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Abstract

We equate nonlinear dimensionality reduction
(NLDR) to graph embedding with side information
about the vertices, and derive a solution to either
problem in the form of a kernel-based mixture of
affine maps from the ambient space to the target
space. Unlike most spectralNLDR methods, the
central eigenproblem can be made relatively small,
and the result is a continuous mapping defined over
the entire space, not just the datapoints. A demon-
stration is made to visualizing the distribution of
word usages (as a proxy to word meanings) in a
sample of the machine learning literature.

1 Background: Graph embeddings
Consider a connected graph with weighted undirected edges
specified by edge matrixW. Let Wi j = Wji be the posi-
tive edge weight between connected verticesi and j, zero
otherwise. LetD .= diag(W1) be a diagonal matrix where
Dii = ∑ j Wi j , the cumulative edge weights into vertexi. The
following points are well known or easily derived in spectral
graph theory[Fiedler, 1975; Chung, 1997]:

1. The generalized eigenvalue decomposition (EVD)

WV = DVΛ (1)

has real eigenvectorsV .= [v1, · · · ,vN] and eigenvalues
Λ .= diag([λ1≥ λ2≥ ·· · ≥ λN]).

2. Premultiplying equation (1) by D−1 makes the general-
ized eigenproblem into astochasticeigenproblem

(D−1W)V = VΛ, (2)

where D−1W is a stochastic transition matrix having
nonnegative rows that sum to one. The largest eigen-
value of equation (1) is thereforestochastic(λ1 = 1) and
its paired eigenvector isuniform(v1 = 1/

√
N).

3. Expanding and collecting terms inWi j reveals the geo-
metric meaning of the eigenvalues:

λk = 1−∑i j (vik−v jk)2Wi j /2. (3)

The d eigenvectors paired to eigenvaluesλ2 through
λd+1 therefore give an embedding of the vertices in

Rd with minimal distortion vis-a-vis the weights, in the
sense that a largerWi j stipulates a shorter embedding
distance. Formally, the embedding

Y1:d
.= [v2, · · · ,vd+1]> = arg max

YDY>=I
trace(YWY>) (4)

minimizes the distortiond− trace(YWY>)

=
d+1

∑
k=2

(1−λk) =
d+1

∑
k=2

∑
i j

(vik−v jk)2Wi j /2 (5)

for any integerd∈ [1,N]. The norm constraintYDY> =
I sets the scale of the embedding and causes vertices of
high cumulative weight to be embedded nearer to the
origin.

4. Y can be rigidly rotated inRd without changing its dis-
tortion. The distortion measure is also invariant to rigid
translations, but the eigenproblem is not, thus there is
an unwanted degree of freedom (DOF) in the solution.
Due to stochasticity, thisDOF is isolated in the uniform
eigenvectorv1, which is suppressed from the embedding
without error (because 1− λ1 = 0). Adding tv>1 to Y
rigidly translates the embedding byt ∈ Rd.

5. Premultiplying byV> and rearranging equates equa-
tion 1 to theEVD of the graph LaplacianD−W:

V>(D−W)V = I −Λ. (6)

6. Premultiplying by D−1/2 connects equation1 to the
(symmetric)EVD of the normalized Laplacian:

(D−1/2WD−1/2)V′ = V′Λ (7)

with V′ .= D1/2V.

In summary: Equation1 gives an optimal embedding of
a graph inRd via eigenvectorsv2 · · ·vd+1; eigenvalueλ1is
stochastic and the corresponding eigenvectorv1 is uniform;
this is an important property of theEVD solution because it
isolates the problem’s unwanted translational degree of free-
dom in a single eigenvector, leaving the remaining eigenvec-
tors unpolluted.

Many embedding algorithms can be derived from this anal-
ysis, including the Fiedler vector[Fiedler, 1975], locally lin-
ear embeddings (LLE) [Roweis and Saul, 2000], and Lapla-
cian eigenmaps[Belkin and Niyogi, 2002]. For example, di-
rect solution of equation1 gives the Laplacian eigenmap; as



a historical note, the symmetrized formulation was proposed
by Fiedler in the 1970s and has been used for heuristic graph
layout since the 1980s[Mohar, 1991].

