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MULTI-CAMERA SURVEILLANCE 
Objec-Based Summarization Approach 

Fatih Porikli 
Mitsubishi Electric Research Laboratories 

Abstract: An automatic object tracking and video summarization method for multi-
camera systems with a large number of non-overlapping field-of-view cameras 
is explained. In this system, video sequences are stored for each object as 
opposed to storing a sequence for each camera. Object-based representation 
enables annotation of video segments, and extraction of content semantics for 
further analysis and summarization. Objects are tracked at each camera by 
background subtraction and mean-shift analysis. Then the correspondence of 
objects between different cameras is established by using a Bayesian Belief 
Network. This framework empowers the user to get a concise response to 
queries such as ``which locations did an object visited on Monday and what 
did he do there?''  
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Most of the current indoor surveillance applications have single-camera 
single-room architecture where the cameras are stationary. Typically, each 
camera is assigned to a dedicated video recorder that can store the streaming 
video in either time-lapsed or event-based mode. These events are often 
limited to simple motion detection mechanisms. Considering the huge 
amount of the video data a multi-camera system may produces over a short 
time period, more sophisticated tools for control, representation, and content 
analysis became an urgent need. The nature of surveillance applications 
demands automatic and accurate detection of object of interest, intra-camera 
tracking, fusion of multiple modalities to solve inter-camera correspondence 
problem, easy access and retrieving video data, capability to make semantic 
query, and abstraction of video content. 

Yet another challenge is the extraction of content semantics. In last 
decade, the coding standards have allowed efficient storage, compression, 
and communication by handling video information as signals. More recently, 
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object-based encoding and content-based retrieval become possible by 
extracting and analyzing features of pixels. However, the challenge remains 
for automatically extracting semantic labels for video content, including 
labeling of objects, events, places, people, and so forth. By labeling video 
content at the semantic level, the content will be easier to search, filter, 
index, summarize, and personalize. The process of video technologies 
involves transition from dealing with pixels to features to semantics to 
knowledge as illustrated in Fig.1. In bridging these gaps from pixels to 
knowledge, objects and models have an important role. The MPEG-7 
standard embodies content description models but it does not specify how to 
extract them. Here, we developed an object-based video content labeling 
method to restructure the camera-oriented videos into object-oriented results. 
We propose a summarization technique using the motion activity 
characteristics of the encoded video segments to provide a solution to the 
storage and presentation of the immense video data. 

 

 

 

Figure #-1. Formative and informative representation of a video sequence  

Although several multi-camera setups have been adapted for 3D vision 
problems, the non-overlapping camera systems are not investigated 
thoroughly. A multi-camera system is proposed in [1]. This system is based 
on a Gaussian mixture model background subtraction and Kalman filtering 
to find people in an indoor environment. A Bayesian network is used to 
combine multiple modalities. Among these modalities, the epipolar, 
homography, and landmark information assume any pair of cameras in the 
system has an overlapping field-of-view. Therefore, it is not applicable to the 
single-camera/single-room architectures. 

In this paper, we designed a framework where we can extract the object-
wise semantics from a non-overlapping field-of-view multi-camera system. 
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This framework has four main components: automatic tracking, inter-camera 
data fusion, query generation, and summarization. A flow diagram of the 
system is shown in Fig. 2. In Section 2, we present a single-camera tracking 
method. Section 3 explains a Bayesian Belief Network for inter-camera 
correspondence by using object properties and system modalities such as 
camera location information. In Section 4, we present query generation and 
summarization. 

  

Figure #-2. Architecture of the multi-camera surveillance system 

1. AUTOMATIC TRACKING 

A common approach for detecting a moving object for a stationary 
camera setup is background subtraction. The main idea is to subtract the 
current image from a reference image that is constructed from the static 
image pixels during a period of time. Background detection approaches can 
be classified as non-adaptive and adaptive methods. Manual selection, pixel-
wise voting, and mean value search algorithms are among the non-adaptive 
methods. Adaptive methods include averaging consecutive frames over time, 
Gaussian mixture models [5,6], alpha blending [7], Kalman filtering [8], and 
other statistical models [9]. 

