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Abstract It is helpful to classify passengers into several groups,
according to the type of uncertainty they introduce into the

Group elevator scheduling is an NP-hard  decision-making process:

sequential decision-making problem with un-

bounded state spaces and substantial uncertainty. 1. The newly-arrived passenger, whose arrival time and

Decision-theoretic reasoning plays a surprisingly
limited role in fielded systems. A new
opportunity for probabilistic methods has opened
with the recent discovery of a tractable solution
for the expected waiting times of all passengers
in the building, marginalized over all possible
passenger itinerariesN[kovski and Brang
2003. Though commercially competitive, this

solution does not contemplate future passengers.

Yet in up-peak traffic, the effects of future

floor are known, but whose destination of travel is not
known. In most elevator systems, only the desired
direction of travel is known, as indicated by pressing

one of two hall-call buttons.

. Existing passengers who have already arrived, but

have not boarded a car yet. Like the newly-arrived
passenger, their respective arrival times, floors, and
desired directions of travel are known, but their exact
desired destination floors are uncertain.

passengers arriving at the lobby and entering

elevator cars can dominate all waiting times. 3. Future passengers who have not arrived yet. Nothing
We develop a probabilistic model of how these about such passengers is certain, and only the
arrivals affect the behavior of elevator cars at stochastic parameters of their arrival process are
the lobby, and demonstrate how this model can known or can be estimated from data.

be used to very significantly reduce the average

waiting time of all passengers. An assignment decision influences the waiting times of all

three groups of passengers, so the uncertainty introduced

1 INTRODUCTION by each of them has to be considered.

Ideally, a group elevator controller would compute the
Group elevator scheduling is a well-known hard industrialmarginal costs of all possible assignments with regard to all
problem characterized by huge state spaces and significasburces of uncertainty before making a decision. Instead,
uncertainty Barney 2003. When a new passenger arrives due to the insurmountable computational complexity of this
and requests elevator service by pressing a hall-call buttorproblem, the vast majority of commercial group elevator
the group controller must assign the passenger to amchedulers choose to ignore some or all of this uncertainty,
elevator car with the goal of minimizing his/her waiting typically resorting to heuristic methods.
time, as well as the waiting times of all existing and future

passengers The earliest schedulers used the simple heuristic principle

of collective group contrgl under which a car stops to
The stream of arriving passengers is a stochastic processervice the nearest call in its current direction of movement
which introduces substantial uncertainty in decision[Strakosch199§. Such scheduling is very sub-optimal,
making. Each passenger is described by three randomnd also very unpredictable. For this reason, collective
variables: time of arrival, floor of arrival, and desired control is considered unacceptable in several Pacific rim
destination floor. All of these variables are sources ofsocieties including Japan, where social norms dictate that
uncertainty that must be considered when deciding whictpassengers should be notified about which car would pick
car will service a newly arrived passenger. them up immediately upon requesting service.



Another group of algorithms is based on minimization of as fast as the one at the lobby; assigning the new call to
the remaining response tim&KT) for each passenger, it would result in a small short-term loss in the waiting
defined as the time it would take for each existingtime of the passengers who have just arrived, but this loss
passenger to be picked up by the car prescribed by this likely to be compensated by a much larger long-term
current scheduleHowell and Williams 1992. These gain in the waiting times of future passengers at the lobby.
algorithms focus on minimization of the waiting time of Thus, a controller that could take into consideration the
existing passengers only, and ignore altogether the effeataiting times of future passengers is likely to have an
of the current assignment on the waiting times of futureadvantage over a greedy and short-sighted controller that
passengers. ignores them.

Within the algorithms based omrRT minimization, a Several methods have been proposed to account for the
further distinction can be made between those that ignoravait of future passengers, with varying success. Some
the uncertainty associated with the desired destinatiogontrollers use fuzzy rules to identify situations similar to
floors of existing passengerggA, FiM, DLB) [Powell  the one discussed above and make decisions that are more
and Williams 1992 Bao et al, 1994, and those that can robust to future eventsUjihara and Tsuji 1989. This
properly compute the expecterRT of each passenger approach, however, has major disadvantages, such as the
with respect to this uncertaintfg§A-DP) [Nikovski and  need to determine and encode the rules manually, as well as
Brand 2003. The uncertainty associated with future the often unintended manner in which fuzzy-rule inference
passengers, however, is an entirely different matterinterpolates between them.

