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Continuous nonlinear dimensionality reduction by kernel eigenmaps

Matthew Brand
Mitsubishi Electric Research Laboratories
Cambridge, MA 02460 USA

Abstract

We equate nonlinear dimensionality reduction
(NLDR) to graph embedding with side information
about the vertices, and derive a solution to either
problem in the form of a kernel-based mixture of
affine maps from the ambient space to the target
space. Unlike most spectralLDrR methods, the
central eigenproblem can be made relatively small,
and the result is a continuous mapping defined over
the entire space, not just the datapoints. A demon-
stration is made to visualizing the distribution of
word usages (as a proxy to word meanings) in a
sample of the machine learning literature.

1 Background: Graph embeddings

Consider a connected graph with weighted undirected edges

specified by edge matri¥v. Let W; =Wj; be the posi-
tive edge weight between connected verticesd j, zero
otherwise. LetD = diag(W1) be a diagonal matrix where
Dii = ¥ jW;, the cumulative edge weights into vertexThe

following points are well known or easily derived in spectral

graph theonjfFiedler, 1975Chung, 199F:
1. The generalized eigenvalue decompositiewt)
WV = DVA 1)

has real eigenvectod = [v1,---,vn] and eigenvalues
N= diag([)\l >N > > )\ND

2. Premultiplying equationl) by D—! makes the general-
ized eigenproblem into stochastieigenproblem

4.

6.

RY with minimal distortion vis-a-vis the weights, in the
sense that a largéM; stipulates a shorter embedding
distance. Formally, the embedding

Yig=[V2,---,Vas1]' =arg max tracgYWY ') (4)
YDY =

minimizes the distortionl — tracg YWY )
d+1 d+1

= k;(l_Ak) = k; %(Vik —Vi)Wj /2 (5)

for any integed € [1,N]. The norm constraintDY " =

| sets the scale of the embedding and causes vertices of
high cumulative weight to be embedded nearer to the
origin.

Y can be rigidly rotated ifR® without changing its dis-
tortion. The distortion measure is also invariant to rigid
translations, but the eigenproblem is not, thus there is
an unwanted degree of freedomqF) in the solution.
Due to stochasticity, thisoF is isolated in the uniform
eigenvectory, which is suppressed from the embedding
without error (because 4A; = 0). Addingtv] to Y
rigidly translates the embedding by RC.

. Premultiplying byV " and rearranging equates equa-

tion 1 to theevD of the graph Laplacia® — W:
VI(D-W)V=1-A. (6)

Premultiplying by D-Y/2 connects equatior to the
(symmetric)evD of the normalized Laplacian:

(D~Y2WD Y2V = V/A @)
with V' = DY/2v.

. Expanding and collecting terms f; reveals the geo-

(D 1W)V:VA’ (2) In summary: Equatioril gives an optimal embedding of
whereD~W s a stochastic transition matrix having @ graph inR? via eigenvectors/z---vq.1; eigenvaluehsis
nonnegative rows that sum to one. The largest eigenstochastic and the corresponding eigenveiois uniform;
value of equation) is thereforestochastiqgh; = 1) and  this is an important property of thevd solution because it
its paired eigenvector isniform (vy = 1/v/N). |solat_es th_e probl_em’s unwanted _translatlonal_d_egret_e of free-

dom in a single eigenvector, leaving the remaining eigenvec-
tors unpolluted.
Many embedding algorithms can be derived from this anal-
ysis, including the Fiedler vectgFiedler, 1975, locally lin-
ear embeddingsL(E) [Roweis and Saul, 2000and Lapla-
The d eigenvectors paired to eigenvaluks through  cian eigenmapEBelkin and Niyogi, 200P. For example, di-
Agr1 therefore give an embedding of the vertices inrect solution of equatiofi gives the Laplacian eigenmap; as

metric meaning of the eigenvalues:
Me= 1= 3 (Vik — Vi) "W /2. 3)



a historical note, the symmetrized formulation was propose@ndY affineand guarantees thaf Z is uniform, but it can
by Fiedler in the 1970s and has been used for heuristic grapdiso force the eigenvectors to model additional variance that

layout since the 198d#/1ohar, 1991. is not part of the problem.
Working backward from the desiderata that the leading col-
2 Transformational embeddings umn of V'Z should be uniform, leK = diag(v{ Z)~! such

thatZK is a modified representation of the vertices with val-
Bies ofz(-) reweightedon a per-vertex basig; — z/(v] z).
Clearly(V"zK)" has a uniform first column, since each row
is divided by its first element.

