
MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Performance Optimization of an MPEG-2 to
MPEG-4 Video Transcoder

Hari Kalva Anthony Vetro Huifang Sun

TR-2003-57 May 2003

Abstract

The MPEG-2 compressed digital video content is being used in a number of products including
the DVDs, camcorders, digital TV, and HDTV. The ability to access this widely available MPEG-
2 content on low-power end-user devices such as PDAs and mobile phones depends on effective
techniques for transcoding the MPEG-2 content to a more appropriate, low bitrate, video format
such as MPEG-4. In this paper we present the software and algorithmic optimizations per-
formed in developing a real time MPEG-2 to MPEG-4 video transcoder. A brief overview of
the transcoding architectures is also provided. The transcoder was targeted and optimized for
Windows PCs with the Intel Pentium-4 processors. The optimizations performed exploit the
SIMD parallelism offered by the Intels Pentium-class processors with MMX support.The op-
timizations include: 1) generic block-processing optimizations that affected both the MPEG-2
decoder and the MPEG-4 transcoder and 2) optimizations specific to the MPEG-2 video decoder
and the MPEG-4 video transcoder. With optimizations, the total time spent by the transcoder was
reduced by over 82% with MPEG-2 decoding reduced by over 56% and MPEG-4 transcoding
reduced by over 86%.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2003
201 Broadway, Cambridge, Massachusetts 02139



Proc SPIE Conf on VLSI Circuits and Systems, Gran Canaria, SPain, May 2003



Performance Optimization of an MPEG-2 to MPEG-4 Video
Transcoder

Hari Kalva, Anthony Vetro, and Huifang Sun
Mitsubishi Electric Research Labs, Murray Hill, NJ

ABSTRACT

The MPEG-2 compressed digital video content is being used in a number of products including the DVDs, camcorders,
digital TV, and HDTV. The ability to access this widely available MPEG-2 content on low-power end-user devices such
as PDAs and mobile phones depends on effective techniques for transcoding the MPEG-2 content to a more
appropriate, low bitrate, video format such as MPEG-4. In this paper we present the software and algorithmic
optimizations performed in developing a real time MPEG-2 to MPEG-4 video transcoder. A brief overview of the
transcoding architectures is also provided.

The transcoder was targeted and optimized for Windows PCs with the Intel Pentium-4 processors. The optimizations
performed exploit the SIMD parallelism offered by the Intel’s Pentium-class processors with MMX support. The
transcoder consists of two distinct components: the MPEG-2 video decoder and the MPEG-4 video transcoder. The
MPEG-2 video decoder is based on the MPEG-2 Software Simulation Group’s reference implementation while MPEG-
4 transcoder is developed from scratch with portions taken from the MOMUSYS implementation of the MPEG-4 video
encoder. The optimizations include: 1) generic block-processing optimizations that affected both the MPEG-2 decoder
and the MPEG-4 transcoder and 2) optimizations specific to the MPEG-2 video decoder and the MPEG-4 video
transcoder. The optimizations resulted in significant improvements both in MPEG-2 decoding as well as the MPEG-4
transcoding. With optimizations, the total time spent by the transcoder was reduced by over 82% with MPEG-2
decoding reduced by over 56% and MPEG-4 transcoding reduced by over 86%.
Keywords: MPEG-2, MPEG-4, Transcoder, Optimization, Intel CPU, MMX, Intel C++ Compiler

1. INTRODUCTION

With MPEG-2 video compression being used in a number of video-centric applications, more and more digital video
content is becoming available in the MPEG-2 format. The widespread use of MPEG-2 video has also resulted in
decreased costs that has further spread the use of MPEG-2 video. While MPEG-2 video is fit for a number of high
quality digital video applications, it is not suitable for low bitrate applications. There are a number of applications such
as video surveillance, and mobile multimedia services that require the same high quality MPEG-2 video to be delivered
to a less capable device such as a PDA or cell phone over a lower bandwidth connection. MPEG-4 video compression
algorithm is designed for low bitrate video and has features that enable transmission over less reliable medium such as
wireless networks. Transcoding MPEG-2 video to MPEG-4 format is computationally intensive. A set of transcoding
architectures have been developed that take advantage of the similarities in MPEG-2 and MPEG-4 video encoding to
speedup the transcoding process [2]. These transcoding architectures avoid the need for full re-encoding of MPEG-4
video. The complexity-quality analysis of these architectures was reported in [1].

