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Abstract
In this paper we present a novel algorithm for reconstructing 3D scenes from a set of images. The user defines
a set of polygonal regions with corresponding labels in each image using familiar 2D photo-editing tools. Our
reconstruction algorithm computes the 3D model with maximum volume that is consistent with the set of regions
in the input images. The algorithm is fast, uses only 2D intersection operations, and directly computes a polygonal
model. We implemented a user-assisted system for 3D scene reconstruction and show results on scenes that are
difficult or impossible to reconstruct with other methods.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene Un-
derstanding: modeling and recovery of physical attributes; I.3.3 [Computer Graphics]: Picture/Image Generation:
display algorithms

1. Introduction

Creating photorealistic 3D models of a scene from multiple
photographs is a fundamental problem in computer vision
and image-based modeling. The emphasis for most com-
puter vision algorithms is on automatic reconstruction of the
scene with little or no user intervention. Consequently, these
algorithms make a priori assumptions about the geometry
or reflectance of the objects in the scene. In contrast, many
image-based modeling systems require that the user directs
the construction of a 3D model that is used as a scene rep-
resentation. However, the specification of these 3D models
can be difficult, and tools for it are not very flexible, i.e., they
allow only for a very simple set of shapes.

In this paper we propose a system for 3D model creation
that only requires simple 2D photo-editing operations from
the user. The input to our system is a set of calibrated im-
ages of a scene taken from arbitrary viewpoints. The user
first identifies 2D polygonal regions in each image using
simple segmentation tools, such as polylines and intelligent
scissors 18. Each region is assigned an ID, such that regions
with corresponding IDs in two or more images are projec-
tions of the same object in the world. For example, images
of a person could be segmented into head, torso, legs, and
hands. Figure 1 shows an example of input images and the
corresponding user segmentation.

Our algorithm automatically computes the 3D geometric
model that is consistent with the user’s segmentation. The
solution is unique, in that is it the maximum volume that
reproduces the user’s input. The algorithm is fast and di-
rectly computes one or more watertight polygon meshes of
the scene. The model can be immediately displayed using
graphics hardware, as shown in Figure 1.

Figure 1: Left: Example input photograph. Middle: User la-
beling of image regions. Right: 3D model reconstructed from
nine labeled images.

A fundamental problem in 3D reconstruction is assigning
correspondences between points in two or more images that
are projections of the same point in three dimensions. Previ-
ous work uses pixels or object silhouettes to specify corre-
spondence. Our approach is the first to use correspondence
between arbitrary image regions. In this paper we present a
new problem formulation for general scene reconstruction

c© The Eurographics Association 2003.



Ziegler et al. / 3D Reconstruction Using Labeled Image Regions

from image regions. We define a necessary condition for
the removal of labeling inconsistencies from multiple views.
We develop a new algorithm, called cell carving, and show
how it computes a unique solution to the problem. We also
present an efficient implementation of cell carving that uses
graphics hardware and standard 2D polygon intersections.

Our user-assisted 3D reconstruction system is able to re-
construct scenes that are very difficult or impossible to re-
construct with traditional methods: scenes with significant
occlusion among multiple objects, large variations in geo-
metric scale and detail, and a mix of textured, uniformly col-
ored, specular, and transparent surfaces.

2. Previous Work

The problem of 3D model reconstruction from photographs
has received a tremendous amount of attention in the com-
puter vision literature. Excellent overviews can be found
in 11, 7. Here we review the research that is most relevant to
our work.

2.1. Multi-View Stereo Reconstruction

Multi-view stereo algorithms reconstruct 3D structure by
automatically computing pixel correspondences across im-
ages. Stereo correspondence techniques work well when the
distance between viewpoints (often called the baseline) is
not too big. This is especially true for video sequences 22,
where tracking is used to assist in correspondence match-
ing between frames. To deal with large changes in view-
points, some approaches extract partial 3D shape from a
subset of the photographs using multi-baseline stereo algo-
rithms 19, 33, 26. However, to produce a single 3D model re-
quires complex reconstruction and merge algorithms 32, 5,
and there are no guarantees on global consistency with the
entire set of photographs for the merged model.