It follows immediately that the related eigenproblem

Now consider a more general problem: We are given som
information about the vertices in a matiax= [z;,---,zn] €
RI*N whose columns are generated by applying a vector
valued functionz(-) — z € R® to each vertex of the graph.
We seek a linear operator which transformgo the optimal

graph embedding5(Z) — Y. We will call this the “transfor- (ZKWKZ ")V = (ZKDKZ ")V'N' (12)
mational embedding,” to distinguish it from the “direct em- ) ) )
bedding” discussed above. is stochastic and Y” = [v§,v5,---]TZK is an embedding
A natural candidate for the algebraic statement of the trans¥ith the unwanted translational degree of freedom totally re-
formational embedding problem is the generalizs moved. Note that the raw and stochastic approximations are
orthogonal (under metriD): Y”/DY”" is a diagonal matrix;
(ZWZ ")V = (ZDZ "VA, (8)  the other methods are not.

It should be noted that—when scaled to have equal norm

because settiny =V 'Z makes this equivalent to the orig- tracd YDY T )— none of these approximations has uniformly

:nal direct embedding prt;’lblern,'vl Al‘(gaigr'] tlheére IS an equivaynerior distortion scores; but in Monte Carlo trials with ran-
ent symmetric eigenproblem: Make CholeSkdecomposi- o graphs, we find a clear ordering from lowest to highest

: : ; dxd om g . : . .
tionR'R «ZDZ " into upper-triangulaR € R”@and let gjstortion: reweighted affine stochastic raw (see figurel).

B = (RiTZWZ T Ril) S RdXd~ (9) Graph embedding distortions
0.16 T T
Then
BV = VA (10) o
Wlth 0.121
V=RV, V=R V. (11) 01

This gives an embeddings,vs,---] " Z, and a computational
advantage: IZ € R%N is a short matrixd < N), the origi-
nalN x N eigenproblem can be reduced to a very sdadld
problem, and the matrix multiplications also scalege?N)
rather tharO(N®), due to the sparsity a andD.

o o
o o
= >

avg normed distance to optimal (106 trials)
o o
o o
N =]

reweighted affine stochastic

2.1 Correcting problematic eigenstructure modification to eigenproblem

It is generally the case that" ¢ rangéZ " )—there is no lin-

ear combination of the rows & giving Y, so the desired lin- Figure 1. Comparison of methods for modifying the row-

ear mappinds(Z) — Y does not exist. Equatior&-11give  space ofZ. The graph shows distortion from the optimal

the optimal least-squares approximation®) =V'Z ~Y. embedding, averaged o_verelﬂiials with 50-node matrices

This approximation can have a serious flawl #f ranggz ")  having random edge weights and randara R**.

then the first eigenvectar is not uniform; it cannot be dis-

carded as the unwanted translatiomalr. Worse, all the The raw approximation is suboptimal because information

other eigenvectors will be variously contaminated by the unabout thed-dimensional embedding is spread ower- 1

wantedDOF, resulting in an embedding polluted with arti- €igenvectors, no subset of which is optimal. The stochas-

facts. For this reason, we call direct solution of equaBian  tic approximation is also suboptimal—it optimizes a differ-

raw approximation. ent measure implied by equatid. In practice, when com-
Our options for remedy are limited to those that modify Puting embeddings of graphs whose embedding structure is

the row-space of to reintroduce the uniform eigenvector. knowna priori, we find that the reweighted and stochastic

For reasons that will become obvious below, we will restrictapproximations give results that are clearly very similar, and

ourselves to operations that can be applied to any column @fuperior to the other approximations.