The desktop PCs are becoming more and more powerful with each generation of CPUs. Starting with its PentiumPro
CPU, Intel has begun supporting an instruction set to speedup multimedia and video processing. With the advances in
CPU speed and architecture, it is now possible to decode and playback HDTV resolution MPEG-2 video in real time
with software players. While it is possible to transcode MPEG-2 video to MPEG-4 offline, there are a number of
applications that require real-time transcoding of MPEG-2 video. Furthermore, offline transcoding of MPEG-2 video to
MPEG-4 format at different bitrates and quality as demanded by all the different end users is not possible. We have
developed a software implementation of an MPEG-2 to MPEG-4 video transcoder to run on Intel’s Pentium-4
processors. The goals of the project are to transcode MPEG-2 video in real time and maximize the number of MPEG-2
video streams that can be transcoded simultaneously. The software and instruction set support available for Pentium-4
processors makes it an ideal platform to develop transcoding applications. The speedup is primarily achieved by using
MMX instructions that operate on a set of data in parallel.



The block-based compression and decompression of video in MPEG-2 and MPEG-4 lends itself nicely for parallel
processing. A parallel algorithm and implementation on a Single Instruction Multiple Data (SIMD) parallel architecture
of the JPEG image compression, a block-based image compression algorithm, was reported in [3]. Intel’s Pentium
processors support a form of SIMD parallelism with instructions that operate on as may as 16 bytes in parallel. An
efficient compiler is also necessary to take advantage of the architectural features offered by the processors. We used
Intel’s C++ compiler to optimize the transcoder application further. We report the performance gains due to the
compiler optimizations alone. Using MMX instructions to optimize the performance of an H.263 encoder was presented
in [4]. Even though the H.263 encoder has some commonalities with the MPEG-2 to MPEG-4 transcoder, the
transcoder presents a different set of optimization problems.

The rest of this paper is organized as follows: a brief introduction to MMX technology is given in Section 2, followed
by an overview of the transcoding architectures in Section 3. In Section 4 we discus the MMX optimizations used in the
transcoder. The results are discussed in section 5.

2. OVERVIEW OF INTEL MMX TECHNOLOGY

SIMD stands for single instruction multiple data – a form of parallel processing where a single instruction stream
operates on multiple data streams. Parallel computers with SIMD architectures typically use a large number of simple
processors to solve complex problems. The SIMD support started to appear in microprocessors in the early 90s in
microprocessors such as HP's MAX2 and Sun's VS extensions [5]. The most common processors today with SIMD
instruction support are the Intel processors with MMX support and AMD processors with 3DNow! support. In this
section we present an overview of the Intel MMX technology. A broad introduction to the MMX technology can be
found in [6].

The MMX technology in Intel processors introduces SIMD parallelism, new instructions, new data types, and eight 64-
bit wide registers called MMX registers, MM0 to MM7. The extensions to MMX, called streaming SIMD extensions
(SSE) introduced eight 128-bit wide registers called XMM registers, XMM0 to XMM7, and instructions that work with
those registers. The SSE extensions were introduced in the Pentium-3 processor. Another extension to the instruction set
was made with the introduction of SSE2 extensions in Pentium-4 and Xeon processors. In this paper, we use the term
MMX to refer to MMX, SSE, and SSE2 extensions collectively and make explicit distinctions where necessary. Figure
1 illustrates the principle of SIMD parallelism. Registers MM0 and MM1 are 64-bit wide registers loaded with 8 bytes
of data each. The instruction PADDB takes two MMX registers as operands and adds the packed 8-bit integers in the
source operand (MM1) to the 8-bit integers in the destination operand (MM0) and stores the result in the destination
operand. The addition of eight pairs of 8-bit integers that normally require eight separate ADD instructions can be
performed with a single instruction. The PADDB instruction can also take 128-bit operands (XMM registers) and
perform the addition of 16 pairs with a single instruction.