Properly accounting for the effect of the current decision on

g ; Another approach to accounting for the wait of future
the waiting times of all future passengers is an extremely

complicated problem, for at least two reasons. First,passengers has been proposed by Crites and Barto, who

uncertainty associated with future arrivals is much higherrecogmzed that group elevator scheduling is a sequential

— not only is the exact destination floor unknown for decision making problem and employed the Q-learning

) : : algorithm to asynchronously update the expected costs-to-
future passengers, but also their arrival times and floors .o
o (future passengers’ waits) of all states of the elevator

_are unknown too. _S_.econd, the current decision pote_nnall)gank Crites and Barto1994. They dealt with the huge
influences the waiting times of passengers arbitrarily far

state space of the system by means of a neural network
which compactly approximated the costs-to-go of all states.
Their approach is well founded in decision theory and
In spite of the computational difficulties, ignoring future holds significant promise, but its computational demands
passengers often leads to very sub-optimal results. Theender it completely impractical for commercial systems.
current assignment affects the future trajectories of the cargt took 60,000 hours of simulated elevator operation for
and influences their ability to serve future calls in minimal the algorithm to converge for a single arrival profile, and
time. One particularly important situation that exemplifiesthe resulting reduction of waiting time with respect to
this effect occurs in up-peak traffic — a regime where mosither much faster algorithms was only 2.65%, which does
passengers arrive at the lobby of the building and requestot justify its computational costs. Crites and Barto only
service to one of the upper floors. Up-peak throughputeported experiments for one down-peak traffic profile and
is typically the limiting factor that determines whether an made no comments on other traffic regimes; due to the
elevator system is adequate for a building. computational costs, experimentation in varied up-peak
regimes is not practical.

into the future, which makes the optimization horizon of
the problem infinite.

Consider the following scenario: A hall call is made
somewhere above the lobby, a single car has stopped at the contrast to these labor-intensive and computationally
lobby, and the controller decides that this is the optimalexpensive methods, we propose a decision-theoretic
car to serve the current call, based only on the projectedpproach to choosing the optimal car assignment with
waiting times ofexisting passengers. If the lobby car respect to both existing and future passengers in up-peak
is dispatched to serve the new call, the lobby remaingraffic. While it makes some simplifying assumptions of
uncovered and future passengers arriving there will havés own, it provides quantitative estimates of the trade-off
to wait much longer than if the car had stayed at thebetween waiting times of existing and future passengers,
lobby. This short-sighted decision, commonly seen inso that a rational scheduling decision can be made. The
conventional controller traces, has an especially severeesulting algorithm is fast and clearly outperforms the state
impact in up-peak traffic, since the lobby quickly fills with of the art, typically reducing passenger waits by 5% to
waiting passengers while the car services the lone call€s5%.

above.

Suppose, however, that there existed another car above
the lobby, which could serve the current hall call almost



2 WAITS OF FUTURE PASSENGERS approximation itself to be quite good on averagé(T)

can be tractably computed using the recently introduced
In typical up-peak traffic, between 80% and 95% of all ESA-DP (empty the system via dynamic programming)
future passengers arrive at the lobby. The waiting timesalgorithm Nikovski and Brang 2003, which efficiently
of these lobby arrivals is the dominant component incomputes the exact expected arrival time of eachTgar
the overall waiting time of future passengers, and the(with respectto its current passenger pick-up commitments
current decision of the scheduler should primarily attemptand their uncertain destinations).
to minimize the wait at the lobby. Hence, we will begin
with the simplifying assumption thatl future passengers
will arrive at the lobby. The effect of unmodelled above-
lobby future arrivals will shorten the time-horizon in which
predicted waits are accurate; this will be explicitly worked
into the calculations later as a discounting factor.