Z without knowing any other column. The nee_d forany such correction stems from the fact
The simplest such operation is to append a uniform row t¢ghat—the literatures of spectral graph theory amcbr

Z, so thatzy — [z',1]T. This makes the relation betwegn notwithstanding—equatiori is not a completely correct
statement of the embedding problem. We will show in a

1Any gram-like factorization will work. For example, giveavp ~ forthcoming paper that, as a statement of the embedding
AQAT — zDz T, R=QY2AT. The Cholesky is especially attrac- problem, equatiorl is both algebraically underconstrained
tive for its numerical stability, sparsity, and easy invertibility. and numerically ill-conditioned. In particular, poinR#s



not strictly true: The stochastic eigenvalue is not always f should be monotonically decreasing, relatively insensitive
paired to a uniform eigenvector This leads to patholo- to noise (d should be small), and it should lead to exact re-
gies that can ruin the embedding, whether obtained from theonstructions of data sampled from manifolds that are already
basic or derived formulations.NLDR algorithms that can flat. Straightforward calculus shows that equati@has the
be derived from equatiof (e.g.,[Roweis and Saul, 2000 desired minimum wheffi(x;, ;) O || —xjH*l, or more gen-
Belkin and Niyogi, 2002 Teh and Roweis, 200Bdo not re-  erally, the multiplicative inverse of whatever distance mea-
mediate the problem. sure is appropriate in the ambient spacéy contrast, the

A forthcoming paper makes a full analysis of these is-LLE weightings are not correlated with distances.) To make
sues, identifies the correct problem statements for both equ#tae problem scale invariant, we sc&lé such that its largest
tions1 & 8, and gives closed-form optimal solutions to both nonzero off-diagonal value is 1 (consequentfy<d 1 every-
problems. The approximation methods discussed in this seavheref is computed).
tion are still useful in that they are faster and give reasonably Let us now situate some Gaussian kern@lgx) =
high-quality embeddings. For the.DR method and datasets A/(x|u,2x) on the manifold. In this paper, we will take a
considered below, the result of the reweighted approximarandom subset of data points as kernel centers, and set all
tion is almost numerically indistinguishable from the optimal 5, = 62l ; these kernels are radial basis functions. Let vector
embedding, and requires substantially less calculation. The
reweighting method can also be justified as a Padé approxi- Zi = Ki(xi — ) | _Px(Xi) (14)
mation of the optimal solution. ! 1 Sk Pk(Xi)

; i ; ; ; be thekth local homogeneous coordinate xf scaled by
3 Nonlinear dlmenS|onaI|ty reduction the posterior of thekth kernel. K; is an optional local

Let X = [x4,---,%n] € RP be a set of points sampled from a dgimensionality-reducing linear projection. Let representation
low-dimensional manifold embedded in a high-dimensionalector

ambient space. A reduced-dimensiembeddingY = N 15T .. STT

ly1,---yn] € RY with d < D < N is a set of low-dimensional 2xi) = [ zi] = (70, 2] (15)

points with the same local neighborhood structure. We debe the vertical concatenation of all such local coordinate vec-

sire instead anapping G: RP — RY, which will general- tors. Collect all such column vectors intobasis matrix

ize the correspondence to the whole continuum, with reaZ = [z(X1),---,Z(Xn)].

sonable interpolation and extrapolation to be expected in the To summarize thus far, our goal now is to find a linear

neighborhood of the data. Spectral methodsNobR typ-  transformy; = G(z(x;)) of the basis (kernel-weighted coor-

ically require solution of many and/or very large eigenvaluedinates) that is maximally consistent with our local distance

or generalized eigenvalue problefsuskal and Wish, 1978  constraints, specifically

Kambhatla and Leen, 199Tenenbaunet al, 200Q Roweis

and Saul, 2000Belkin and Niyogi, 200, and with the ex-

ception of[Teh and Roweis, 2008rand, 2003, offer em-

beddings of points rather than mappings between spaces.
Here we show how a leverage the transformational embedrFhis is isomorphic to the graph embeddings of secfiptie

ding of sectior? into a continuousiLDR algorithm, specifi- methods developed there apply directiW¥oandZ. The con-

cally a kernel-based mixture of affine maps from the ambientinuous mapping from ambient to embedding space immedi-

space to the target space. To do so, we must show how tratly follows from the continuity and smoothnessz6):

edge weight matrixV and vertex matrixZ are specified. Let

W = f(x;,X;) iff x; andx; satisfy some locality criterion, G(x) = Gz(x),

e.g., [|[xi —X;|| < g, otherwiseW; = 0. As stated above, an

embeddingy of X should satisfy

Y = [yl,...yN] :argminzw (16)
Y ] ||Xi 7XJ-||

where the EvD determines the transformatiolG =
[Va,---,Vgr1] | Of the continuous kernel representation de-

