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Abstract

The purpose of this paper it to explore the relationship between the rate-distortion characteristics of multiscale

binary shape and Markov Random Field (MRF) parameters. For coding, it is important that the input parameters

that will be used to define this relationship be able to distinguish between the same shape at different scales, as well

as different shapes at the same scale. In this work, we consider an MRF model, referred to as the Chien model,

which accounts for high-order spatial interactions among pixels. We propose to use the statistical moments of the

Chien model as input to a neural network to accurately predict the rate and distortion of the binary shape when

coded at various scales.
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I. INTRODUCTION

In recent years, the interest in object-based coding has grown. This is partly due to the creation of

the MPEG-4 standard [1], which allows for arbitrarily-shaped objects to be coded. The key technical

development that allows object-based functionality to be achieved is an efficient and flexible means of

coding the shape of an object. The MPEG committee has adopted a context-based arithmetic encoding

(CAE) algorithm for this purpose [2]. With this coding scheme, the binary shape data may be coded at

multiple scales, which allows for the shape coder to achieve a trade-off between rate and distortion.

For texture coding, a variety of models have been developed that provide a relation between the rate

and distortion, e.g., [3], [4]. These models are most useful for rate control of texture information. Given

some bit budget for an object or frame, one can find a quantizer value that meets the specified constraint

on the rate. Additionally, such models can be used to analyze the source or sources to be encoded in an

effort to optimize the coding efficiency in a computationally efficient way. In the case of shape coding,

however, no such models exist. The relationship between the rate and distortion for shape coding is very

different from that for texture coding. It is clear though that such a model would be very useful in the

analysis stage of an object-based encoder. For example, the model can be used for optimal bit allocation

among objects, including allocation between shape and texture data. Also, it has been reported in [5] that

shape coding can consume a significant percentage of the total bit-rate. In this case, a shape model can

help to improve the stability of a buffer by accurately predicting the number of shape bits that will be

used in the next frame.

In this paper, we consider a probabilistic approach for modeling the rate-distortion characteristics of

shape. This study is restricted to intra-coded shape, i.e., shape that is coded independent of data in other
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frames. Working in this domain allows us to focus on the spatial interactions among pixels, which is

central to the class of context-based coders that we are dealing with. We propose to model the shape

based on the statistics (or moments) that one can extract from the data. To model the shape coding

process, we would like to have a distribution whose samples resemble the type of data that we are trying

to code. Furthermore, due to the nature of the shape coding process under consideration, we establish

two criteria for the statistics: (i) they should be able to distinguish between different shapes at the same

scale, and (ii) they should be able to distinguish between the same shape at different scales.

Traditionally, Markov Random Fields (MRF’s) have been extensively used in image processing appli-

cations, such as image restoration and segmentation [6], [7], [8], [9], [10]. Because of their ability to

model global properties using local constraints, MRF’s have become very popular and seem to provide a

natural fit to our multiscale shape modeling problem as well. In [11], the suitability of two specific MRF

models were compared. The first MRF model accounted for a pair-wise interaction between pels, and for

the binary case, is typically referred to as the auto-logistic model. The second MRF model accounted for

higher order spatial interactions and is referred to as the Chien model. This study concluded that only the

Chien model was able to satisfy the two criteria stated above. Further details can also be found in [12].

To put this problem into a broader context, the problem is formally stated as follows. Let ������

denote the rate-distortion values for a binary shape that is coded at resolution �. Using input parameters,

��, and modeling function, ����, we consider the approximation,

������ � ����� (1)

Here, we apply this formulation to the modeling of the shape coding process. For the input parameters,

the sufficient statistics of the Chien model are used, and for the modeling function, we investigate the use

of a multi-layer neural network to map these input parameters to estimates of the rate and distortion at

different scales.

It should be pointed out that context modeling is not a new problem. For example, outside the cod-

ing domain, this kind of problem has been addressed to predict the reliability of an algorithms output

[13]. The authors of this work use three contextual variables as input: Gabor components, entropy and

signal/noise ratio. Based on these variables, the prediction function is determined from training using

a logistic regression model. Although the problem is quite different from what is considered here, the

philosophy is indeed the same.