Accurate point correspondences are difficult to compute
in regions with homogeneous color and intensity. View-
dependent effects, such as specular highlights or reflections,
lead to correspondence mismatches. Obtaining dense corre-
spondence for many image points is especially hard. Finally,
differences between images due to occlusions are difficult
to handle. This is a severe problem for general scene recon-
struction where such occlusions happen frequently.

2.2. Shape From Silhouettes

Shape-from-silhouette techniques – for example 15, 30 – com-
pute the 3D model as the intersection of visual rays from the
camera centers through all points on the silhouette of the ob-
ject. Because of their simple and efficient computer vision
processing, shape-from-silhouette methods are especially
successful for real-time virtual reality applications 14, 17.

Shape-from-silhouette techniques reconstruct a shape

known as the visual hull 12 – they can never recover concavi-
ties. Li et al. 13 improve the visual hull by adding depth from
multi-view stereo, subject to some of the drawbacks men-
tioned above. Shape-from-silhouette methods fail for scenes
with multiple, occluding objects, and they only work for
outside-looking-in camera arrangements. † Our cell carving
algorithm is able to reconstruct concavities. It handles arbi-
trary object occlusions and camera placements.

2.3. Photometric Techniques

Additional photometric constraints can be used to recover
a shape that is demonstrably better than the visual hull 11.
Voxel coloring 27 gradually carves out voxels from a 3D vol-
ume that are not color-consistent with all images. Recent ap-
proaches extend voxel coloring to arbitrary camera place-
ments 4, 11, graphics hardware acceleration 25, and multiple
color hypothesis for each voxel 29.

Voxel approaches do not work well for large scenes or
objects with big differences in scale. Constructing a surface
model for interactive viewing requires a lengthy process that
may introduce inconsistencies in the mesh. Fundamentally,
all photometric approaches rely on a locally computable an-
alytic model of reflectance. This assumption fails for global
illumination effects such as shadows, transparency, or inter-
reflections. Since simultaneous recovery of surface shape,
reflectance, and illumination is difficult, all photometric re-
construction techniques assume that surfaces are Lambertian
or nearly so. They do not work for objects with homoge-
neous surface color. Our motivation for developing a user-
assisted reconstruction method was to overcome these lim-
itations and to reconstruct highly specular, transparent, and
uniformly colored objects.

2.4. Image-based Modeling

Image-based modeling systems split the task of 3D model
construction between the user and the computer. Some meth-
ods reconstruct a model from a single image using user-
defined billboards 9 or depth images 10. Oh et al. 20 use a
single image and provide various tools to paint a depth im-
age, edit the model, and change the illumination in the pho-
tograph. Despite the utility and versatility of these systems,
specifying depth images for multiple photographs requires
an impractical amount of user input. More importantly, there
are no guarantees that the resulting 3D model is globally
consistent with all the input photographs.

It is of considerable advantage to use geometric con-
straints when the scene is known to have a certain struc-
ture. Some systems use user-guided placement of polyhedral

† The scene must lie inside the convex hull of the cameras. The
opposite configuration is called inside-looking-out.
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primitives to reconstruct architectural scenes 6, 8, others ex-
ploit the geometric characteristics of scenes with planes and
parallel lines 3, 23. Similar methods have been successfully
adopted by commercial products 2, 21, 24. However, these
approaches are not applicable for reconstructing arbitrary
scenes, and they rely on lengthy optimization procedures.

Our method follows the tradition of image-based model-
ing by relying on the human for the difficult task of assigning
region correspondences. Our algorithm is able to automati-
cally reconstruct a globally consistent mesh without making
geometric assumptions about the scene. Because cell carv-
ing uses geometry for reconstruction, it is able to include
geometric constraints (for example, marking planar regions
in each image).

3. Cell Carving Algorithm

We first look at the problem of n-view reconstruction us-
ing image region correspondence. As a solution to the prob-
lem we introduce the cell carving algorithm. In Section 6
we present an efficient implementation of cell carving using
graphics hardware.