2 Transformational embeddings
Now consider a more general problem: We are given some
information about the vertices in a matrixZ .= [z1, · · · ,zN] ∈
Rd×N, whose columns are generated by applying a vector-
valued functionz(·)→ z ∈ Rd to each vertex of the graph.
We seek a linear operator which transformsZ to the optimal
graph embedding:G(Z)→ Y. We will call this the “transfor-
mational embedding,” to distinguish it from the “direct em-
bedding” discussed above.

A natural candidate for the algebraic statement of the trans-
formational embedding problem is the generalizedEVD

(ZWZ>)V = (ZDZ>)VΛ, (8)

because settingY = V>Z makes this equivalent to the orig-
inal direct embedding problem. Again, there is an equiva-
lent symmetric eigenproblem: Make Cholesky1 decomposi-
tion R>R← ZDZ> into upper-triangularR ∈ Rd×d and let

B .= (R−>ZWZ>R−1) ∈ Rd×d. (9)

Then
BV′ = V′Λ (10)

with
V′ .= RV, V = R−1V′. (11)

This gives an embedding[v2,v3, · · ·]>Z, and a computational
advantage: IfZ ∈ Rd×N is a short matrix(d� N), the origi-
nalN×N eigenproblem can be reduced to a very smalld×d
problem, and the matrix multiplications also scale asO(d2N)
rather thanO(N3), due to the sparsity ofW andD.

2.1 Correcting problematic eigenstructure
It is generally the case thatY> 6∈ range(Z>)—there is no lin-
ear combination of the rows ofZ giving Y, so the desired lin-
ear mappingG(Z)→ Y does not exist. Equations8–11 give
the optimal least-squares approximation G(Z) = V>Z ≈ Y.
This approximation can have a serious flaw: If1 6∈ range(Z>)
then the first eigenvectorv1 is not uniform; it cannot be dis-
carded as the unwanted translationalDOF. Worse, all the
other eigenvectors will be variously contaminated by the un-
wantedDOF, resulting in an embedding polluted with arti-
facts. For this reason, we call direct solution of equation8 a
raw approximation.

Our options for remedy are limited to those that modify
the row-space ofZ to reintroduce the uniform eigenvector.
For reasons that will become obvious below, we will restrict
ourselves to operations that can be applied to any column of
Z without knowing any other column.

The simplest such operation is to append a uniform row to
Z, so thatzi → [z>i ,1]>. This makes the relation betweenZ

1Any gram-like factorization will work. For example, givenEVD

AΩA>← ZDZ>, R =Ω1/2A>. The Cholesky is especially attrac-
tive for its numerical stability, sparsity, and easy invertibility.

andY affineand guarantees thatv>1 Z is uniform, but it can
also force the eigenvectors to model additional variance that
is not part of the problem.

Working backward from the desiderata that the leading col-
umn of V>Z should be uniform, letK .= diag(v>1 Z)−1 such
thatZK is a modified representation of the vertices with val-
ues ofz(·) reweightedon a per-vertex basis:zi → zi/(v>1 zi).
Clearly(V>ZK )> has a uniform first column, since each row
is divided by its first element.

It follows immediately that the related eigenproblem

(ZKWKZ >)V′′ = (ZKDKZ >)V′′Λ′′ (12)

is stochastic, and Y′′ .= [v′′2,v
′′
3, · · ·]>ZK is an embedding

with the unwanted translational degree of freedom totally re-
moved. Note that the raw and stochastic approximations are
orthogonal (under metricD): Y′′DY′′> is a diagonal matrix;
the other methods are not.