Although averaging and alpha blending are simple and fast, they are not 
effective for scenes with many moving objects particularly if they move 
slowly. Besides, they cannot handle multi-modal backgrounds. They may 
not recover when an object occupies the scene at the initialization phase. 
Pixel-wise voting among the accumulated images may handle some of the 
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recovery problems, however it becomes computationally very expensive 
with the increasing number of images. 

The Kalman filtering approach may only provide some partial solution. 
Since lighting conditions may change in most applications, the reference 
image should be adaptive as well. The Gaussian model based approaches 
have capability of dealing with illumination changes. Also, it can learn the 
repetitive variations. However, objects that stop moving may become a part 
of the background in case the object boundaries are not exact. For the high 
number of models (>3), this method becomes too slow to be practical.  

The tracking of objects can be done either by backtracking or by forward 
tracking. The backtracking based approach segments foreground regions in 
the current image and then establishes the correspondence between the 
current and previous images. 

The forward-tracking approach estimates the positions of the regions in 
the current frame using the segmentation result obtained for the previous 
image. The limitation of the backtracking approaches is that fixed templates 
may not be sufficient for all possible objects. A well-known forward-
tracking technique is mean-shift analysis, which is a nonparametric density 
gradient estimator [3]. It is employed to derive the object candidate that is 
the most similar to a given model while predicting the next object location. 
This method provides accurate localization, and it is computationally fast. 
However, it is not automatic since it requires initial models. 

 

Figure #-3. Single-camera tracking algorithm. 
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As shown in Fig. 3, our method constructs a reference image using pixel-
wise mixture models, finds changed part of image by background 
subtraction, removes shadows by analyzing color and spatial properties of 
pixels, determines objects, and tracks them in the consecutive frames. 

In background subtraction, the current image is compared to a reference 
image to detect the changed pixels. The reference image is constructed by 
utilizing pixel-wise mixture of models as in [5]. We model the history of 
each pixel by a mixture of Gaussian distributions as 
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The reference image is updated by comparing the current pixel with the 

existing Gaussian distributions. In case of the current pixel's color value is 
within a certain distance of the mean value of a distribution, it is assigned as 
a match. This distance threshold is set to 2.5σ to include 95% of the 
distribution. If none of the K distributions (K<N) match the current pixel 
value, a new distribution is initialized. In case of K=N, the distribution with 
the highest variance is replaced with a distribution with the current pixels 
value as its mean value, and an initial variance. The initial variance is chosen 
a large value for all distributions. The mean and variance of the matched 
distributions are updated using a learning coefficient as 
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The weights of the distributions at a frame are adjusted by alpha blending as 
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The learning coefficient α  serves as a parameter that controls the rate of the 
adaptation of the reference image to the current frame. For this purpose, we 
measure the illumination change δ  for a small subset Q of the pixels as 
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where B(q) represents the background color vector at the pixel q. In case the 
value of the illumination change is relatively large, the learning parameter is 
adjusted linearly by δα 21 cc += . Unlike the traditional background update 
mechanisms that refresh the current background model at certain time 
intervals, we adapt the frequency of the update mechanism mt∆ by using the 
illumination change as 
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where maxmin ττ << , and max is the number of frames that background 
model should be updated even if there is no significant illumination change.  

t∆

After background subtraction, we detect and remove shadow pixels from 
the set of the foreground pixels. Likelihood of being a shadow pixel is 
evaluated iteratively by observing the color space attributes and local spatial 
properties. Shadow removal has two stages. At the first stage pixel-wise 
color change is evaluated to determine the possible shadow pixels. At the 
second stage, an iterative classification based on the local information within 
a local window around a pixel is done. After shadow removal, we have the 
binary image of foreground pixels that corresponds to the objects. The next 
task is to find the separate objects. To accomplish this, we first remove 
speckle noise, then determine connected regions, and group regions into 
separate objects. To speed up the filtering, we map each 32 horizontal pixels 
of the binary foreground-background map into a 4-byte integer number. By 
shifting right and left, and applying logical inclusion with the upper and 
lower rows, we actually do a morphological dilation operation. In the second 
pass, logical exclusion is applied similarly to erode the binary image.  