A1A2A3A4A5A7 A6 A0

B1B2B3B4B5B7 B6 B0

MM0

MM1

A1+B1A2+B2A3+B3A4+B4A5+B5A7+B7 A6+B6 A0+B0MM0

++++++ + +

PADDB MM0, MM1;

Figure 1. Illustration of SIMD Addition Using Intel MMX Instructions



2.1 MMX Data Types

The MMX technology introduced four new data types: packed bytes, packed words, packed double-words, and quad-
word. Each of these packed data types contains two or more basic data types packed into a 64-bit quantity. Packed byte
thus contains 8 bytes, packed word contains 4 words, and a packed double word contains two double words. A quad-
word is a single 64 bit quantity. The SSE extensions introduced a 128-bit packed single-precision floating-point data
type. The SSE2 extensions introduced five more data types for use with 128-bit XMM registers: packed double-
precision floating-point data type, packed byte integers, packed word integers, packed double-word integers, and quad-
word integers. These data types for the 64-bit MMX and 128-bit XMM registers offer good possibilities to optimize
compute intensive applications such as transcoding.

2.2 MMX Instructions

The MMX instruction set provides variants of the arithmetic and logical instructions to operate on packed data types
and also instructions specific to packed data types. The instruction set was expanded with SSE and SSE2 extensions to
operate on new data types and extend new functionality to MMX data types. In the interest of space, we limit the
discussion to the instruction that were used in the optimizations. Instructions that are used in optimizing in specific
portions of the code are discussed in Section 4.

3. OVERVIEW OF THE TRANSCODING ARCHITECTURES

We consider three transcoding architectures for MPEG-2 to MPEG-4 transcoding. All the three architectures perform
spatial and temporal resolution reduction on the input MPEG-2 bitstream. The MPEG-4 output can be configured to be
one-half or one-fourth of the spatial resolution of the input MPEG-2 video. The temporal resolution of the output can be
configured to 10, 4, or 2 frames per second; the actual output frame rate depends on the GOP structure of the MPEG-2
input. The architectures under consideration are shown in Figures 2-4. Figure 2 illustrates the Cascaded architecture,

which is simply a cascaded approach that decodes, down-samples and re-encodes the video. Figure 3 shows the Intra
Refresh architecture, which compensates for various errors by converting select macroblocks to intra-coded blocks.
Figure 4 shows the Partial Encoder architecture, which is similar to the Cascaded architecture, but simplifies the re-
encoding process by not compensating for re-quantization errors. The background regarding the development of these

IDCT

Frame
Store

VLD (Q1)-1 Down
Conv

+

MC

DCT

(Q2)-1

VLC Q2
+

-

+

Frame
Store MC

IDCT

+

MV
Mapping

Dec Time

Gen Ref

MB Code

Trans Time

Drift Comp

MB Conv

Figure 2. Reference architecture for reduced spatial-resolution transcoding



architectures can be found in [2], but a brief description of the Intra Refresh and Partial Encode architectures shown in
Figures 3 and 4 is included below for completeness.

In reduced resolution transcoding, drift error is caused by many factors, such as requantization, motion vector truncation
and down-sampling. Such errors can only propagate through inter-coded blocks. By converting some percentage of
inter-coded blocks to intra-coded blocks, drift propagation can be controlled. In the past, the concept of intra-refresh has
successfully been applied to error-resilience coding schemes [10], and we have found that the same principle is also
very useful for reducing the drift in a transcoder. The Intra Refresh architecture shown in Figure 3 is based on this
concept.