Y =argminyi; [lyi —Y; |2 (13) fined over the entire ambient space:
Y
where large; penalize large distances betwegrmndy;. 2(%) = [Uk [ Ki(X = k) } Px(X) ] . (17)
How shouldW; be computed? is a measure of similar- 1 Sk Pk(X)

ity: The graph-theoretic literature usually takés, ) =1,

while NLDR methods typically take (x;,x;) O exp(—||x; — 2Proof: Consider three poinfsq = 0,x = A, x3 = 1} on a b
xj[2/202) to be a Gaussian kernel, on analogy to heat dif-manifold. What similarity measutfy, = f (|jxa —Xp||) causes the
fusion modeldBelkin and Niyogi, 200P. The uninforma-  distortion(y2 —y1)“Wi2+ (y2 —y3)"Was to have a global minimum
tive settingWj = 1 is only usable when there is a very large 312 = A? Without loss of generality, we fix the global location and
number of points (and edges), so that connectivity informaScalé of the embedding by fixing the endpoingg; = 0. ys = 1.

i | i to det - tri fi fth Solving for the unique zero of the distortion’s first derivative, we
ion alone suffices to determine metric properties of the emgpi i ihe optimum ag, — Waa/(Wia 1 Wos). Since this is a har-

bedding. The Gaussian setting has a complementary wealgonic relation, the unique continuous satisficing measuvéjs—
ness: It can be very sensitive to small variations in distance|x, — x,||)~1. This setsWi» = 1/A andWsz = 1/(1—A); some
to neighbors (that may be introduced by the curvature of theimple algebra confirms that indeggl= A at the optimum. The
data manifold or measurement noise in the ambient spacehpduction to multiple points in multiple dimensions is direct.



As a matter of numerical prudence, we recommend using We now show some kernel eigenmaps computed using the

the reweighted approximation: transformational embedding of secti@x All embedding
methods are given the same inputs.

Gz(x) .
=—=. (18) Figure 4 shows a raw

vy Z(X) \ kernel eigenmap embedding
computed using a basiZ (
matrix) created from 64
Gaussian unit  kernels
placed on random points.
This required solving a
much more manageable
256 x 256 eigenproblem.
100 trials were performed

G(x)

At first blush, it would seem that reweighting should not be
necessary: By constructiod, < rangéZ "), thusv, z(x)—

and the denominator—should be uniform at the datapoints.
However, as mentioned above, even when the algebra predicts
this structure, numerical eigensolvers may not find it.

To obtain an approximate inverse mapping, we map the
means and covariances of each kerpgdl) into the target
space to obtain kernelp,(y) = A((y|W,Y") there. Then, with different sets of ran-
breakingG =[Gy, - - -, Gk] Into blocks corresponding to each domlv placed kernels. In all
kernel, take the Moore-Penrose pseudo-inverse of each, and ) _ trial y F:h iqhted and
setG+ = [GIa .. 'VGN' If using the reweighted map, the ap- Figure 4 Kernel eigenmap trials, the reweignted an
proximate inverse map is embedding, raw result. stochastic maps gave the

best reconstructions, while

(19) the raw and affine maps exhibited substantial folding at the
edges and corners of the embedding.

Figure 5 shows a
reweighted kernel eigen-
map computed from the

4 lllustrative example sameW andZ as figures3
& 4. The result is smoother

We will use a variant of the and actua”y exhibitsless
“swiss roll’, a standard test man- folding than the original
ifold in the NLDR Community, to Lap|a_cian eigenmap_
illustrate the arguments and meth- o problem can be reg-

ods developed in this paper. We : : -
sampled a twisted version of the umlzggec:jnbt;r/]é) Léﬁgg%r?:lsw ©

manifold regularly on a 3& 30 (e
¢ .9.,W — W +1), thereby
grid and added a small amount making the recovered ker-