While the connected component analysis, we compute the total number 
of pixels of a connected region, its center of mass, ant its inner/outer boxes 
coordinates. The inner box contains 90% of the pixels by starting from the 
pixels close to the center of mass. A rule-based decision mechanism 
initializes an object by evaluating the connected components. We use box 
closeness to merge the connected components. For each group of merged 
components, an object such that its status is set to "possible" is initialized, 
and a singe outer box is fitted. We track objects by computing the highest 
gradient direction of color histogram, which is implemented as a 
maximization process. Using the histogram extracted at the previous 
frame, this process is iterated as 
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2. Compute the weights iβ  i=1,...,R 
3. Derive the new location  by mean-shift, 1y
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where the distance between two histograms are defined as 
yy →

)](,[1)( 21 yhhyd ρ−= . A sample tracking result is shown in Fig.4. 

 

Figure #-4. Single-camera tracking example from MPEG-7 ETRI dataset 

2. CORRESPONDENCE AND FUSION 

Another issue of the multi-camera system is the problem of integrating 
the tracking results of multiple cameras. To find the corresponding objects in 
different cameras and in a central database that keeps records of the previous 
appearances of all objects, the system evaluates the likelihood of possible 
pair-wise object matches. This evaluation is done by fusing the general 
object features such as color, shape, texture features, and other application 
specific modalities, i.e. camera layout information, behavioral statistics, 
human-face features, etc. 

Color feature is the most common feature that widely accepted by object 
recognition systems since it is relatively robust towards the size and 
orientation changes. Possible color features are color templates, histograms, 
moments, signatures (dominant colors), and partitive color layouts. In a 
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multi-camera setting, illumination, camera distortion, and object resolution 
differences are most likely to happen. Thus, the color feature should be able 
to compensate inter-camera distortions as well as illumination changes. 
Since pixel-wise object template representations are very sensitive to the 
scale deviations, they are not suitable in our setting. Color signature is 
defined as a selection of the colors from the quantized color space. A 
disadvantage of color signature is that they are computational complex. 
Color layout features have the ability of representing the spatial and color 
distribution properties at the same time. To extend the global color 
histogram to a local one, a natural approach is to divide the whole object into 
sub-blocks and extract color features from each of the sub-blocks. However, 
they require careful application since they depend on the shape of the object. 
Thus, we preferred to use color histogram to represent color properties of 
objects. 

Statistically, a color histogram denotes the joint probability of the 
intensities of the color channels. By modeling the inter-camera distortion and 
illumination changes as functions of histograms, the matching performance 
can be improved. We use a cross-correlation based histogram similarity 
metric to compensate the illumination and inter-camera distortions. This 
metric uses a cross-correlation matrix H where )()(1 21 nhmhhmn −−=  
using the normalized color histograms of the corresponding objects at 
different cameras. We find the maximum gain path by dynamic 
programming. By comparing this path with an inter-camera characteristic 
path for the current camera pair, we compensate for the camera distortion. 
The inter-camera characteristics are obtained by training. This metric 
evaluates the illumination differences as well. 

Texture refers to the visual patterns that have properties of homogeneity 
that do not result from the presence of only a single color or intensity. 
Although, it contains important information about the structural arrangement 
of surfaces and their relationship to the surrounding environment, such level 
of detail is usually not available in low-resolution surveillance video. 

Shape provides another clue for object matching. In general, Fourier 
descriptor and moment invariants are the most common shape 
representations. The main idea of Fourier descriptor is to use the Fourier 
transformed boundary as the shape feature. The main idea of moment 
invariants is to use region-based moments, which are invariant to 
transformations, as the shape feature. The biggest drawback of shape 
features is the sensitivity to scale changes and boundary inaccuracies. Using 
height descriptor will only help if we have the ground plane. However, since 
the existing multi-camera systems are difficult to calibrate, a precise ground 
plane is difficult to obtain. Therefore, the height is not an effective feature. 



#. Multi-camera Surveillance 9
 

Using faces to match object between cameras remains the only solution 
for certain cases, i.e. at a military complex that everyone dresses in identical 
clothes. However, in typical surveillance applications cameras are usually 
located far away from the object routes, which result in low-resolution face 
images. Another concern is the face orientation. Most face-based methods 
work only for frontal images. The accuracy of identification quickly 
decreases even with the slight orientation differences. Acquiring a high 
resolution and frontal picture of an object is not possible always to facilitate 
facial identification methods. Still, image resolution enhancement techniques 
may render face features for matching problems in the future. 