In the Intra Refresh scheme, output macroblocks are subject to a DCT-domain down-conversion, requantization and
variable-length coding. Output macro-blocks are either derived directly from the input bitstream, i.e., after variable-
length decoding and inverse quantization, or retrieved from the frame store and subject to a DCT operation. Output
blocks that originate from the frame store are independent of other data, hence coded as intra blocks; there is no picture
drift associated with these blocks.

VLD

(Q1)-1

VLC

Down-Conv

Q2

IDCT

MC

Frame
Store

MV Mapping

Mixed-Block
Processor

DCT

+

Dec Time Trans Time

MB Conv MB Code

Figure 3 Intra Refresh architecture for reduced spatial-resolution transcoding

Figure 4 Partial Encode architecture for reduced spatial-resolution transcoding

IDCT

Frame
Store

VLD (Q1)-1 Down
Conv

+

MC

DCTVLC Q2
+

-

+

Frame
Store

MC

MV
Mapping

Dec Time

MB Code

Trans Time

Drift Comp

MB Conv



The decision to code an intra-block from the frame store depends on the macroblock coding modes and picture
statistics. In a first case based on the coding mode, an output macroblock corresponds to four input macroblocks for size
conversion by a factor of two in each direction. Since all sub-blocks must be coded with the same mode, the transcoder
must avoid having mixed-blocks, i.e., inter-coded and intra-coded sub-blocks in the same output macroblock. This is
detected by the mixed-block processor, which will trigger the output macroblock to be intra-coded. In a second case
based on picture statistics, the motion vector and residual data are used to detect blocks that are likely to contribute to
larger drift error. For this case, picture quality can be maintained by employing an intra-coded block in its place. Of
course, the increase in the number of intra-blocks must be compensated for by the rate control. Please refer to [2] for
details on the operation of the rate control function.

As an alternative to the Reference architecture, the Partial Encode architecture is considered in Figure 4. This
architecture aims to eliminate the drift error due to down-sampling and motion vector scaling; drift error caused by
requantization is neglected. It operates under the assumption that the error due to requantization in a reduced resolution
transcoder is much less than the error due to down-sampling and motion vector scaling.

In the Reference architecture, the reconstructed reference frame used for re-encoding consists of two parts, the low-
resolution motion compensated prediction and the reconstructed low-resolution residual. In contrast to this Reference
architecture, the Partial Encode architecture essentially removes the feedback components (inverse quantization and
inverse DCT) that contribute the residual component to the reconstructed reference frame.

4. TRANSCODER DESIGN AND OPTIMIZATION

The MPEG-2 to MPEG-4 video transcoder performs spatial and temporal resolution reduction of the MPEG-2 video
input and produces an output bitstream compliant to the MPEG-4 video bitstream syntax. Figure 5 shows the high-level
system diagram. The transcoder core accepts one frame of MPEG-2 video data at a time and transcodes it to MPEG-4
format. The transcoder drops all the input ‘B’ frames resulting in an output stream with reduced temporal resolution.
The application sets the transcoder configuration parameters such as the transcoding architecture, the output bitrate, and
the output resolution. The transcoder core has a well-defined interface that accepts single MPEG-2 video frames as
input and outputs at most one MPEG-4 video frame. This allows applications to support different MPEG-2 sources such
as MPEG-2 transport streams or program streams.