So far we have considered the arrival pattefnand T as
functions of afixed existing assignment of passengers to
cars. However, the current decision of the controller—
namely to which car the current hall call should be
assigned—changes this assignment: Since the controller
has a choice betwedhcars, there ar€ possible resulting
Under the lobby-arrivals-only assumption, it can be seerassignments and hencg& possible distributions over
that the current decision of the scheduler affects thdanding patterns. If we want to employ the approximation
waiting times of future passengers only through the futurediscussed above, we need the expected landing pattern
landing times of cars at the lobby. Calculating theseT (i) = [Ti1, Ti2, - -, Tic], i = 1..C, which would occur if the
landing times effectively marginalizes out individual future current call is assigned to carThe meaning of each entry
lobby passengers. The optimal strategy to service lobbyi; is the expected landing time of cif the current hall
passengers is to send all cars to the lobby immediately afterall is assigned to car

they have completed servicing their prior commitments
to existing passengers. For a building with shafts,
define alobby landing patternto be an array of times

Once the matrix o€ landing patterns is built, the expected

cumulative waiting time of lobby passengers corresponding

T = [ToTa---,Tc), T; > O, whereT; is the arrival time of to each of theC landing patterns (rows of the matrix) can
be computed. We now develop a procedure for computing

gzgij :ei..Ca:;et:eel:)sbbéir?cf:teertrlltereaissduer:::rrtztijnﬁllaokjolltjst thhe cumulative waiting time of future lobby passengers as
9 P gers. Y 2%unction of any landing pattefh = [Ty, T2, - - -, Te].

destinations of passengers currently assigned to a car but
not yet boarded, the landing patteFris a (vector-valued) Since the waiting time of future lobby passengers at the
random variable with a probability distributid®(T), T € lobby is invariant with respect to the particular order of car
T over the space of all possible landing pattetns arrivals (e.g., it makes no difference whether car 2 arrives
in 10 seconds and car 3 arrives in 50 seconds, or vice versa,
Qince both will be empty in up-peak traffic), we assume that
the landing patteri is already sorted in ascending order:
0<T; <Tp <...<Tc. Under this assumption, we define
VO(T) to be the expected cumulative waiting time of all
future lobby passengers within the time interval [0, Tc]:

V)= [ PTV(T)dT, (@) c
./I’e‘f VO(T) = /0 ! n(t)dt, (2)

Ideally, the scheduler should compute the expected waitin
time V(T) for each possible landing pattefhe 7, and

take the expectation of that time with respect to the
probability distributionP(T):

The integral gives the exact estimate of the waiting times

of lobby passengers under the lobby-arrivals assumptionwheren(t) is the expected number of people waiting to be
but it is not computable because the probability distributionpicked up at the lobby at timte

P(T) can only be known through explicit enumeration

of all (countably infinite) possible future scenarios via Before presenting the computational procedure, we wil

. ) ; . discuss the need to introduce exponential discounting of
simulation. Even if there were an analytic form for L : o .
future waiting times because of a bias in the predicted

P(T), the size of the (finite) spac& of all possible : : T L
g X v . - . _landing times. The bias is due to our approximating
landing patterns is huge; integrating over it is not practical . . .
) . . assumption that no future arrivals above the lobby will
computationally. Instead, we will use as a substitute the

g e g e oo ot Er 1 0 f v g gt I el
times of each caf = [Ty, Ty, ..., Tc] = [(T1), (T2), ..., (Te)], : quently; y

) Do be accommodated by the cars in service, these cars will
and will employ the approx!matmmvg_)) ~V((T) be delayed in reaching the lobby. Thus the landing times
V(T). Note that the equalityT) = T is true because . ; :

. . . estimated by the&sa-DP algorithm may underestimate the
each of the components;, j = 1..C, is an independent

. ; actual times, very modestly for near-future predictions and
random variable whose uncertainty depends only on the.” .. L

S . Significantly for far-future predictions.
probability distribution over the destinations of passengers

assigned to caj. For the same reason, we may expect theA standard method to discount estimates far into the



future is to multiply them by ex@-ft), wherep > 0 is 0
a discounting factorBertsekas200d. Similarly to the

case above, we define the expeatiistounteccumulative 5
waiting time of lobby passengers to be

-
VB(T)i/ e Bin(t)dt. 3)