There is a strong correlation between camera system geometry and 
likelihood of the objects appearing in a certain camera after they exit from 
another one. As illustrated in Fig.5, we formulate the camera system as a 
Bayesian Belief Network, which is a graphical representation of a joint 
probability distribution over a set of random variables. A BBN is a directed 
graph in which each set of random variable is represented by a node, and 
directed edges between nodes represent conditional dependencies. The 
dependencies can represent the casual inferences among variables. The 
transition probabilities, which correspond to the likelihood of a person 
moving from one camera to another linked camera, are learned by observing 
the system. Note that, each direction on a link may have different 
probability, however the total incoming and outgoing probability values are 
equal to one. To satisfy the second constrain, some slack nodes that 
correspond to the unmonitored entrance/exit regions are added to the graph.  

  

Figure #-5. Each camera corresponds to a node in the directed graph. The links show the 
possible physical routes between the cameras. 
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Initially, there is no object assigned to any node of the BNN, the number 
of objects in the cameras and objects in the database are equal to zero. The 
database keeps track of individual objects. Let Ci the camera object O is 
detected. For each detected new object, a database entry is made using its 
color histogram features. If the object O exits from the camera Cj, then the 
conditional probability PO(Cj|Ci)$ of the same object will be seen on a 
camera Cj is computed by PO(Cj|Ci) = P(Cj|Cs1)P(Cs1|Cs2)...P(Csk|Ci) where 
{s1,s2,..,sk} is the highest probability path from Ci to Cj on the graph. Due to 
the dynamic nature of the surveillance system, these conditional probabilities 
should change with time; PO(Cj,t|Ci) = P(Cj,t|Cs1)P(Cs1,t|Cs2...P(Csk,t|Ci). 
The conditional probabilities are eroded by time as PO(Cj,t|Ci) = k.PO(Cj,t-
1|Ci) where k<1 since the object may exit from the system completely. Here, 
we do not think a multi-camera system should be a closed graph. However, 
the conditional probabilities do not become less than a threshold PO(Cj,∞ 
|Ci) = 1/(M+1), which corresponds to the identical and independent nodes. 
Here, M is the number of cameras, and the addition is due to we treat the 
database as another node. 

As a new object is detected, it is compared with the objects in the 
database and with the objects disappeared from a camera but still is not 
matched. The comparison is based on the color histogram similarity. For 
more than one object correspondence, we normalize each similarity score 
with the total of similarity scores of all possible pairs. By scaling these 
scores with the conditional probabilities, we select the correct match as the 
pair (Om,On) that maximizes g*mn P(Cm,t|Ci) P(Cn,t|Cj). To match objects 
between two cameras Ci and Cj, we evaluate the matching for all objects 
simultaneously instead of matching each single subset independently to 
minimize the matching conflicts. 
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3. OBJECT-BASED QUERY AND 

SUMMARIZATION 

  

Figure #-6. Instead of camera-based representation, multiple videos can be restructured as 
object-based sequences 

After matching the objects between the cameras, we label each video 
frame according to the object appearances. This enables us to include 
content semantics in the subsequent processes. A semantic scene is defined 
as a collection of shots that are consistent with respect to a certain semantic, 
in our case, the identities of objects. Since we have the position information 
of the cameras and we extracted which objects appeared in a which video at 
what time, we can, for instance, query for what an object did in a certain 
time period at a certain location. Thus, we are able to represent the video 
sequences with respect to the detected objects as illustrated in Fig.6. 

To obtain concise and very low-bit representation of query results, we 
generate an abstract of the query result video sequence. Video abstraction 
can be done either by providing a ``preview’’, which consists of a 
concatenation of key-video segments, or a set of key frames chosen from the 
frames that comprise the video sequence. The key-frame-based summary is a 
collection of frames that aims to capture all of the visual essence of the video 
except, of course, the motion. Making it ideal for rapid browsing of stored 
video, its constituent key frames can serve as pointers to the desired portions 
of the content. 