The design goals were: 1) realtime transcoding, 2) easy integration in applications, and 3) live MPEG-2 transcoding.
The original (unoptimized) software was based on the public domain MPEG-2 decoder from the MPEG Software
Simulation Group and an internally developed MPEG-4 transcoder. As can be seen from the Figures 2-4, the MPEG-2
decoding and the MPEG-4 transcoding have a few common components such as IDCT. In addition to that, the
commonalities include several block processing routines for operations such as clipping, copying, zeroing, adding, and
type converting 8x8 blocks. Using a common set of functions for these operations in both the MPEG-2 decoder and the
MPEG-4 transcoder reduces code duplication and allows optimizations across the components. The optimizations used
to speedup the transcoder include: 1) MMX optimizations to speedup data parallel portions of the code, 2) general

APPLICATION

TRANSCODER CORE

INPUT BUFFER OUTPUT BUFFERTRANSCODER
CONTROL

MPEG-2 VIDEO
BITSTREAM

Figure 5. MPEG-2 to MPEG-4 Video Transcoder



software optimization techniques such as loop unrolling, strength reduction, reducing jumps and conditionals, and 3)
compiler optimizations using Intel C++ compiler. In general, MMX optimization possibilities exist wherever there are
blocks of data operated on in loops. The following subsections briefly discuss optimization of some of the processes in
the transcoder.

4.1 Optimizing Common Block Processing Operations

The following is a list of the MMX optimized common block processing operations used in the MPEG-2 decoding and
the MPEG-4 transcoding process:
ZeroBlock – function to set the elements of a block of data to 0
CopyBlock – copy a block of data from source to destination
AddBlock – add a source block to a destination block and save the result in the destination
SubBlock – subtract a source block from a destination block and save the results in the destination
SumBlock – compute the sum of elements of the block and return the sum
ClipBlockXtoY – clip the elements of a block to the range [X, Y]
CopyBlockShortToInt – type convert a block of 32-bit integers in the source to 16-bit short integers and copy to the
destination
These set of functions use SIMD instructions and where necessary variants of a function are used to optimally process
blocks of different data types or blocks of different size.

4.2 Optimizing IDCT and FDCT

The forward and inverse discrete cosine transforms (DCT) are the most compute-intensive portions of the transcoding
process. While FDCT is used in MPEG-4 transcoding, IDCT is used in MPEG-2 decoding and also in reference picture
generation in the Cascaded architecture of MPEG-4 transcoding. The SSE extensions allow computation of DCT with
IEEE precession using integer instructions. We adopted the fast and precise DCT implementation discussed in [8].

4.3 Optimizing Motion Compensation

Motion compensation is performed in the decoding process where the predicted block is computed based on the
decoded motion vectors and then added to the current block to form a reconstructed block. The block prediction
involves averaging pixels values and the SSE instruction set includes an instruction for SIMD averaging of 8-bit and 16-
bit integers. The PAVGB instruction computes the average of the unsigned integers in the source operand and the
destination operand and saves the result in the destination operand. To compute the average, the corresponding 8-bit
integers are added, then a 1 is added to the sum, and the result is shifted to the right by one-bit position. The instruction
can compute the average of either 8 or 16 bytes depending on whether MMX or XMM registers are used.

The second part of motion compensation is adding the prediction to the decoded coefficients and clipping the result to
the range [0, 255]. The prediction computed is stored as unsigned character and the decoded coefficients are stored as
signed short integers. To perform the SIMD addition, the 8-bit integers are converted to 16-bit integers and the add and
clip operations are performed on the 16-bit integers. The PUNPCKHBW instruction convert bytes into words by
copying and interleaving the high order data elements of the source and destination operands. The lower order elements
are unchanged. Similarly, PUNPCKLBW instruction converts lower order bytes to words. The PUNPCKLBW
instruction is illustrated in Figure 6. This SIMD type conversion is followed by a PADDW instruction that adds packed
word integers and a clip operation using PMINSW and PMAXSW. The PMINSW instruction compares the signed short
integers in the source and destination operands and returns the minimum value to the destination. Similarly, PMAXSW
computes the maximum. A PMINSW operation with the upper bound of the clip range and a PMAXSW operation with
the lower bound of the clip range clips the values to the range resulting in a reconstructed block.