of Gaussian isotropic noise. Fig- : :
. nel eigenmap more isomet-
ure 2 shows the ideaR? param- : ; .
-2 . ric (bottom figure5). This
eterization and two views of the i :
ambientR® embeddin Points regularlzatlo.n 'S appropri
are shown joined into a%line to aid ate when it is believed
Figure 2: The swiss roll. yjsual interpretation of the em- igﬁt ﬁl'" tnheégsgt;g(rah;ggs are
beddings. All experiments in this T?] y | ' d
section use &V matrix that was generated using the 12 near- "€ recently propose

est neighbors to each point and the inverse distance functiorlr.Ocality Preserving F_’roje_c- ) )
The Laplacian eigenmap tion (LPP) [He and Niyogi, Figure 5: Kernel eigenmap

G (y) =G Z'(y)- (viG*Z"(y)),

wnerez'(y) = [1x [ V% | 5]

embedding (figur&) shows
the embedding specified by
the W matrix. Note
that it exhibits some fold-
ing at the corners and
top and bottom edges, due
partly to problems with the
uniform eigenvector and
exacerbated by the fact
that spectral embeddings
tend to compress near the
boundaries. The Laplacian
eigenmap requires solution

/

Figure 3: Laplacian eigenmap

of a large 900« 900 eigen- €mbedding.
problem, and offers no mapping off the points. Kernel eigenswiss roll produced bypp and by an affine modification of it
that is equivalent to our method with a trivial single uniform-

maps will be approximations to this embedding.

2007, is essentially the raw embedding, reweighted and
approximation (direct solu- regularized results.

tion of equation 8) with

W; = e X—xil*t andZ = X, thereby giving a linear pro-
jection from the ambient space to the target space that best

preserves local relationships.

Figure 6: LPP embedding and
our affine upgrade.

LPPis admirably simple,
but it can be shown that the
affine approximation from
section 2 will always have
less distortionLPPcan also
suffer from loss of the uni-
form eigenvector. Figuré
shows embeddings of the



density kernel. UpgradingpPp to an affine projection cap- G(x)—there is no need to compute a new global embedding
tures more of the data’s structure. Even so, there is no affiner revise theevp.

“view” of this manifold that avoids folding. The reweighting scheme, although theoretically mooted by
our subsequent discovery of a better problem formulation and
5 Visualizing word usages closed-form solution, is still practically viable as a fast ap-

roximation for large problems, and as a post-conditioning
step for unavoidable numerical error of anyDR algorithm
based on eigenvalue decompositions.

In statistical analyses of natural language, similar usage pa
terns for two words are taken to indicate that they have sim

llar meanings or strongly related meanings. Latent semantic | this paper we have used random kernels. There are nu-
analysis [SA) is a linear dimensionality reduction of a term-

: S erous avenues to discovering stronger methods by investi-
document co-occurence matrix. The principal components o

hi o ing in which similar] ating placement and tuning of the kernels, stability of the
this matrix give an embedding in which similarly used words g heqding and its topological structure, and sample com-
are similarly located. Literally, co-location is a proxy for col-

! - lexity. In short, all the issues that proved fertile ground
location (the propensity of words to be used together) and, research in classification and regression can be studied

synonymy. We may expect that the kernel eigenmap offers gney in the context of estimating the geometry and topology
more powerful nonlinear analysis: of manifolds.

The NIPS12 corpud features a matrix counting occur-
rences of 13000+ words in 1700+ documents. We mod
eled the first 1000 words and the last 200 documents in thBef?rences_ _ o .
matrix. This roughly corresponds to one year's papers, dBelkin and Niyogi, 2002 Mikhail Belkin and Partha
reasonable “snapshot” of the ever-changing terminology of Niyogi. Laplacian eigenmaps for dimensionality re-
the field. We stemmed the words and combined counts for duction and data representation.  Technical Report
the same roots, then determined distance between two word TR-2002-01, University of Chicago Computer Science,
roots as the cosines of the angles between their log-domain- 2002.
transformed occurrence vectorg (— l0g,(1+xi)). TheW [Brand, 2008 Matthew Brand. Charting a manifold. Rroc.
matrix was generated by adding an edge from each word to N|ps-152003.