A key frame generation technique based on a measure of the fidelity of a 
set of key frames is introduced in [2]. The fidelity measure is defined as the 
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Semi-Hausdorff distance between the set of key frames S and the set of 
frames R in the video sequences. A practical definition of the Semi-
Hausdorff distance is as follows: Let the key frame set consist of Smax 
frames, and let the set of frames R contain Rmax frames. Let the dissimilarity 
between two frames Si and Ri be d(Si,Ri). We define fi for a frame Ri as 
fi=min[d(Sk,Ri)], k=1..Smax. Then the Semi-Hausdorff distance between S 
and R is given by max[fi], i=1..Rmax. This way we end up finding out how 
well the key frame set S represents R, because the better the representation 
the lower the Semi-Hausdorff distance between S and R. For example, in the 
trivial case, if the S and R are identical, the Semi-Hausdorff distance is zero. 
On the other hand, a high Semi-Hausdorff distance indicates that at least one 
of the frames in R was not well represented by any of the frames in the key 
frame set S. As a frame dissimilarity metric, we proposed to use motion 
activity descriptor. The motion activity score of a frame is defined as the 
standard deviation of motion vector magnitude. By treating the motion 
activity scores of a video segment as a distribution function, we obtain a 
cumulative motion activity function. We quantize standard deviation of 
motion vectors of MPEG-1 video to classify segments into five classes 
ranging from very low to very high intensity. In [4], it is showed that the 
frame at which the cumulative motion activity is half the maximum value is 
also the halfway point for the cumulative increment in information. This 
implies that it would be the best choice for the first key frame since it would 
have the minimum Semi-Hausdorff distance. Being forced to pick the first 
frame as a key frame is disadvantageous, i.e. not all of the target object is 
visible, or it is very small in the first frame in comparison to rest of the 
segment. This motivates us to find a key frame based on motion activity that 
would be better than the first frame. Thus, we select the key frames 
according to the cumulative function as shown in Fig. 7. 

 

Figure #-7. Motion activity based key-frame extraction optimal strategy: Note that the middle 
of each segment is picked 
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For a single camera, tracking takes less than 28 milliseconds/frame on 
average for color video at 320x240 spatial resolution on a Pentium4, 1.8Ghz 
computer. A base station controls the fusion of the multi camera information, 
and its computational load is negligible. We presented the object-based 
inquiry user interface in Fig.8. The tracking method can follow several 
objects at the same time even some of the objects are totally occluded for a 
long time. Furthermore, it provides accurate object boundaries. We 
initialized the Bayesian Network with identical conditional probabilities. 
These probabilities may also be adapted by observing the long-term motion 
behavior of the objects. Sample query results are shown in Fig.9. We are 
able to extract all appearances of the same person in a specified time period 
accurately. We can also count the number of different people. The 
background generation method is computationally more feasible than the 
existing mixture models, and it can achieve real-time performance even for 
full resolution video owing to the new illumination change detection and 
reference image refresh mechanisms. The shadow removal method 
effectively filters most shadow pixels without breaking object regions apart. 
This method is robust towards the perturbations of the filter parameters, and 
it adapts easily for different lighting conditions. The performance of the 
background adaptation and mean-shift analysis based object tracking method 
is comparable with the state-of-art, and it is fully automatic. It does not have 
the intrinsic shortcomings of the template-matching approaches such as 
resolution, pose, and illumination dependencies. The object-based 
representation enables us to associate content semantics, thus we can 
generate query-based summaries. This is an important functionality to 
retrieve the target video segments from a large database of surveillance 
video. The motion activity based summarization is numerically and visually 
comparable with the existing techniques and relies on computationally 
simple motion feature extraction in the compressed domain, and is thus 
much simpler than other techniques. Using additional biometrics such as 
face, gait, and speech, may be necessary for long-time tracking scenarios 
where the color features of an object change. Face recognition is a possible 
solution for this problem. Currently, we are investigating robust and 
computationally feasible ways of integrating face features. 

One storage space related challenge of the object-based representation 
arises when the object number is much greater than the number of cameras. 
In this case, instead of storing object-based video sequences, a conversion 
table that keeps the pointers from the camera-based video segments to the 
object-based video segments may be a better solution. The current tracking 
system is designed for stationary cameras. In the future, we consider 
improving the object tracking method so that it can handle pan-tilt-zoom 
cameras as well. 
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Figure #-5. Inquiry system that a user can specify the camera, time, and object to generate 
summary 

   

   

  

Figure #-6. The retrieved instances of two objects in one camera; the person with white shirt 
at frames 10, 20, 24 (first row), 215, 224, 238 (second row), and another person with red shirt 

142, 154, 392 (last row) on the same camera. 
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