It should be noted that—when scaled to have equal norm
trace(YDY>)— none of these approximations has uniformly
superior distortion scores; but in Monte Carlo trials with ran-
dom graphs, we find a clear ordering from lowest to highest
distortion: reweighted, affine, stochastic, raw (see figure1).
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Figure 1: Comparison of methods for modifying the row-
space ofZ. The graph shows distortion from the optimal
embedding, averaged over 106 trials with 50-node matrices
having random edge weights and randomZ ∈ R4×50.

The raw approximation is suboptimal because information
about thed-dimensional embedding is spread overd + 1
eigenvectors, no subset of which is optimal. The stochas-
tic approximation is also suboptimal—it optimizes a differ-
ent measure implied by equation12. In practice, when com-
puting embeddings of graphs whose embedding structure is
known a priori, we find that the reweighted and stochastic
approximations give results that are clearly very similar, and
superior to the other approximations.

The need forany such correction stems from the fact
that—the literatures of spectral graph theory andNLDR
notwithstanding—equation1 is not a completely correct
statement of the embedding problem. We will show in a
forthcoming paper that, as a statement of the embedding
problem, equation1 is both algebraically underconstrained
and numerically ill-conditioned. In particular, point #2 is



not strictly true: The stochastic eigenvalue is not always
paired to a uniform eigenvector. This leads to patholo-
gies that can ruin the embedding, whether obtained from the
basic or derived formulations.NLDR algorithms that can
be derived from equation1 (e.g., [Roweis and Saul, 2000;
Belkin and Niyogi, 2002; Teh and Roweis, 2003]) do not re-
mediate the problem.

A forthcoming paper makes a full analysis of these is-
sues, identifies the correct problem statements for both equa-
tions1 & 8, and gives closed-form optimal solutions to both
problems. The approximation methods discussed in this sec-
tion are still useful in that they are faster and give reasonably
high-quality embeddings. For theNLDR method and datasets
considered below, the result of the reweighted approxima-
tion is almost numerically indistinguishable from the optimal
embedding, and requires substantially less calculation. The
reweighting method can also be justified as a Padé approxi-
mation of the optimal solution.

3 Nonlinear dimensionality reduction
Let X .= [x1, · · · ,xN] ∈ RD be a set of points sampled from a
low-dimensional manifold embedded in a high-dimensional
ambient space. A reduced-dimensionembeddingY .=
[y1, · · ·yN] ∈ Rd with d < D ≤ N is a set of low-dimensional
points with the same local neighborhood structure. We de-
sire instead amapping G: RD → Rd, which will general-
ize the correspondence to the whole continuum, with rea-
sonable interpolation and extrapolation to be expected in the
neighborhood of the data. Spectral methods forNLDR typ-
ically require solution of many and/or very large eigenvalue
or generalized eigenvalue problems[Kruskal and Wish, 1978;
Kambhatla and Leen, 1997; Tenenbaumet al., 2000; Roweis
and Saul, 2000; Belkin and Niyogi, 2002], and with the ex-
ception of[Teh and Roweis, 2003; Brand, 2003], offer em-
beddings of points rather than mappings between spaces.

Here we show how a leverage the transformational embed-
ding of section2 into a continuousNLDR algorithm, specifi-
cally a kernel-based mixture of affine maps from the ambient
space to the target space. To do so, we must show how the
edge weight matrixW and vertex matrixZ are specified. Let
Wi j

.= f (xi ,x j) iff xi and x j satisfy some locality criterion,
e.g.,‖xi − x j‖ < ε, otherwiseWi j = 0. As stated above, an
embeddingY of X should satisfy

Y = argmin
Y

∑i 6= j ‖yi−y j‖2Wi j (13)

where largerWi j penalize large distances betweenyi andy j .
How shouldWi j be computed?f is a measure of similar-

ity: The graph-theoretic literature usually takesf (·, ·) = 1,
while NLDR methods typically takef (xi ,x j) ∝ exp(−‖xi −
x j‖2/2σ2) to be a Gaussian kernel, on analogy to heat dif-
fusion models[Belkin and Niyogi, 2002]. The uninforma-
tive settingWi j = 1 is only usable when there is a very large
number of points (and edges), so that connectivity informa-
tion alone suffices to determine metric properties of the em-
bedding. The Gaussian setting has a complementary weak-
ness: It can be very sensitive to small variations in distance
to neighbors (that may be introduced by the curvature of the
data manifold or measurement noise in the ambient space).