3.1. Problem Formulation

We are given n images of the same scene taken with cal-
ibrated cameras from arbitrary viewpoints. The scene is a
static environment of two- and three-dimensional impene-
trable objects. In this discussion, we consider each camera
to be omni-directional with a spherical image plane at a unit
distance from the center of projection (COP). All rays enter-
ing the camera are parameterized in terms of spherical co-
ordinates (ρ,θ). Later we will use the more familiar pinhole
camera model.

Each point in the scene can be projected into any cam-
era by intersecting the image sphere with the directed line
from the point to the camera’s COP. For any two points, we
say that P1 is visible from P2 if the open segment P1P2 does
not intersect any object in the scene. We produce an image
by projecting all visible points in the scene onto the image
sphere. A depth image is an image that stores the depth along
the line of sight to each visible point. A depth discontinuity
is an abrupt depth change in a depth image.

Suppose we take n images of a scene where all objects
or parts of objects have some diffuse color. Each point in
an image will contain the color of the closest visible object
surface along the line-of-sight. Ignoring depth or color dis-
continuities for the time being, we call the set of all image
points with the same color an image region. We call the color
of an image region its region ID. An image that contains re-
gion IDs for each point is called a label image.

We can now pose the following reconstruction problem:
Given n label images, what is the scene that produces them?
As shown by Kutulakos and Seitz 11, there may be infinitely

many such scenes. To get a unique solution we restrict our-
selves to finding the scene with maximum volume that pro-
duces the label images. ‡

3.2. Consistency and Cells

Consider shooting a ray from a point p in the scene to a cam-
era C. The ray intersects the label image of camera C at an
image region with an associated region ID. A point is con-
sistent with a set of visible cameras if it projects onto the
same region IDs in these cameras. If the point is not visi-
ble in a camera, it is trivially consistent with that camera.
A point is also trivially consistent if it is visible in only one
camera. Figure 2 shows a 2D example with consistent and
inconsistent points for a set of three cameras.

C3

Pc

Pi

C2

C1

Figure 2: 2D example of consistency. Pi is inconsistent be-
cause the region IDs of its projections are not the same. Pc
is consistent. Cyan cells are inconsistent, and yellow cells
consistent. The thick black outline is the initial volume.

Now consider shooting rays from a point p to all cameras
and identifying all image regions where the rays intersect the
image planes. Note that we do this without taking occlusions
into account. We list the region IDs of the projections as a
vector with one entry per camera. We call this vector the
point ID. Each 3D point has exactly one point ID, but there
may be many points with the same ID. We call the set of
points with the same ID a cell. The point ID of points in a
cell is called the cell ID.

A cell is called consistent with a set of cameras if and only
if all points of the cell are consistent with these cameras.
Because only visible points can be consistent, we can restrict
the consistency checks to the boundary of cells. Figure 2
shows examples of consistent and inconsistent cells. Note
that some cells are inconsistent inside the visual hull of the
object.

Our definition of consistency is very similar to the defi-
nition of photo-consistency by Kutulakos and Seitz 11. The

‡ Some other criteria could be used. For example, one could try to
find the smoothest scene that produces the label images.
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only difference is that we do not consider background re-
gions because we assume omni-directional cameras for now.
Kutulakos and Seitz 11 call the maximum volume that is
photo-consistent the photo hull. If the label images are pro-
duced by projecting a scene as described above, then our re-
construction problem is equivalent to finding the photo hull.
Kutulakos and Seitz prove that all points inside the photo
hull are consistent, and that all points outside the photo hull
are inconsistent. Using this fact, we prove the following the-
orem in Appendix A:

Theorem (Cell Reconstruction Theorem): Given n la-
bel images. The scene with maximum volume V that pro-
duces the label images is composed only of consistent cells
C. Cells outside of V are inconsistent.

3.3. Necessary Conditions for Inconsistency

This theorem states that removal of all inconsistent cells will
yield the maximum volume V that produces the label im-
ages. The next important question is how many different
colors have to be observed on a cell to make it inconsis-
tent? Kutulakos and Seitz 11 state that any point (cell) with
at least two different colors is inconsistent. However, as Fig-
ure 3 demonstrates in 2D, two colors are not sufficient to
label cells as inconsistent.