0 5

Consider splitting the interva[0,Tc] into C different .
intervals [Ti_1,Ti], i = 1..C (setting To = 0). On first

consideration, it would seem that the expected number of

people waiting at time € [T_1, T] is proportional to the Figure 1: Grid structure for the embedded semi-Markov
time elapsed since the last time a car visited the lobbychain for a building with four shafts. Rowof the model
(Ti_1). If we model that arrival of lobby passengers ascontains all possible states of the system just afteri car
a Poisson process with rale the expected number of has arrived at timd; and has picked up all passengers that
people waiting is simpln(t) =A(t —Ti_1), and the integral  might have been waiting at the lobby. (Note that the vertical
above splits intC easily evaluable parts. (We assume heretime axis is not drawn to scale.) Only transitions shown
that cars pick up instantly all people they find waiting atin bold arrows have non-zero costs; the costs of all other
the lobby, since load times are very small relative to waittransitions are zero. Transitions labeled with are taken
times). whenn or morenew passengers arrive.

Unfortunately, this reasoning ignores the fact that if car

i reaches the lobby and finds it empty, it will not depart The states in the semi-Markov chain used for our problem
immediately (at its arrival timeTi), but will wait at the  are labeled by the triplé, j, m), wherei is the number of
lobby until the next future passenger arrives and boardszars that have yet to arrive at the lobljyis the number
Furthermore, this approach cannot handle a very importanf cars currently at the lobby waiting for passengers, and
special case: If there are alreafigars at the lobby attime m—=C—i— j is the number of cars already departed from
t = 0, the firstj passengers will not wait at all — each the lobby. Accordingly, we place the states of the semi-
will immediately board a waiting car and ride up, with Markov chain in a two-dimensional grid (matrix), whose
little or no waiting time. The significant but speculative elementS;, corresponds to state, j,m) (figure 1). Row
savings in this scenario must be balanced against the replof the model matrix contains all possible states of the
cost of not using those cars to service known passengekystem immediately after carhas arrived at timd; and

above the lobby. In order to quantify these savings, Wenhas picked up all passengers that might have been waiting
must accurately model the behavior of elevator cars at thgt the lobby at that time.

lobby.
Y We will first provide a solution for the generic situation

represented by this model, namely when no cars are present
3 A SEMI-MARKQV SYSTEM MODEL at the lobby at the current decision tim& (> 0), and

later extend the solution to the case when some cars are
In order to correctly estimate the waiting times of lobby currently parked at the lobby. For the generic case, the
passengers given the actual behavior of cars when they fingtarting state of the chain is the std® 0,0), i.e., allC
nobody waiting at the lobby, we employ a semi-Markov cars have yet to arrive at the lobby. The terminal states are
chain whose states and transitions describe the behavior &fose in the bottom row of the model, when@ltars have
landing lobby cars in response to passenger traffic at thalready landed, and depending on how many passengers
lobby. have arrived in the intervdle [0, T¢], either all cars have
departed with passengers on board (sf@t8,C)), or some
cars are still present at the lobby (stat@sj,C — j) for
somej > 0).

A semi-Markov chain consists formally of a finite number
of statesS, i = 1..Ns, average momentary costs,
expected transition timeg;j, and probabilities?; of the
transitions between each pair of stafsand Sj, and an  Each state(i, j,m) in the rows above the bottom one
initial distribution T(S) which specifies the probability (i > 0), wherej = C—i—m, can transition to two or
that the system would start in stat§ [Bertsekas more successor states, depending on exactly how many
200Q9. Furthermore, each semi-Markov chain containsnew lobby passengers would arrive during the time interval
an embedded fully-Markov chain evolving in discretet € [T, Ti11]. For example, the chain would transition from
time, whose cumulative transition coftg are defined as state(4,0,0) to state(3,1,0) only if no new passengers
Rij=Tijrij, and all transitions are assumed to occur withinarrive by timeT;, and will transition to statg3,0,1) if

a unit of time. one or more passengers arrive by that time. Each of



the transitions in figurel is labeled with the number of

assengers that should arrive if this transition is to be taken. i
p g Te—i+1 [)\(I—TC )] e Mt—Te )

x!