The rest of this paper is organized as follows. The next section provides a brief review of the CAE shape

coding algorithm adopted by MPEG-4, and also provides an overview of MRF’s and the Chien model,
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in particular. Section III describes the proposed method to estimate the rate-distortion characteristics at

various scales. Finally, results of our modeling are provided in Section IV and a summary of this work is

provided in Section V.

II. BACKGROUND

A. Shape Coding

This section reviews the basics of the CAE shape coding algorithm as an example of a context-based

coder. It should be mentioned that context-based coders have long been used for image and data compres-

sion, such as in the JBIG standard for coding bi-level images [14], in the coding of gray-level images [15],

[16], [17] and in the compression of multifont Chinese characters [18]. However, since the emphasis of

this paper is on shape modeling, we only review relevant parts of the CAE algorithm. This algorithm has

been adopted by MPEG-4 to code the shape of arbitrarily shaped objects and has demonstrated superior

performance in comparison to other proposed algorithms over a wide range of testing conditions. Further

details of the algorithm can be found in [1], [2].

The CAE algorithm works at a macroblock level, and specifies whether a pixel in a macroblock belongs

to an object or not using an arithmetic coder. As with any context-based coder, the arithmetic coder makes

use of the conditional probability that this pixel belongs to the object given the status of its adjacent pixels

in a causal neighborhood. The algorithm may operate in a variety of modes. However, for the purpose

of this paper, it is sufficient to describe the intra mode only. In intra mode, three different types of

macroblocks are considered: transparent, opaque, and border blocks. Transparent blocks do not contain

information about the object of interest, opaque blocks are located entirely inside the object, and border

blocks cover only part of the object. Transparent and opaque blocks are signaled as a macroblock type.

For the border blocks, a template of 10 pels is used to define the casual context for predicting the shape

value of the current pel. This context is shown in Fig. 1, and is computed according to

� �
�

�

�� � �
�	 (2)

The context number is used to access a probability table, and finally, the sequence of probabilities are

used to drive an arithmetic encoder.

When the shape blocks are coded at full-resolution (�����), this algorithm is able to achieve a lossless

representation. To reduce the bit-rate, distortion can be introduced by down-sampling the original block

by a factor of two or four. The distortion is computed as the difference between the original shape and

the reconstructed shape.
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It should be noted that the motivation for exploring R-D models for shape coding is to avoid performing

the down-sampling, up-sampling and actual coding to get the R-D characteristics of the binary shape

over various scales. Accurate estimates of these characteristics can play a key role in optimizing the bit

allocation for the binary shape among blocks and between shape and texture coding. Also, knowing the

expected rate for shape can stabilize the buffer occupancy, especially for low bit-rate video coding.

B. Markov Random Field Models

In the following, we provide a brief overview of MRF’s and the specific model under consideration,

the Chien model. A discrete Gibbs random field (GRF) provides a global model for an image, 
 , by

specifying a probability mass function of the form

� �
� �
�

�

����� (3)

The function ��
� is called the energy function and the normalizing constant � is called the partition

function. The energy

��
� �
�

���

���
� (4)

is a sum of clique potentials ���
� over all possible cliques �. The value of ���
� depends on the

local configuration of the clique �. One point to keep in mind is that � �
� measures the probability of

occurrence of a particular pattern. The more probable configurations are those with lower energies.

In [19], [20], a model that preserves the fine structures of an image is presented. The model relies

on three parameters, edge, line and noise parameters, denoted by 
, � and �, respectively. The set of

cliques are 3 � 3 squares, so the neighborhood of a given site is 5 � 5. Different local configurations are

classified by the dimension and orientation of the pattern. By considering all possible patterns over the

3 � 3 block and taking into account symmetric and rotational considerations, it turns out that 51 distinct

configurations exist. Each of the 51 configurations is associated with a potential, ����, which is a linear

combination of the three parameters:

���� � ����
� ����� � ����� (5)

Edge and line constraints help to define a system of equations that ultimately assign energy that is

contributed for each parameter. As shown in the above equation, the energy associated with the edge,

line and noise parameters are ����, ���� and ����, respectively. Configurations that are not subject to edge
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and line constraints are assigned noise. Further details on the possible configurations and their assigned

energies can be found in [19], [20].