B

Ci

C1 C2
C3
C4

C5
C6

C8
C7

Figure 3: Two colors are insufficient to determine the incon-
sistency of cells in 2D.

The object in the figure contains a V-shaped concave re-
gion with two distinct uniform colors (red and yellow). The
two cameras C1 and C2 are positioned such that each camera
sees the projection of exactly one of the two colors. The ini-
tial volume for the scene is outlined by the thick black line
B (we discuss initial volumes in Section 4).

The cell Ci (cyan) would be removed because of photo-
inconsistency (cameras (C1,C2) see two different colors).
However, this is incorrect, since the maximum volume that
is photo-consistent with the images may include large parts
of Ci. As shown on the bottom in the figure, the V-shaped
concavity can be replaced by infinitely many shapes with
two colors that are also not photo-consistent with the two
cameras. In the limit, these shapes converge to a plane of

micro-facets that project a different color into each camera.
As a matter of fact, one could place infinitely many cameras
(e.g., C3 to C8) without ever being able to remove the cell Ci.

We need to observe at least three different colors to deter-
mine the inconsistency of a cell in 2D. The equivalent exam-
ple in 3D consists of stacked cubes with different colors on
each visible side viewed orthographically from the direction
of the face normals. That means we need to observe at least
four different colors to determine inconsistency in 3D.

Intuitively, the microfacets in Figure 3 separate the cam-
eras into two classes, each of which observes exactly one
color on the surface. It is impossible to find a geometric con-
struction in 2D that would yield three classes of cameras,
each observing a different color. A similar argument holds
true for three dimensions.

The requirement of observing four different colors to de-
termine inconsistency in 3D may be hard to meet in practice,
especially with a small number of input photographs. Fortu-
nately, our system enables the user to resolve these situations
with additional image segmentation. If the user identifies all
interior edges with depth discontinuities, we need only two
colors for inconsistency checks.

For example, Figure 4 shows a scene with two cameras C1
and C2. The user has introduced additional regions (shown

B

C1 C2
Depth Discontinuities

Ci

Ci Ci

Figure 4: Segmentation along depth discontinuities allows
to correctly determine consistency with fewer than four col-
ors.

with different colors) along apparent silhouettes to indicated
depth discontinuities in the image. As shown in the figure,
the inconsistent cells Ci can now correctly be determined.

3.4. Reconstruction by Cell Carving

Now we describe a scene reconstruction algorithm. Given
an initial set of cells Vi that contains the scene, the algo-
rithm iteratively removes cells from Vi that are inconsistent
in at least four cameras. The remaining cells are the max-
imum volume that produces the label images. We call this
algorithm cell carving. Pseudo-code is shown in Figure 5.
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Initialize the volume containing the true scene.
Cell Carve ( input images, initial volume )
while VolumeConsistent = FALSE do

Project region IDs onto the current volume.
Detect a point P on the volume surface that has incon-
sistent labeling in at least four cameras.
if there are ID inconsistencies then

Project inconsistent point P into all input images. It
falls into a region with some ID in each image.
Compute a cell C corresponding to these regions.
Subtract C from the current volume.

else
VolumeConsistent = TRUE

end if
end while

Figure 5: Cell carving algorithm.

Cell carving is a generalization of previous scene recon-
struction algorithms. Assume the set of image regions is the
set of all rectangular image pixels. If we use the scene ra-
diance at each pixel as the pixel’s region ID, cell carving
reconstructs the photo hull. On the other hand, if the user as-
signs the same region ID to foreground and background ob-
jects, respectively, cell carving reconstructs the visual hull.
The quality of the scene reconstruction depends on how
much effort the user puts in specifying the image regions:
Many small regions will result in more detailed 3D mod-
els than a few, large regions. This is also a generalization
of voxel carving, in that the fidelity of the scene is not de-
termined by some pre-determined voxel grid, but by actual
geometry observed in the images.