its 30 closest neighbors in cosine-space. The representati
Z was made using 4 random words as kernel centers. Fi&&hung, 1997 Fan R K. ChungSpectral graph theoryol-

ure7 discusses the resultingZmbedding, in which techni-  UMe 92 ofCBMS Regional Conference Series in Mathe-
cal terms are clearly grouped by field and many of the more Matics American Mathematical Society, 1997.

common English words are tightly clustered by common se{Fiedler, 197% Miroslav Fiedler. A property of eigenvectors
mantics. The first twa.sA dimensions (also shown in fig- of nonnegative symmetric matrices and its application to
ure7) of the same data are reveal significantly less semantic graph theoryCzech. Math. Journak5:619-633, 1975.

structure. [He and Niyogi, 200P Xiafei He and Partha Niyogi. Local-
) . ity preserving projections. Technical Report TR-2002-09,
6 Discussion University of Chicago Computer Science, October 2002.

The kernel eigenmap generates continuous nonlinear mapKambhatla and Leen, 199™. Kambhatla and Todd Leen.
ping functions for dimensionality reduction and manifold re-  Dimensionality reduction by local principal component
construction. Suitable choices of kernels can reproduce the analysis.Neural Computation9, 1997.

behavior of several oth&i.DR methods. One could put a ker- [Kruskal and Wish, 1978J. B. Kruskal and M. WishMul-

nel at every local group of points, perform local dimensional-" . 1. ; : o :
ity reduction (e.g., @cA) at each kernel, and thereby obtain g:?&mleg%onal Scaling Sage Publications, Beverly Hills,

from equations8 and17 anNLDR algorithm much like chart- .

ing [Brand, 2003 or automatic alignmeriiTeh and Roweis, [Mohar, 1991 B. Mohar. The laplacian spectrum of graphs.
2009. Or, as in the demonstrations above, the kernel eigen- N Y. Alavi, editor, Graph Theory, Combinatorics and Ap-
map can simultaneously determine the local dimensionality Plications pages 871-898. J. Wiley, New York, 1991.

reductions and their global merger. [Roweis and Saul, 2000Sam T. Roweis and Lawrence K.
The kernel eigenmap typically substitutes a small dense Saul. Nonlinear dimensionality reduction by locally lin-
EVD for the the large sparsevp of graph embedding prob-  ear embedding.Science 290:2323-2326, December 22
lems. In the sparse case, a specialized power method can 2000.
compute the desired eigenvectors in significantly less than th . .
O(N?®) time required for a fullevD. In the kernel setting, ﬁ'e: ?g%aRt%Wael!shzng)griYgfhy\ég}éi T(eahrzggn?:tn;rg I;t%vgels.
similar efficiencies apply because bdhandZ are typically NIIJPS-15|200|39 ! P lons. '
sparse, allowing fast construction of the reduest prob- ' _
lem ZWZ T; this too is amenable to fast power methods. OflTenenbaunet al, 200q Joshua B. Tenenbaum, Vin
course, the most important efficiency of the kernel method de Silva, and John C. Langford. A global geomet-

is its ability to embed new points quickly via the function ric_framework for nonlinear dimensionality reduction.
Science290:2319-2323, December 22 2000.

3Courtesy S. Roweis, available from the U. Toronto website.
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Figure 7: ABOVE: A 2D kernel eigenmap of word usages in recent NIPS papers. To improve legibility we show just a subset

of the data; some labels have been shifted slightly to reduce overlap. Word roots are shown in their first occurring unstemmed
variant. The three lobes of the distribution roughly correspond to favored terminology in the submission areas of Algorithms &
Architectures (left), Neuroscience (right), and Theory (top). Words with broader usage are more tightly distributed in the center
(presumably because they are more likely to co-occur in general discourse), with several clusters of words having strongly
related meanings. Three of these clusters have been colored: red for publishinglEfms donference, number, paper,
proceedings, volumegreen for probability termso¢

and blue for locationsc@mbridge, department, institute, universitBBELOW, SMALLER: A linear embedding obtained from

a latent semantic analysis of the same data. Though collocated words are often co-located, when compared with the kernel
eigenmap result, semantic structures are far less obvious.
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