The distribution of the Chien model is a Gibbs field whose energy is linear with respect to its parameters

and is given by,

��
� � 
���
� � ����
� � ����
� (6)

where

���
� �
�

�������

�������
�

���
� �
�

�������

�������
�

���
� �
�

�������

�������
�

(7)

and ���
� is the number of configurations of type � in 
 .

The Chien moments given by eqn. (7) are considered sufficient statistics of this particular MRF model

and will be used in the rest of the paper. In terms of computation, they are quite simple to extract from the

data. For example, given image
 , we compute ���
�, which denotes the number of �-type configurations

contained in 
 , � � �		��. Each of these configurations are assigned a cost in terms of edge, line and

noise energy, which are given by ����, ���� and ����, respectively [19]. Given these energy values and

���
� for each configuration, the moments are easily determined using eqn. (7). To estimate the model

parameters, namely 
, � and �, one may employ the histogram method [10] or a Markov Chain Monte

Carlo Maximum Likelihood (MCMCML) estimation [20].

III. RATE-DISTORTION MODELING FOR SHAPE CODING

To estimate the rate and distortion at various scales, we choose the statistical moments of the Chien

model, i.e., ��, �� and ��, as our set of input parameters. As shown in [11] these parameters exhibit

the favorable properties discussed earlier; that is, they are able to distinguish between the same shape

at different scales and different shapes at the same scale. Such properties were not observed with the

auto-logistic model, which is the reason we focus on the Chien model only in this paper.

Two sets of sample binary images are shown in Figs. 2 and 3. The first set of images in Fig. 2 are

used to examine the Chien moments at the encoding resolution, where we aim to understand the relation

between these moments and the rate. The reduced resolution images in this set are referred to as images

with a conversion ratio (CR) of either � or 	. On the other hand, the second set of images in Fig. 3 are

used to examine the Chien moments at the same resolution, i.e., after the successive down-sampling and

up-sampling at a specified CR. With these images, we study the relation between the Chien moments
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and the distortion. The reconstructed images in this set are denoted as
� or 
	, and the difference image

between the original and reconstructed images is denoted by either ���
�� or ��� 
	�.

The Chien parameters and moments corresponding to the sample images in Figs. 2 and 3 are given in

Tables I and II, respectively. Table I associates the corresponding rate to the first set of sample images,

while Table II associates the distortion to the second set of sample images. The Chien moments are

calculated according to eqn. (7), the rate is obtained by coding the shape image with the CAE algorithm,

and the distortion between the original and reconstructed images is calculated as the sum of absolute

pixel differences, i.e., the total number of different pixels in the binary image. The Chien parameters are

only provided as supplemental information and are estimated using the MCMCML approach described

in [20].

From these tables, it is clear that the Chien parameter values and moments depend heavily on the par-

ticular segmentation map that is being considered. In Table I, we observe that the moments are generally

well-behaved and decrease in value with lower resolution. The one anomaly is with the Dancer sequence

at CR=2, where the �� and �� values do not follow the decreasing pattern from CR=1 to CR=4.

In Table II, the extracted Chien moments agree with our intuition for the most part in that noisy bound-

aries are smoothed out in the reconstructed images. This is evident with the Coastguard and Dancer

images, where thin lines have either broadened or completely disappear. For these images, we observe

that the values of �� corresponding to the line energies completely disappear in the smoothed out im-

age. Also, the values of �� corresponding to the noise are significantly dampened. The Foreman image

however, illustrates a different and interesting case in contrast to the examples above. In this image, the

original is already very smooth and due to the down/up-sampling operations the reconstructed image be-

comes more noisy. This can be verified through close inspection of Fig. 3. As expected, the value of ��

is significantly increased - it jumps from a relatively small value of 15 to 244.