4.4 Optimizing Mismatch Control

To minimize the error accumulation due to IDCT mismatch at the MPEG-2 encoder and decoder, mismatch control is
performed before IDCT. This involves clipping the decoded coefficients to the range [-2048, 2047], summing the block,
and if the sum is even, mismatch control is applied to the last coefficient of the block. If the last coefficient is odd, it is
decremented by 1, and if even incremented by 1. This is a compute intensive process and is applied to every decoded
block. This process is optimized by using PMINSW and PMAXSW to clip coefficients to the range and PADDW and
PUNPCK* instructions to compute the sum of the coefficients.

4.5 Optimizing DCT Domain Spatial Resolution Reduction

The Intra Refresh architecture performs spatial resolution reduction in the DCT domain. Complexity reduction in DCT
domain spatial reduction is discussed in [1]. The DCT domain down sampling takes significant computation but has
some room for optimization. The symmetry of the down conversion filters and the presence of zeros in the filter was
exploited to significantly reduce the number of multiplications necessary. The filters were converted to integer filters by
multiplying with a constant and then shifting the results appropriately thus converting floating-point multiplications into
integer multiplications. MMX instructions were then used to parallelize the simplified down conversion loops.

4.6 Optimizing Quantization

Quantization is the second most compute-intensive portion of the transcoding after DCT. Computation of quantized
coefficients for the inter blocks is shown below:

level = (ABS(coeff[i])-QP/2) / (2*QP);
qcoeff[i] = MIN(2047,MAX(-2048,SIGN(coeff[i]) * level));

This computation is performed for every pixel of a video frame. This computation is first simplified as:
slevel = coeff[i]*(1.0/(2*QP))- SIGN(coeff[i])*(0.25);
qcoeff[i] = MIN(2047,MAX(-2048, slevel));

In the computation of the level, the integer division is replaced by floating point multiplication, as it is more efficient
than division. The coefficients which are stored as short integers are first converted to 32-bit integers using unpack
instructions and then converted to 32 bit floating point values using CVTDQ2PS instruction that converts four integers
in an XMM registers to four single precession floating point values. A SIMD multiplication of single precession
floating point values (coeff[i]*(1.0/(2*QP))) is supported by the MULPS instruction. The final value of the level is
computed by adding or subtracting 0.25 depending on the sign of the coefficients. Such conditional additions are
efficiently computed by first computing a sign mask using a compare instruction, CMPPS, and then using ANDPS and
ANDNPS to conditionally add the value. While ANDPS performs a bit wise logical AND of the four single precision
floating point values in the source operand and the destination operand, ANDNPS negates the bits of the destination
before the bitwise AND. The following example illustrates the use of these instructions:

MM1

PUNPCKHBW MM0, MM1;

Figure 6. Illustration of SIMD type conversion from byte to word

0 0 0 0 0 0 0 0

MM0

B7 B6 B5 B4 B3 B2 B1 B0

MM0 0 B7 0 B6 0 B5 0 B4



Suppose that register XMM3 is loaded with the coefficients multiplied by 1/(2*QP).
MOVAPS XMM0, [one_y_4_f]; // float one_y_4_f [] = {0.25, 0.25, 0.25, 0.25}

Create a sign mask of the coefficients:
PXOR XMM4, XMM4; // set XMM4 to 0
CMPPS XMM3, XMM4; // is coefficient > 0, is so the corresponding bits in XMM3 are set to 1 else 0
MOVAPS XMM4, XMM3; // copy mast to XMM4

Conditionally add +0.25 or –0.25:
ANDPS XMM3, [neg_one_y_4_f]; // float neg_one_y_4_f [] = {-0.25, -0.25, -0.25, -0.25}
ANDNPS XMM4, [one_y_4_f]; // float one_y_4_f [] = {0.25, 0.25, 0.25, 0.25}
ADDPS XMM3, XMM4; // conditional value if now in XMM3