f should be monotonically decreasing, relatively insensitive
to noise (df should be small), and it should lead to exact re-
constructions of data sampled from manifolds that are already
flat. Straightforward calculus shows that equation13 has the
desired minimum whenf (xi ,x j) ∝ ‖xi−x j‖−1, or more gen-
erally, the multiplicative inverse of whatever distance mea-
sure is appropriate in the ambient space2. (By contrast, the
LLE weightings are not correlated with distances.) To make
the problem scale invariant, we scaleW such that its largest
nonzero off-diagonal value is 1 (consequently df ≤ 1 every-
where f is computed).

Let us now situate some Gaussian kernelspk(x) .=
N (x|µk,Σk) on the manifold. In this paper, we will take a
random subset of data points as kernel centers, and set all
Σk = σ2I ; these kernels are radial basis functions. Let vector

zik
.=

[
K i(xi−µk)

1

]
pk(xi)

∑k pk(xi)
(14)

be thekth local homogeneous coordinate ofxi scaled by
the posterior of thekth kernel. K i is an optional local
dimensionality-reducing linear projection. Let representation
vector

z(xi)
.= [⇓k zik] = [z>i1, · · · ,z>iK ]> (15)

be the vertical concatenation of all such local coordinate vec-
tors. Collect all such column vectors into abasis matrix
Z .= [z(x1), · · · ,z(xN)].

To summarize thus far, our goal now is to find a linear
transformyi

.= G(z(xi)) of the basis (kernel-weighted coor-
dinates) that is maximally consistent with our local distance
constraints, specifically

Y = [y1, · · ·yN] = argmin
Y

∑
i j

‖yi−y j‖2

‖xi−x j‖
(16)

This is isomorphic to the graph embeddings of section2; the
methods developed there apply directly toW andZ. The con-
tinuous mapping from ambient to embedding space immedi-
atly follows from the continuity and smoothness ofz(·):

G(x) = Gz(x),

where the EVD determines the transformationG .=
[v2, · · · ,vd+1]> of the continuous kernel representation de-
fined over the entire ambient space:

z(x) .=
[
⇓k

[
K i(x−µk)

1

]
pk(x)

∑k pk(x)

]
. (17)

2Proof: Consider three points{x1 = 0, x2 = λ, x3 = 1} on a 1D
manifold. What similarity measureWab = f (‖xa− xb‖) causes the
distortion(y2−y1)2W12+(y2−y3)2W23 to have a global minimum
at y2 = λ? Without loss of generality, we fix the global location and
scale of the embedding by fixing the endpoints:{y1 = 0, y3 = 1}.
Solving for the unique zero of the distortion’s first derivative, we
obtain the optimum aty2 = W23/(W12+W23). Since this is a har-
monic relation, the unique continuous satisficing measure isWab =
(‖xa− xb‖)−1. This setsW12 = 1/λ andW23 = 1/(1− λ); some
simple algebra confirms that indeedy2 = λ at the optimum. The
induction to multiple points in multiple dimensions is direct.



As a matter of numerical prudence, we recommend using
the reweighted approximation:

G(x) =
Gz(x)
v>1 z(x)

. (18)

At first blush, it would seem that reweighting should not be
necessary: By construction,1 ∈ range(Z>), thusv>1 z(x)—
and the denominator—should be uniform at the datapoints.
However, as mentioned above, even when the algebra predicts
this structure, numerical eigensolvers may not find it.