From Tables I and II and the above observations, we see that the rate and distortion associated with

a shape strongly varies with the Chien moments (and parameters) for that shape. The relationship is

however not obvious and definitely non-linear. This is expected though, primarily because the data is

binary and its transformation between scales is a non-linear operation. For instance, in MPEG-4, down-

sampled pixels are computed using a majority-type operation among a 4-pixel neighborhood, while up-

sampled pixels are computed based on the adaptive context of a 12-pixel neighborhood. We propose

a neural network approach to model the relationship. It is well-known that neural networks provide a

powerful framework that is capable of performing non-linear regression [21].
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There are many types of neural networks that may be used for this purpose; some may be better suited

than others. However, the aim of our work is not to provide an exhaustive study on the different types

of neural networks that may be used to model the rate-distortion characteristics of shape. We only hope

to demonstrate their applicability to the problem. Therefore, we adopt a simple multilayer feed-forward

network as shown in Figure 4, where the input to this network are the statistical moments of the Chien

model that are calculated from the original shape image, and the output is the estimated rate and distortion

of the shape data at different scales. In this network, we have one hidden layer. The commonly used

sigmoid function is used as the activation function for nodes in the hidden layer, while a linear function

is used for nodes in the output layer. With a fixed structure and fixed activation functions, the whole

network represents a complex non-linear function, where the weights between each node can be seen

as the parameters or coefficients of this function. For this function to yield the desired output, back-

propagation is applied to determine suitable weights and biases of the network using supervised training

[22].

Thus far, we have only described the basic tool and framework that we propose to use for our modeling

problem. However, within this framework, there is still a significant amount of flexibility regarding

its implementation and use. For instance, the number of nodes in the hidden layer has not yet been

mentioned. If too few nodes are chosen, then the network will not be capable of representing the desired

function. On the other hand, if too many nodes are chosen, the network will be able to memorize all the

examples in the training set by forming a large look-up table, but will not generalize well to inputs that

have not been seen before. In other words, like all statistical models, the neural network is subject to

over-fitting when there are too many parameters in the model. Since there are no methods to determine

the suitable number of hidden nodes, the number is decided experimentally.

Another important aspect that we need to consider is the input to our network. In the experiments

that we used to determine the suitability of the Chien parameters for modeling, we extracted parameters

corresponding to each down-sampled scale for the rate, and parameters corresponding to the reconstructed

shape at each scale for the distortion. However, one of the primary objectives in modeling the shape is to

keep computational complexity low. Therefore, if it is possible to predict the rate-distortion characteristics

for each scale using parameters extracted from the full-scale only, we can even avoid the down-sampling

process.

There are a number of papers in the literature that investigate the relation between MRF’s at different

scales [23], [24], [25], [26], [27]. Although many different approaches and philosophies have been pre-
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sented in these papers, none have focused on the binary shape problem that we have considered. Rather,

the focus has been image restoration and segmentation, or the development of a more general multiscale

framework that can be used in a wide range of detection, estimation and synthesis applications. In [24],

for example, Bouman and Shapiro propose a novel multiscale random field (MSRF) model that is com-

posed of a series of random field models progressing from coarse to fine scale. The series of fields form

a Markov chain in scale, where it is assumed that points in each field are conditionally independent given

their coarser scale neighbors.

Although the main focus of the paper by Bouman and Shapiro is to provide an efficient sequential MAP

estimator and apply it to a multiscale segmentation problem, some key points related to our framework are

evident. First, since the MSRF is a Markov chain in scale, the distribution of the field at a fine scale given

all the coarser scale fields is only dependent on the next coarser scale. This implies that the distribution of

the finer scale contains information about all coarser scales and supports the possibility of estimating the

rate and distortion of coarser scales from the original shape only. This is quite intuitive and expected. As

a second point, the relationship between the fields at different scales are specified by transition densities.

The transition densities are dependent only on a local neighborhood of pixels at the next coarser scale.

Along these lines, we may think of our neural network as a framework that learns and specifies the

relation between the distributions at various scales. For the moment, there is no formal evidence to prove

this notion, but this analogy is quite interesting and is certainly a topic for further study. The outcome of

this research could potentially lead to a better understanding of the multiscale relationship of MRF’s and

more efficient estimators.

In summary, there is reason to believe that the neural network should be able to model the rate and

distortion at coarser scales based on the sufficient statistics at the finest scale. The accuracy of this claim

will be explored in the next section, where we consider the Chien parameters extracted from the full-

resolution only as input to our neural network.

IV. EXPERIMENTAL RESULTS

The objectives of the experiments in this section are twofold. First, our primary aim is to demonstrate

that MRF parameters, and specifically the Chien model parameters, can lead to accurate estimates of

the rate and distortion at various scales. Second, we would like to provide support for the claims in the

previous subsection that indicate the possibility of predicting these characteristics from data observed at

the full-resolution only.