The number of image regions determines the number of
cells that make up the maximum volume. Assume we have n
images and m regions in each image, then there are at most
mn cells. However, the vast majority of these cells are empty.
There are configurations where there may be m3 consistent
cells, for example, if the images correspond to three sides of
the orthographic cube. In our case, m is typically small (usu-
ally less than 20 regions per image). To reduce processing
time and memory footprint even further, we construct cells
only when needed, as described in Section 6.

4. Additional Constraints

So far, we have described the theoretical foundation of cell
carving. We now discuss some additional constraints that
make the algorithm practical for implementation.

We first restrict the omni-directional camera assumption
to a perspective pinhole camera. Projections of lines in three
dimensions now remain lines in the image plane. Conversely,
regions defined by polygons lead to polyhedral cells in 3D.
This allows us to use a fast method for constructing poly-
hedra 16 that only uses 2D polygon intersections (see Sec-
tion 6).

To uniquely identify cells, all points in the scene need to
project to a region in all cameras. However, pinhole cam-
eras have a limited viewing frustum. We simulate an omni-
directional camera by assuming that the image plane is in-
finite. 3D points outside the viewing frustum project to a
region on either side of the image plane with a unique un-
known ID. Other image regions that should not be recon-
structed (e.g., sky) may not be labeled by the user. We assign
these unlabeled regions a unique background ID.

As discussed in 11, the maximum consistent volume may
not be finite. It may be the volume that fills all free space
and reproduces the label images. We restrict the scene with
an initial bounding volume that is guaranteed to contain the
reconstructed solution. The selection of the initial volume
depends on the scene and camera arrangement. If all cameras
see the objects in the scene, we compute the visual hull and
use it as the initial volume. Otherwise we let the user specify
an initial volume as described in the next section.

5. User Input

For scenes where calibration is unknown, we use standard
computer vision methods 31 to estimate the cameras’ intrin-
sic and extrinsic parameters. The user selects about 20 fea-
ture points in each image and assigns point correspondences,
from which the algorithm determines the position and orien-
tation of all cameras. We found this procedure to be very
robust.

If the visual hull of the scene cannot be computed be-
cause of the camera arrangement, we require that the user
specifies the initial volume. To simplify the task, we show
orthographic views of the cameras and the 3D feature points
computed during calibration. The user then specifies corners
of the scene bounding box.

The user segments each image into a set of arbitrary
2D image regions using any of the segmentation tools that
are commonly available in photo-editing packages, such as
brushes, snakes, region growing, flood fills, watershed al-
gorithms, or intelligent paint. We have built a simple photo
editing application (see Figure 6) that provides polylines and
intelligent scissors 18. The boundary of a region is defined
by a polygon (possibly with holes) that consists of an outer
boundary and zero or more inner boundaries. The intersec-
tion of adjacent polygons must be a set of common edges to
both. The user also assigns a label L to each polygon corre-
sponding to the different objects in the scene.

Color discontinuities: Labeling purely on the basis of
color segmentation is not enough. There are cases where
non-adjacent regions with the same label will cause exces-
sive carving, as shown in Figure 7. The red object projects
to red regions in the three cameras that are disconnected by
the yellow region. We call this a color discontinuity. The two
cells Cryr (cyan) have the same cell ID: red-yellow-red. Be-
cause the frontmost of these two cells is inconsistent with
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Figure 6: User segmentation and labeling.

C1

C2

C3

Cryr

Cryr

Figure 7: A 2D example of color discontinuity. The same
object (red) projects to disconnected image regions. With-
out distinct region IDs, both cells Cryr would be wrongly re-
moved.

the three cameras, it will be removed. But that means the
back cell will also be removed because it has the same cell
ID. However, the back cell is trivially consistent because it
is not visible and should be preserved.

Fortunately, there is an easy remedy to this situation: We
automatically assign a unique index I to each disconnected
image region. The pair < L, I > is used as the region ID,
where L is the user-assigned label. With this approach, the
two cells Cryr have different cell IDs, and only the front cell
will be removed.