The time to complete each transition is readily determined RIBm / e (x—J)dt. (4)
to be the interval\T; = T; — Ti_1 between two car arrivals. ., =it
The probability of each transition is also easy to compute,

since it is equal to the probability that a particular numberAfter a change of integration variables, simplification, and
of people would arrive within a fixed interval from a splitting of the integral into two parts according to the two
Poisson process with arrival rake Thus, the probability ~components of the difference- j, the expression for the
p(x) that exactlyx people would arrive in timeAT; is  costevaluates tB,B = e PTcHi[F(ATc_i41) — F(0)], where

p(x) = (MAT;)*e MTi /x1. For transitions labeled with an we make use of the function

exact number of arriving passengers, this formula can be

used directly. For transitions labeled with-, meaning

that they are taken whamor more new passengers arrive, X X

F( ) — e )H»B

the probability of the transition is the complement to one 20 Z) )\ +B)+1
of the sum of the probabilities of all remaining outgoing A Bt

transitions from this statep(n+) = 1— y7-3 p(x). + (Bi—B é; Ae” +co (5)

Computing the cost of transitions labeled with an exac . ) . : .
T or some arbitrary, but fixed integration constagtwhich
number of passengers is trivial: Since the number o ) : .
e set to zero for computational convenience. Certainly,

arriving passengers is less than or equal to the number (% e above function is valid onlv when at least some
cars available at the lobby, none of these passengers wou . y
Iscounting is used3(> 0); when3 = 0, the cost evaluates

have to wait and the cost of the corresponding transitions i o
zero. Computing the cost of the last (rightmost) transition

from each state, shown in bold in figutehowever, is quite Rin = G(ATc-i+1) — G(0), ©)
involved. Such a transition corresponds to the case when for

or more people would arrive at the lobby, while omly- 1 X ! A

cars are present there. The computation has to account foB(t) Z}AX M (x—] Z}W +5t2— jt+co.
the fact that ifx new passengers arrive, ar@ n, the first ' 7)

n—1 of them would each take a car and depart without
waiting, and only the remaining —n+ 1 people would Once all costs and probabilities of the semi-Markov model
have to wait. have been computed as described above, the cumulative
cost (wait) incurred by the system if it starts in any of
the model states can be computed efficiently by means of
dynamic programming, starting from the bottom row of the
model and working upwards. Since the states in the bottom
row are terminal and mark the end of the landing pattern,
we set their costs-to-go to zero, i.e., we are not interested
Sn the amount of passenger wait accumulated after the last
landing.

Figurel shows that for any stat®, of the grid, as defined
above, andj = C —i — m, the transition shown in bold
is taken when more than people arrive, i.en=j—1.
Hence, if that transition is taken andnew passengers
arrive, only the lask — j of them would have to wait. In
other words, ifx passengers have appeared within som
time t, the differential (momentary) costynat that time
would bex— j.

. . Once the costs-to-go of all states are known, we can read
Since such a transition covers the cases when some numb

. X 5t the cumulative waiting time for the whole landing
of passengers greater thawould appear, and this number

d th tically b bitrarily | ; finit pattern T from the initial state of the model. In the
could theorelically be arbitrarily large even In a finite generic case, when no cars are present at the lobby at
time interval, the expected cost of the transition would

timet = 0, the initial state is alwaygC,0,0). The special

be a weighted sum over all possible nhumbers of amvalsCase wherl cars are present at the lobby at tife: 0

X, from j +1 to infinity, and the weights would be the can be handled just as easily — in this case, the starting
probabilities thatx arrivals would occur, as given by the state iSC—1,1,0), and the expected discounted cumulative

50|sstonhd|slt(;|t;utlzn. In atd(;mbon, t?e tdlffe:centlalt €oStS aty it for the whole landing pattern is the cost-to-go of this
ime t should be discounted by a factor of éxfft), as starting state$c_ o). This eliminates the need to handle

discussed previously. This reasoning yields the following ihis special case separately from the generic one.
expression for the expected discounted cumulative Waltlng

time RP of lobby passengers during the last transition out
of statgsm, with j=C—i—m: 4 COMBINING ESTIMATES