5. RESULTS

The results of the transcoder performance optimization are discussed in this section. The evaluation platform is a Dell
workstation with Pentium-4/1.8 GHz processor, 512MB memory, and running Windows 2000. The transcoder has been
built and tested using the Microsoft Visual Studio 6.0 with Microsoft C++ compiler and Intel C++ compiler 7.0. For the
purpose of this evaluation, a 30 second MPEG-2 video clip with a resolution of 720x480, encoded at 5 Mbps, and 30
FPS is used. The transcoder is configured to produce an MPEG-4 bitstream with a resolution of 352x240, encoded at
384Kpbs and 10 fps. The Partial Encode transcoding architecture is used for evaluation. The time is measured using the
Windows APIs for QuertHighPerformanceFrequency() and QueryHighPerformanceCounter(). All the times are given in
seconds. Table 1 summarizes the performance results.

Table 1: Transcoder Performance Results
Case Total Time Decoding Transcoding Down Conv. MB Coding Drift Comp
1 39.07 7.89 31.18 9.07 4.92 16.23
2 21.4 7.25 14.15 4.58 4.83 3.69
3 30.81 7.9 22.89 0.59 4.25 17.89
4 12.0 5.31 6.66 0.43 3.69 2.41
5 6.8 3.21 3.53 0.38 2.21 0.83

The optimizations used in the four cases listed in the table are:
Case1: unoptimized, Microsoft Visual C++ Compiler
Case 2: unoptimized Intel C++ compiler
Case 3: software optimizations (without written MMX code), Microsoft C++ compiler
Case 3: software optimizations (without written MMX code), Intel C++ compiler
Case 4: software and MMX optimizations and Intel Compiler.

Table 1 shows the total time, time for MPEG-2 decoding, time for MPEG-4 transcoding, and times for the important
components of the transcoding time: down conversion, MB coding, and drift compensation. The following sub sections
briefly discuss each of these cases.

5.1 Unoptimized Code With Microsoft C++ Compiler

Case 1 shows the times using unoptimized code and the standard C++ compiler that comes with Microsoft Visualstudio
6.0. The total transcoding time is significantly more than the realtime of 30 seconds, the length of the input MPEG-2
clip. The MPEG-2 decoding potion of the code is well optimized and has little room for general software optimizations.
The transcoding portions on the other hand have room for significant improvements. All the code was written in
standard C. The transcoding time is dominated by down conversion and drift compensation. The down conversion uses
a complex filter for horizontal and vertical down conversion of the decoded MPEG-2 signal in the spatial domain. The
drift compensation is dominated by residual prediction and DCT computation.



5.2 Unoptimized Code With Intel C++ Compiler

Case 2 shows the times using the unoptimized code and the Intel C++ compiler 7.0. The code is just recompiled using
the Intel C++ compiler and optimizations enabled are the default optimizations to maximize speed (optimization option
o2). Global optimizations, inline expansion, and code generation for linker optimizations are also enabled. The total
transcoding time went down by 45%, a significant improvement. The MPEG-2 decoding is not significantly affected.
Most of the gains are from the transcoding portions of the code. Intel compiler generates parallel code when possible
resulting in significant improvements when data parallel computations are involved.

5.3 General Software Optimizations With Microsoft C++ Compiler

Case 3 shows the times using the code with general software optimizations and the Microsoft C++ compiler 7.0. The
general optimizations performed include loop unrolling, replacing multiplications with shifts, using smaller data types
where possible (e.g., replace int by short), using common block processing code across the MPEG-2 decoding and
MPEG-4 transcoding portions of the transcoder, and eliminating dead code. The code was also wrapped in C++ classes
for ease of use and extensibility. These changes did not result in significant gains but prepared code for better MMX
optimizations and parallelization. The reduction in down conversion time is mainly because of using a simple averaging
filter. It is also possible that there is some overhead because of the C++ classes used.