For the experiment, we consider a number of binary objects that represent a wide array of object
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characteristics. In all, seven clips have been selected, where each clip is composed of 25 consecutive

frames. Four of the seven clips are used for training, and the other three are used for testing. The training

set consists of 1 object from each of the following test sequences: Akiyo (frames 1-25), Coastguard

(frames 50-75), Container (frames 1-25) and Singer (frames 1-25). From Akiyo, we have a stationary

head-and-shoulder object, from Coastguard, the object is a large moving boat, from Container, the object

represents a small moving boat, and from Singer, the object represents a slim silhouette of a human

body with waving arms. The test set consist of 1 object from the following sequences: Foreman (frames

160-185), Coastguard (frames 4-29) and Dancer (frames 1-25). The object from Foreman is also a head-

and-shoulder object, but with very different characteristics compared to Akiyo and the object is leaving

the scene during these frames. In the testing clip used for Coastguard, the boat is just beginning to enter

the scene and is a much different shape than that used in training. The object from the Dancer sequence

consists of two human bodies touching hands.

The Chien model parameters that are used as input to the neural network are shown in Figure 5. To

provide maximal benefit to the neural network, each of the input parameters have been scaled. The edge,

line and noise parameters have been scaled by a factor of 1000, 10 and 100, respectively, so that the

parameters are on the same order of magnitude. This is done since the activation function in the first layer

is a sigmoid function and operates best with inputs on the order of 1. Larger values would saturate the

function, hence the whole network would have difficulty in approximating a non-linear function. From

this plot, we can see that a wide range of data characteristics are represented.

As stated earlier, the weights and biases within the network are trained using back-propagation. This

is an iterative procedure and for our training data required approximately 200 iterations to converge. In

our experiments, we used 20 nodes in the hidden layer, but only noticed small difference when simulated

with 10 or 15 nodes. The output layer consists of 5 nodes, three nodes corresponding to the rate at full,

half and quarter scale, and 2 nodes corresponding to the distortion between the reconstructed binary maps

from half and quarter scales. The results of our experiments are illustrated in Figures 6 and 7.

The plots in Figure 6 provide a comparison of the actual rates and output rates of the neural network

for each of the three scales. In these plots, the first 100 frames correspond to the training set and the next

75 frames correspond to the testing set. We can see that that the neural network does indeed provide close

estimates to the actual rate and follows the trends quite well for both the training and testing data.

Similarly, the plots in Figure 7 provide a comparison of the actual distortions and output distortions of

the neural network for the reconstructed binary maps from half and quarter scales. Although the estimates
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for the distortion are not as close as those for the rate, they are still good and provide consistent results

for all of the three test sequences at the different scales. However, it should be noted that the distortion

is much more difficult to approximate compared to the rate. This is mainly due to the loss of informa-

tion in the down-sampling combined with a complex up-sampling process that accounts for neighboring

dependency. We should note that it may be possible to achieve better predictions if observations were

also made from the lower resolutions scales. In this way, the current neural network could be modified to

accept a larger input vector consisting of input parameters from both the original and reduced resolution.

Alternatively, a different neural network could be used at each scale.

Overall, the results shown here demonstrate that MRF parameters can be used to model multiscale

rate-distortion characteristics of binary shape, and do so with information provided at the full-resolution

only.

V. CONCLUDING REMARKS

This paper introduced and investigated the problem of rate-distortion modeling of multiscale binary

shape data. A probabilistic approach based on MRF’s has been proposed. The sufficient statistics of the

Chien model were used as input parameters to our modeling function. Since we are dealing with binary

data in a multiscale environment, we are forced to deal with non-linear operations on the data, such as

down-sampling and up-sampling. In this paper, we have adopted a multilayer feed-forward network to

provide us with a function that maps the Chien model parameters to rate-distortion characteristics of the

binary shape at various scales. A single network has been trained to predict the rate at three different

scales and the distortion between the full-resolution binary map and two coarser scales. The input to the

network consisted of the Chien model parameters that were extracted from the full-resolution only. As

shown in the experiments, the estimated rates were very close to the actual values over a wide range of

objects with varying properties. The estimated distortion values are less accurate, but still quite good.