To obtain an approximate inverse mapping, we map the
means and covariances of each kernelpk(·) into the target
space to obtain kernelsp′k(y) .= N (y|µ′,Σ′) there. Then,
breakingG = [G1, · · · ,GK ] into blocks corresponding to each
kernel, take the Moore-Penrose pseudo-inverse of each, and
setG+ .= [G+

1 , · · · ,G+
k ]. If using the reweighted map, the ap-

proximate inverse map is

G+(y)≈G+z+(y) · (v>1 G+z+(y)), (19)

wherez+(y) .=
[
⇓k

[
y−µ′k

1

]
p′k(y)

∑k p′k(y)

]
.

4 Illustrative example
We will use a variant of the

Figure 2: The swiss roll.

“swiss roll”, a standard test man-
ifold in the NLDR community, to
illustrate the arguments and meth-
ods developed in this paper. We
sampled a twisted version of the
manifold regularly on a 30× 30
grid and added a small amount
of Gaussian isotropic noise. Fig-
ure 2 shows the idealR2 param-
eterization and two views of the
ambientR3 embedding. Points
are shown joined into a line to aid
visual interpretation of the em-
beddings. All experiments in this

section use aW matrix that was generated using the 12 near-
est neighbors to each point and the inverse distance function.

The Laplacian eigenmap

Figure 3: Laplacian eigenmap
embedding.

embedding (figure3) shows
the embedding specified by
the W matrix. Note
that it exhibits some fold-
ing at the corners and
top and bottom edges, due
partly to problems with the
uniform eigenvector and
exacerbated by the fact
that spectral embeddings
tend to compress near the
boundaries. The Laplacian
eigenmap requires solution
of a large 900×900 eigen-
problem, and offers no mapping off the points. Kernel eigen-
maps will be approximations to this embedding.

We now show some kernel eigenmaps computed using the
transformational embedding of section2. All embedding
methods are given the same inputs.

Figure 4 shows a raw

Figure 4: Kernel eigenmap
embedding, raw result.

kernel eigenmap embedding
computed using a basis (Z
matrix) created from 64
Gaussian unit-σ kernels
placed on random points.
This required solving a
much more manageable
256× 256 eigenproblem.
100 trials were performed
with different sets of ran-
domly placed kernels. In all
trials, the reweighted and
stochastic maps gave the
best reconstructions, while

the raw and affine maps exhibited substantial folding at the
edges and corners of the embedding.

Figure 5 shows a

Figure 5: Kernel eigenmap
embedding, reweighted and
regularized results.

reweighted kernel eigen-
map computed from the
sameW andZ as figures3
& 4. The result is smoother
and actually exhibitsless
folding than the original
Laplacian eigenmap.

The problem can be reg-
ularized by putting positive
mass on the diagonal ofW
(e.g.,W→W + I ), thereby
making the recovered ker-
nel eigenmap more isomet-
ric (bottom figure5). This
regularization is appropri-
ate when it is believed
that all neighborhoods are
roughly the same size.

The recently proposed
Locality Preserving Projec-
tion (LPP) [He and Niyogi,
2002], is essentially the raw
approximation (direct solu-
tion of equation 8) with
Wi j = e−‖xi−x j‖2/t and Z = X, thereby giving a linear pro-
jection from the ambient space to the target space that best
preserves local relationships.

LPP is admirably simple,

Figure 6: LPP embedding and
our affine upgrade.

but it can be shown that the
affine approximation from
section 2 will always have
less distortion.LPPcan also
suffer from loss of the uni-
form eigenvector. Figure6
shows embeddings of the

swiss roll produced byLPPand by an affine modification of it
that is equivalent to our method with a trivial single uniform-



density kernel. UpgradingLPP to an affine projection cap-
tures more of the data’s structure. Even so, there is no affine
“view” of this manifold that avoids folding.