Another important optimization is optimizing memory access. Memory access is significantly impacted by memory
alignment. Access to data that is not aligned to a 64-byte boundary requires two memory accesses and several µops to
be executed instead of one [9]. To avoid memory access overhead, all memory was allocated on 16-byte boundary. Intel
runtime library provides a memory allocation routine, mm_malloc, to allocated aligned block of memory. Specialized
data movement instructions (e.g., MOVDQA) are provided to load and store XMM registers and require data alignment
on 16-byte boundary. Using unaligned memory with these instructions would result in a general protection exception.

5.4 General Software Optimizations With Intel C++ Compiler

Case 4 shows the times using the code with general software optimizations and the Intel C++ compiler 7.0. The
additional Intel C++ compiler options enabled in this evaluation are: optimizations targeting Pentium-4 processors, inter
procedural optimizations, inline expansion, and multifile optimizations. As evident from the times observed, the
software optimizations such as type conversion have significant impact when using the Intel Compiler. The general
optimizations performed are not Intel compiler specific but the compiler is able to generate a better code with these
optimizations. The total trancoding time went down by over 44% compared with unoptimized code using a Intel C++
compiler. The MPEG-2 decoding portions went down by over 26% and the transcoding portions, without considering
the down conversion, went down by 35%.

5.5 MMX Optimizations With Intel C++ Compiler

Finally, case 5 shows the times with additional MMX optimizations. These optimizations resulted in significant
improvements in the transcoding time. Compared with case 4, the total transcoder time went down by 43% with the
MPEG-2 decoding time going down by 39% and the transcoding time going down by 48%. Significant gains of 65%
were observed in drift compensation mainly due to optimized DCT computation. The gains in the MB Coding process
were dominated by the optimized quantization.

CONCLUSION

Using a combination of optimization techniques we were able to achieve significant performance improvements in the
MPEG-2 to MPEG-4 video transcoding. The total transcoding time was reduced by over 82% making the realtime
transcoding possibility. The optimized transcoder can transcode four MPEG-2 video streams simultaneously. These
results highlight the importance of software and compiler support to maximize the benefits offered by the advanced
processor architectures. With advanced CPUs and appropriate optimizations, compute-intensive video processing tasks
that once required dedicated hardware can now be accomplished in software.



REFERENCES

1. A. Vetro, T. Hata, N. Kuwahara, H. Kalva and S. Sekiguchi, “Complexity-quality evaluation of transcoding
architecture for reduced spatial resolution,” IEEE Transactions on Consumer Electronics,” Aug. 2002.

2. P. Yin, A. Vetro, H. Sun and B. Liu, “Drift compensation architectures for reduced resolution transcoding,” Proc.
SPIE Conf. on Visual Communications Image Processing, San Jose, CA, Jan. 2001.

3. Hari Kalva et. al., "Parallel JPEG Image Compression Algorithm for DEC-Maspar," Technical Report No. TR-
CSE-94-5, Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL.

4. V. Lappalainen, “Performance Analysis of Intel MMX Technology for an H.263 Video Encoder,” Proceedings of
ACM Multimedia Conference, 1998, pp. 309-314.

5. http://www.simdtech.org
6. Intel Corp., “MMX Technology Technical Overview,” http://developer.intel.com.
7. Intel Corp., “IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic Architecture,” Order Number

245470, http://developer.intel.com.
8. Intel Corp., “A Fast Precise Implementation of 8x8 Discrete Cosine Transform Using the Streaming SIMD

Extensions and MMX instructions,” AP-922, Order Number 742474-001.
9. Intel Corp., “Intel Pentium 4 and Intel Xeon Processor Optimization Manual,” Order number 248966-05.
10. K. Stuhlmuller, N. Farber, M. Link and B. Girod, “Analysis of Video Transmission over Lossy Channels,'' J. Select

Areas of Communications, June 2000.


	title page
	page 2

	Performance Optimization of an MPEG-2 to MPEG-4 Video Transcoder
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10