6. Cell Carving Implementation

We now describe an efficient implementation of cell carving
that makes use of graphics hardware and fast 2D polygon
intersections. Instead of constructing a complete volume of
cells, we use lazy evaluation and create cells as needed. The
reason is that we are only interested in the boundary repre-

sentation of the reconstruction. Figure 8 shows the pseudo-
code of our implementation.

1: Create volume V containing the true scene
2: Create a set I of label images
3: Compute the boundary cells Vc that approximate V
4: Remove all cells with background IDs
5: repeat
6: AllCellsConsistent = TRUE
7: for Every cell c in Vc do
8: for Every triangle t in c do
9: for Every input image i in I do

10: Project t onto image i with visibility
11: Record region ID of its projection
12: end for
13: k = Number of inconsistent images for t
14: if k >= 4 then
15: AllCellsConsistent = FALSE
16: Remove the inconsistent cell c
17: Construct the neighbors of c
18: end if
19: end for
20: end for
21: until AllCellsConsistent = TRUE

Figure 8: Cell carving implementation.

Line 1 and 2 – Pre-processing: As described in Sec-
tion 5, we are given an initial volume that contains the scene.
The user also provides a set of polygons with corresponding
region IDs for each image. To quickly check which region ID
a point projects to, we scan-convert and flood-fill the poly-
gons with a color corresponding to their region ID.

Line 3 – Construction of the initial boundary cells: We
either use the visual hull as the boundary representation of
the initial volume, or the user creates a simple bounding box.
Because our algorithm works only on cells, we replace this
bounding box with a set of cells that encompass it. This way
we avoid arbitrary and difficult Constructive Solid Geometry
(CSG) operations between cells and the boundary represen-
tation.

To construct the initial boundary cells, we pick arbitrary
points on the surface of the bounding box that are visible in
some of the cameras. We then replace these points with their
corresponding cells. To construct a cell, we use a fast algo-
rithm by Matusik et al. 16, which computes the intersection
of solids with fixed cross-sections. It reduces this computa-
tion to a set of polygon intersections that can be carried out
efficiently in 2D. Its run time is nearly quadratic in the num-
ber of regions and nearly linear in the number of edges in
these regions.

We repeat the construction of cells until no more bounding
box is visible. To check visibility, one could use a BSP tree.
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Instead, we use graphics hardware and render each cell inde-
pendently with a different color. If triangles of the bounding
box are still visible, we create the corresponding cells until
the whole bounding box is covered.

Line 4 – Removing all cells with background IDs: To
speed up the cell carving, we first remove all cells that
project to a region with background ID. We check all bound-
ary cells to see if they contain the background ID. To remove
a cell we delete it from the list of boundary cells and add it
to the list of removed cells. To fill holes when removing a
boundary cell, we create its neighboring cells if they are not
in the lists of boundary cells or removed cells.

To create the neighbors of a cell, an adjacency graph that
stores the cell IDs of neighbors for all currently created cells
could be used. Because there are typically a small number
of cells, we use a less efficient search method to find adja-
cent cells. Cells outside the initial bounding volume are not
created and instead added to the list of removed cells. A cell
whose ID is not in the list of boundary cells or removed cells
is created as described above.

Lines 7 to 20 – Detecting inconsistent cells: The main
loop of the algorithm detects and removes inconsistent cells.
We first determine the set of cameras for which a cell is in-
consistent. For each cell we keep a list of triangles. For each
triangle, we record in which image it is visible by project-
ing the triangle and recording the region ID of its projection.
By construction, projections of cell triangles never cross the
boundary of image regions. We then check in how many
cameras a triangle has mismatched region IDs. If it is in-
consistent with at least k cameras (k = 4 in 3D), we tag the
corresponding cell as inconsistent. We then remove inconsis-
tent cells and insert the neighboring cells as described above.
We repeat this loop until there are no more inconsistent cells.

7. Results

We implemented the user interface to our system in Visual-
Basic and the cell carving algorithm in C++. All results were
computed on a 2 GHz Pentium 4 PC with 1 GB of RAM.

To be able to compare our 3D reconstruction to actual
scene geometry, we used a synthetic scene with concavities
and objects at different resolutions. We rendered the scene
from six viewpoints using 3D StudioMax. Figure 9 shows
the original geometry and the six segmented label images.
The input images have a resolution of 1024×768.