As noted earlier, the above results on shape modeling apply to intra-coded shapes only. To be used in

a video coding environment, a model for inter-shape coding is necessary as well. The extension to inter-

coded shapes seems non-trivial at this time, but we hope that the work presented in this paper provides

a good treatment of the problem and a solid foundation of ideas for further study. We feel that the main

problem is that the methods currently used to model the shape lack support for a time-series of data

and make no mention of the temporal interactions among pixels. As a result, the shape models that are

developed in this paper are not demonstrated within the context of a rate control algorithm. However, it

is our hope that the implications of this work are much broader than just object-based coding. There is
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a strong similarity between the problem that we explore here and multiscale modeling and estimation in

general, which has application to segmentation, pattern analysis, detection and synthesis problems.
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Fig. 1. Illustration of template used to compute intra context. As specified by the standard, padded values are used

for pixels that lie outside the macroblock boundary.

Fig. 2. Test images from the Dancer, Coastguard and Foreman sequences. The first row shows the original shapes at

full-resolution. These shapes are then down-sampled by a factor of 2 and 4 according to the MPEG-4 standard;

the results are shown in the second and third rows, respectively.
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Fig. 3. Test images from the Dancer, Coastguard and Foreman sequences. The first column shows the original

shapes at full-resolution. These shapes are then down-sampled and up-sampled according to the MPEG-4

standard; the results are shown in the second column. For Dancer, Coastguard and Foreman the down-sampling

factor is 4, 4 and 2, respectively. Finally, the difference between the first and second column shapes are shown

in the last column.
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Fig. 4. Multilayer feed-forward network with one hidden layer.
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Fig. 5. Traces of Chien input parameters for each of the seven clips used in the experiment. The parameters

corresponding to edge, line and noise have been scaled by a factor of 1000, 10 and 100, respectively. The

first four clips (corresponding to the first 100 frames) are used for training, while the following three clips

(corresponding to the remaining 75 frames) are used for testing.
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Fig. 6. Comparison of actual rate and output rate of neural network: (a) full-scale, (b) half-scale, and (c) quarter-

scale. The first four clips (corresponding to the first 100 frames) are part of the training set, while the following

three clips (corresponding to the remaining 75 frames) are part of the test set.
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Fig. 7. Comparison of actual distortion and output distortion of neural network. Distortion is measured between

original and reconstructed binary map from (a) half-scale, and (b) quarter-scale. The first four clips (corre-

sponding to the first 100 frames) are part of the training set, while the following three clips (corresponding to

the remaining 75 frames) are part of the test set.
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TABLE I

COMPARISON BETWEEN CHIEN PARAMETERS, CHIEN MOMENTS, AND RATE.

Image Parameters Moments Actual

Map CR 
 � � � �� � � �� � � �� � Rate

Dancer 1 2.24 6.60 1.48 1302 1.15 198 2000

2 0.97 2.46 1.62 62.2 3.62 85 871

4 0.84 113.0 1.51 302 0.0 50 410

Coast- 1 2.51 5.95 1.58 1134 6.0 150 1316

guard 2 1.42 4.09 1.36 516 2.0 112 665

4 0.79 2.92 1.38 204 2.0 88 317

Foreman 1 7.21 31.3 3.20 925 0.0 15 1290

2 2.11 71.7 2.00 452 0.0 16 612

4 3.38 20.9 2.20 215 0.0 15 280

TABLE II

COMPARISON BETWEEN CHIEN PARAMETERS, CHIEN MOMENTS, AND DISTORTION.

Image Parameters Moments Actual

Map CR 
 � � � �� � � �� � � �� � Dist.

Dancer 1 2.24 6.60 1.48 1302 1.15 198


	 2.40 34.1 1.68 1251 0.00 110

��� 
	� 1.15 2.33 1.28 952 185 921 1218

Coast- 1 2.51 5.95 1.58 1134 6.0 150

guard 
	 4.28 45.5 2.10 961 0.0 68

��� 
	� 1.73 3.37 1.31 1147 208 496 1710

Foreman 1 7.21 31.3 3.20 925 0.0 15


� 1.27 41.5 1.44 854 0.0 244

��� 
�� 2.14 3.35 0.88 262 108 811 319
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