The algorithm described above provides estimavqgs;_
VB(T;) of the expected cumulative discounted waiting



time of future lobby passengers, based on each ofGhe passengers:

landing patterndT; resulting from the decision to assign v, :ViBB/()\—Ae_Bt)- (10)

the current hall call to car, i = 1..C. Simultaneously, the

ESA-DP algorithm Nikovski and Brang2003 gives exact Having obtained comparable estimai&’s andV; of the
estimate$\f of the cumulative non-discounted waiting time waiting times of existing and future passengers, they have
of all existingpassengers of all cars, including the one(s)to be combined into a single performance criterion, for
that signaled the current hall call, if this call is assigned toexample by means of a single weightQx < 1, such that
cari, i = 1..C. In order to arrive at an optimal decision the performance criterion would aV; + (1 —a)V;. The
balancing the wait of both existing and future passengershalance between present and future waits depends on how
the two sets of Va|ué¢43 andW have to be combined in an quickly the system can free itself of present constraints
appropriate manner. by delivering passengers. Thus the optimal valuexof

L . is ultimately an empirical question, depending mostly on
There are significant differences between these two megg, physical performance of the elevator system. In our

sures: The cumulative waiting time of existing passenger%xperimems, we found that valuesamfvithin the interval

Wi is not discounted, while the cumulative waiting time of 14 1 ¢ 3] stably produced the best results, regardless of the
future passengers is discounted. Furthermore, the objecti ight of the building and number of shafts.

of the scheduling algorithm is to minimize treverage

waiting time, and not theumulativewaiting time over ~ The resulting algorithm, which uses a weighted average of
some interval — the two measures are interchangeable fd¥SA-DP's estimatesV; and the look-ahead estimates,

the purposes of optimization only when the time intervalswill be calledesA-DP-LA (ESA-DPwith Look-Ahead). Itis

for all possible decisions are equal. Since this is not thénvoked at each passenger’s arrival, and its only parameter
case (|n generaL the |anding patterns for different Carés the current arrival raté, of which empirical estimates
do not have the same duration), the scheduling algorithn@€ computed and maintained in most modern elevator

would have to obtain average waiting times from theirscheduling systemsAfnano and Masude2003. The
cumulative counterparts. complexity of evaluating the look-ahead estimatgsis

. o L O(C?), and since the number of ca@is always small,
Obtaining the average waiting time of existing passengerge computational time for producing these estimates is
Wi from the cumulative waiting tim& is trivial —the  agjigible with respect to that necessary for computing
numbe of currently waiting passengers is always known i, expected waits of current passengfsand expected

by the controller and does not depend on the candidate ¢, qeq patternsT; by means of the originaEsA-DP
numberi, soW; =W /N. On the other hand, obtaining

the average waiting time of future passengérsrom the
cumulative discounted waiting tim.¢B over the duration of

a landing pattern is not as obvious. The duraflgrof the > EXPERIMENTS
landing pattern is known, and if the arrival rate at the lobby.
is A, the expected number of arrivals withig time units is
ATc. However, dividingv; by ATc is meaningless, because
Vi has been discounted at a discount fate

algorithm.

TheEsA-DP-LA algorithm was compared to a conventional
method for supervisory group control in a detailed
simulator. The conventional controller’s basic strategy is to
identify a likely path for each car given its commitments,
Instead, we can think of the discount factor éxfit) as then make a new passenger-to-car assignment that
an averaging weight for timée. If n(t) is the expected minimizes the round-trip time of all cars along their
momentary number of people waiting at timas reflected likely itineraries. Recently fielded systems by a number

in the costs of the Markov model, of market-leading manufacturers generally operate on the
same principleBarney 2003, although the matter is partly
Tc
ViB _ / e‘Btn(t)dt (8) shrouded by trade secrets.
0

The algorithms were tested on various buildings with
has the meaning of expectedmulativeweighted number height of 8, 15, 20, and 30 floors, served by either 3, 4,
of people waiting during the intervgd, Tc]. Therefore the 5, 6, 7, or 8 elevator shafts, whose cars were moving at a
guantity speed of 3 m/s. Each floor in these buildings was 4m tall,

- /Tc e Pn(t)dt/ /'Tc o Bl ©) except for the lobby, which was 5m tall.