5 Visualizing word usages
In statistical analyses of natural language, similar usage pat-
terns for two words are taken to indicate that they have sim-
ilar meanings or strongly related meanings. Latent semantic
analysis (LSA) is a linear dimensionality reduction of a term-
document co-occurence matrix. The principal components of
this matrix give an embedding in which similarly used words
are similarly located. Literally, co-location is a proxy for col-
location (the propensity of words to be used together) and
synonymy. We may expect that the kernel eigenmap offers a
more powerful nonlinear analysis:

The NIPS12 corpus3 features a matrix counting occur-
rences of 13000+ words in 1700+ documents. We mod-
eled the first 1000 words and the last 200 documents in the
matrix. This roughly corresponds to one year’s papers, a
reasonable “snapshot” of the ever-changing terminology of
the field. We stemmed the words and combined counts for
the same roots, then determined distance between two word
roots as the cosines of the angles between their log-domain-
transformed occurrence vectors (xi j → log2(1+xi j )). TheW
matrix was generated by adding an edge from each word to
its 30 closest neighbors in cosine-space. The representation
Z was made using 4 random words as kernel centers. Fig-
ure7 discusses the resulting 2D embedding, in which techni-
cal terms are clearly grouped by field and many of the more
common English words are tightly clustered by common se-
mantics. The first twoLSA dimensions (also shown in fig-
ure7) of the same data are reveal significantly less semantic
structure.

6 Discussion
The kernel eigenmap generates continuous nonlinear map-
ping functions for dimensionality reduction and manifold re-
construction. Suitable choices of kernels can reproduce the
behavior of several otherNLDR methods. One could put a ker-
nel at every local group of points, perform local dimensional-
ity reduction (e.g., aPCA) at each kernel, and thereby obtain
from equations8 and17anNLDR algorithm much like chart-
ing [Brand, 2003] or automatic alignment[Teh and Roweis,
2003]. Or, as in the demonstrations above, the kernel eigen-
map can simultaneously determine the local dimensionality
reductions and their global merger.

The kernel eigenmap typically substitutes a small dense
EVD for the the large sparseEVD of graph embedding prob-
lems. In the sparse case, a specialized power method can
compute the desired eigenvectors in significantly less than the
O(N3) time required for a fullEVD. In the kernel setting,
similar efficiencies apply because bothW andZ are typically
sparse, allowing fast construction of the reducedEVD prob-
lem ZWZ>; this too is amenable to fast power methods. Of
course, the most important efficiency of the kernel method
is its ability to embed new points quickly via the function

3Courtesy S. Roweis, available from the U. Toronto website.

G(x)—there is no need to compute a new global embedding
or revise theEVD.

The reweighting scheme, although theoretically mooted by
our subsequent discovery of a better problem formulation and
closed-form solution, is still practically viable as a fast ap-
proximation for large problems, and as a post-conditioning
step for unavoidable numerical error of anyNLDR algorithm
based on eigenvalue decompositions.

In this paper we have used random kernels. There are nu-
merous avenues to discovering stronger methods by investi-
gating placement and tuning of the kernels, stability of the
embedding and its topological structure, and sample com-
plexity. In short, all the issues that proved fertile ground
for research in classification and regression can be studied
anew in the context of estimating the geometry and topology
of manifolds.
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Figure 7: ABOVE: A 2D kernel eigenmap of word usages in recent NIPS papers. To improve legibility we show just a subset
of the data; some labels have been shifted slightly to reduce overlap. Word roots are shown in their first occurring unstemmed
variant. The three lobes of the distribution roughly correspond to favored terminology in the submission areas of Algorithms &
Architectures (left), Neuroscience (right), and Theory (top). Words with broader usage are more tightly distributed in the center
(presumably because they are more likely to co-occur in general discourse), with several clusters of words having strongly
related meanings. Three of these clusters have been colored: red for publishing terms (IEEE, conference, number, paper,
proceedings, volume), green for probability terms (bayesian, estimate, independent, map, marginal, posterior, joint, statistical),
and blue for locations (cambridge, department, institute, university). BELOW, SMALLER: A linear embedding obtained from
a latent semantic analysis of the same data. Though collocated words are often co-located, when compared with the kernel
eigenmap result, semantic structures are far less obvious.
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