity If done naively, equatiofh.1 This approach becomes more powerful when the uni-

takesO(p(r -+ c)?) time, the rediagonalization tak€X{(r + form measure xiin equation 2.12 is replaced with a more
c)®) time, and the updates of the subspaces in equatién informative measure, e.g., the running estimate of data den-
takesO((p +@)(c+r)?) time. In the setting of a rank-sty da(x|0,) discussed below. The integrals are solvable
1 update of a fixed-rankvD, these times can be reducegh closed form. IfS is a dense (nondiagonal) covariance,
to O(pr), O(r?), andO(r?), respectively, by expanding theeyen symmetric bounds become informative.

MGS, performing a sparse diagonalization, and using the fol-

lowing trick: Instead of performing the large multiplicationg 1 probabilistic imputation Consider adding a vectar

U” = [U,p]U’, V" =[V,q]V’ prescribed by equatioh6, we jth missing values. Partitioainto ¢, andc,, vectors of the

leave thesvD decomposed into 5 matrices known and unknown values i respectively, and led,, U,
(1.11) Upsr Ul Srr - VI, .V;qu be the corresponding rows bf. Imputation of the missing

values via the normal equation

and only update the smaller interior matridg¢sV’. In the

case whera is contained in the subspaceldfand similarly ¢, — U.diag(s)(diag’s)U, U, diag(s))* (diags)U, c.)

b eV, p andq can be ignored and the update is exaqR.14) = U, diag(s)(U. diag(s))"c.,

Otherwise the information ip andqg can be expressed as

appends tdJ andV [3, appendix], or discarded under a fixedyields the completed vectaithat lies the fewest standard de-
rank approximation. As mentioned above, it can be showiations from the density of the (centered) data, as modelled
[3] that for low-rank matricesr(~ O(,/p)) the entiresvp by a Gaussian densit}((x|0,%), whereZ = U, diags)U.

can be computed in a series of updates totalpgqr) time. is a low-rank approximation of the covariance of the data
seen thus farX™ denotes Moore-Penrose pseudo-inverse).

B Missing values Substituting equatio.14into equatiorl.8yields
Consider a nonzero rectangular volurof possible up- di Ta

. . _ th (215 jags) U'c
dates specified by opposite corngrandz. Letz be thei!" (2.15) 0 D
element ofz. Assuming a uniform measure in this space, the ) ) ] N
volume’s second moment is (2.16) = diag(s) diag(s)(U. diag(s)) "¢

0 |lce—U.diags)(U.diag(s))"c.)|| |’
QiaZVﬁMMVﬁqfqﬁﬁHMA/ 1),
Xe

xe? whereU ' ¢ is the projection of the imputed vector onto the
where the normalizing quotient 3 4y, |z —yi|. Here the leftsingular vectors angis the distance of the vector to that
origin is taken to be the data mean, so equati®rid) is Subspace. As one might expect, with missing data it rarely
interpreted as a covariance. Any dimension in whjck= happens thap > 0.

—z can be dropped (drop elemeyptfrom y and similarly

for z); symmetric bounds are uninformative, forcing the

imputed value in that dimension to be 0. Similarly, drop

dimensions for whichy; = z; no imputation is needed.

Expanding the integrals, we find that diagonal elements

of =, are (y2 +Yyiz +7)/3 and off-diagonal elements are

(Vi +2)(yj +2)/4, or

(213) Zy=(y+2)(y+2)' /4+diagw)/12,

wherew; = (y; — 2)2. This is ak x k diagonal-plus-rank-
1 matrix wherek is the number of dimensions in which
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