70 70 Each trial consists of a 1 hour simulation with passenger
is the expectecdveragenumber of waiting people within traffic of randomly generated traffic, using a unique random
this interval, properly normalized by the sum (integral) seed. Both algorithms see the same exact traffic. The
of all weight factors. Furthermore, Little’s law specifies performance of the two algorithms was tested under arrival
that n = AV, [Cassandras and Lafortun2999, which  rates ranging from 100 arrivals per hour up to the point
finally yields the time-normalized expected wait of future where average waiting time exceeded one minute. Such a



0% separate sets of 49 random-number seeds. Overall, for both
30t 410% sets, the minimum waiting times tend to be achieved in the
- 20% same specific interval.015 < 3 < 0.025. Values much
$.25¢ 1 less thar3 = 0.015 clearly result in poor performance —
g 30% if too little or no discounting is used, waiting times can
E’ZO’ 140% ¥ increase by up to 7 seconds for this particular building,
"§ W s e A50% E and by more for other buildings. This can be attributed
<19 ; g ot _ — leo ¢ tothe relatively fast rate at which landing-pattern estimates
nD'. < ....,a:.'.‘.' Al “  become imprecise. When larger discounting rates are used
21 170% (B > 0.025), performance worsens as well, but at a slower
& 180% rate. (Ultimately, for very large values of the discounting
i loo% parameter, e.d > 2, the decisions oESA-DP-LA become
o ‘ ‘ ‘ ‘ ‘ R identical to those oEsA-DP.) This shows that it is safer to
0 5 10 15 20 25 30 err in the direction of more discounting than in the direction

Conventional, waiting time [sec . ;
9 ime [sec] of less discounting.

Figure3 also shows that, in general, it is not possible to find

plotted against waiting times of the conventional schedulefXPerimentally the exact *best” value for the discounting

in identical scenarios, in seconds. Each dot represents a{}@f\]rametlert:. 'I}he opt|m|zag|on surfal;:e IS faollrly noisy ((ejven g
average over 50 hours of simulation in a specific building”’"€" r€latively many random-number Seeds are used, an

type and arrival rate. Dots below the diagonal represengrqd_ient-_descent search _is_very hard to_apply. Furt_hermore,
cases wherEsA-DP-LA achieves lower waiting time than waiting times between fitting and testing trials differ by

the conventional scheduler, and vice versa for dots abovPProximately one second, so it is not feasible to achieve

the diagonal. The right axis (speed-up) shows percenta etter accuracy than that. What is important in practical
reduction in waiting times. terms is that this residual variation is much smaller than the

overall improvements in waiting times achieved bga-
DP-LA with respect toESA-DP. This effect is shown is
pointis reached at different rates for different buildings andrigure 4, where waiting times ofEsA-pDp-LA are plotted
number of shafts in the elevator group. vs. those ofEsA-DP. Improvements are smaller than

The experiments explored the case of mixed up-peawhe” compared to a conventional s_cheduler, reflecting
traffic. In office buildings this is the most demanding traffic € advantageesa-op already had with respect to the
regime, combining maximal arrival rates and uncertainty incOnVentional algorithms, but they are still very significant.
passenger destinations. Most (80%) of the traffic originated/or® importantly, these improvements can be attributed
at the lobby and was directed approximately evenly to the®NlY t0 the look-ahead policy.

upper floors, while the remaining 20% of the traffic was |tis also instructive to interpret the experimentally obtained
between floors other than the lobby. The results are plottedalue for the discounting paramef@as a measure of how
in figure 2, and indicate that the algorithm significantly far into the future the scheduler looks ahead. Sinéel/[3
reduces waiting time with respect to the conventionalis the time when future waits are discountetimes, the
algorithm, with savings in the range of 5%-55%. value oft can be assumed to be the effective horizon of the
scheduler. The interval.015< 3 < 0.025 corresponds to
horizon of 40< 1 < 67 seconds, which is on the order of
gone round trip of an elevator car. This is consistent with

type in “fitting trials” generated from one set of random our expectation that once a car initially at the lobby has

seeds. We took care to ensure that the “test trials” grapheBeen able to complete its round trip and return to the lobby,

in figure 2 are generated from a different set of seeds. Inthe actual landing pattern from then on is very different

general, the performance BBA-DP-LA on the two sets of from our estimates and they should not be relied upon.

seeds is similar—average wait times differ by roughly one"Urthermore, we can compare our experimental optimal
second. Performance is also robust80% changes i discounting rate with that used b@iites and Bartp1994.
andp, but larger changes can add more than 10 seconds th'€Y used = 0.01, or equivalentlyr = 100 seconds —
the averag&SA-DP-LA wait time. aIthpugh on the same prder as our results, an effective
horizon of 100 seconds is probably too long for all but the
This robustness is illustrated in figuBefor one specific  tallest buildings.
building (15 floors and 6 shafts). The graph in figire
depicts the experimental dependency of passenger waiti
times on the value of the discounting paramegerfor

a fixed value of the mixing paramter = 0.2, and two

Figure 2: Waiting times of theesa-DP-LA scheduler

As noted, theesA-DP-LA algorithm is parametrized by the
mixing coefficienta and the discounting ratB. Their
values were determined experimentally for each buildin

levator performance in up-peak traffic typically deter-
ines the number of shafts a building will need. Using
standard guidelines for elevatoring a building according
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Figure 3: Waiting times of theesa-DP-LA scheduler
plotted against the discount parameiigfor a fixed mixing  Figure 4: Waiting times of theesa-DP-LA scheduler
coefficienta = 0.2, in a 15 floor, 6 shaft buildingy =2500.  plotted against waiting times ofsA-DP in identical
Average values for two sets of 49 random seeds are showBcenarios, in seconds.

Both sets show a general minimum in the intervall® <

B < 0.025, although the dependency is very noisy locally.
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2003, we estimate that if the industry shifted from current
controller technologies tasA-DP-LA, 10-15% of all new )
mid- and high-rise office buildings could be built with C-C- Bamey. Elevator Traffic Handboak Spon Press,
one less shaft than currently recommendeud provide London, 2003.

superior service. Dimitri P. Bertsekas Dynamic Programming and Optimal

Control. Athena Scientific, Belmont, Massachusetts,

6 SUMMARY 2000. Volumes 1 and 2.

) ) , Christos G. Cassandras and Stéphane Lafortulmro-
This paper presented an algorithm for approximate ction to discrete event systemluwer Academic

estimation of the waiting times of future lobby passengers p ,yjishers. Dordrecht. The Netherlands. 1999.
for each possible assignment available to a scheduling ’ ’ ’

algorithm. We combine an estimator of elevator landingRobert H. Crites and Andrew G. Barto. Elevator group
times and a semi-Markov model of overall system behavior control using multiple reinforcement learning agents.
to compute the expected waits of future passengers arriving Machine Learning33:235, 1998.

at the lobby. This estimate complements the estimates . . o .
for the waiting time of passengers already known toDaniel Nikovski and Matthgw Brand. Demsmn-theoretlc
the system, and allows the scheduler to make a rational 970UP €levator scheduling.  I13th International
assignment based on the balance between waiting times of Conference on Automated Planning and Scheduling
existing and future passengers. The resulting scheduling 17€Nt0, ltaly, June 2003. AAAL.

algorithm achieves large improvements in average waitingg; ,ce A. Powell and John N. Williams. Elevator

time of passengers — sometimes halving it or better — and dispatching based on remaining response timeS
creates real possibilities for reducing the number of shafts Patent September 8 1992. #5,146,053.
required for properly elevatoring a building. T
G. R. Strakosch. Vertical transportation: elevators and
REFERENCES i;gzlators John Wiley & Sons, Inc., New York, NY,
Masaaki Amano and Toshio Masude. The n&#l-
2200 elevator group-control systemitsubishi Electric

Advance99:12-15, September 2002.

Hideyo Ujihara and Shintaro Tsuji. The revolutionary
Al-2000 elevator group-control system and the new
intelligent option series.Mitsubishi Electric Advance

Gang Bao, Christos G. Cassandras, Theodore E. Djaferis, 49:5-8, 1988.

Asif D. Gandhi, and Douglas P. Looze. Elevator



	cover.pdf
	page 2

	
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