The upper row in Figure 10 shows the actual geometry
for the synthetic scene rendered from novel viewpoints. The
middle row in the figure shows the visual hull. Since all cam-
eras are outside-looking-in, we were able to use the visual
hull for the construction of the initial boundary cells. The
lower row of Figure 10 shows the output of cell carving.
Cell carving was able to carve out the teapot from the con-
cavity. Note that the small teapot on the top is represented
with more triangles than the rest of the scene.

Images of the following two scenes were taken with a
Canon D30 digital camera at 2160× 1440 resolution. Fig-
ure 11 shows nine images of the “bowl and bagel” scene
with corresponding label images. The scene is interesting be-
cause it contains an object (the bagel) inside a concavity (the
bowl). Figure 12 shows examples of the visual hull and cell
carving geometry from novel viewpoints. In contrast to the
visual hull, cell carving reconstructs some concavities, even
with very few input images. The texture-mapped cell carv-
ing reconstruction is displayed with unstructured lumigraph
rendering 1.

Figure 13 shows nine images and label images of the “ta-
ble” scene. The scene contains many specular and transpar-
ent objects that are very difficult or impossible to recon-
struct with computer vision methods. Figure 14 shows the
cell carving geometry of the table objects from novel view-
points. Most objects are represented with high geometric fi-
delity and the concavity in the glass is visible.

Figure 15 shows seven images and label images of the
“garage” scene. The photographs were taken with a Canon
S300 digital consumer camera at 1600 × 1200 resolution.
Note that it is very difficult to provide overhead views in
this setting.

Figure 16 shows the visual hull and the output of cell
carving from novel viewpoints. The texture-mapped images
were rendered using unstructured lumigraph rendering. As
expected, cell carving reconstructs the concave geometry of
the house corner much better than the visual hull. The dif-
ference is also visible in higher texture fidelity when using
the cell carving model. It should be noted that seven input
images are not enough to yield high quality rendering for
some views, as can be seen in the companion animations.
However, this scenario is likely to be typical for consumer
use.

Table 1 shows quantitative results of our cell carving im-
plementation for different scenes, such as pre-processing
time (lines 3 and 4 in Figure 8), run time, number of iter-
ations of the algorithm (lines 7 to 20 in Figure 8), and the
number of cells and triangles in the final reconstruction. The

Scene Preproc. Time Iter. Cells Tris

Synth 1 min 2 min 8 30 25k
Bowl 2 min 12 min 20 680 62k
Table 4 min 10 min 24 1,010 122k

Garage 2 min 2 min 8 150 16k

Table 1: Quantitative results for our implementation of cell
carving.

runtime is dependent on the number of edges in all region
contours and the total number of images. The number of
cells is dependent on the number of regions and the number
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Figure 9: Seven images of a synthetic scene and the segmented label images.

Figure 10: Upper row: Actual geometry of the synthetic scene. Middle row: Visual hull geometry. Lower row: Cell carving
geometry. All images rendered from novel viewpoints that are not part of the input images.

Figure 11: Twelve images of the bowl and bagel scene with label images.
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Figure 12: Upper row: Visual hull geometry. Lower row: Cell carving geometry. All images rendered from novel viewpoints
that are not part of the input images.

Figure 13: Images of the table scene with label images.

of cameras, whereas the number of triangles is dependent on
the number of edges in all the region contours.

8. Future Work

We would like to reduce the amount of user input as much as
possible. Automatic computation of the initial volume may
be achieved using information about camera pose and region
correspondences. At some point the user could be eliminated
from the loop when unsupervised segmentation algorithms
improve and when region correspondences can be assigned
automatically.

We could use an analytical visibility solution for more

precision in our reconstruction. However, recent advances
in graphics hardware – including floating point framebuffers
and arithmetics – probably make this unnecessary. To get a
smoother reconstruction, one could use other contour repre-
sentations, such as splines. One could improve the recon-
struction using other techniques, for example, multi-view
stereo. Per-pixel depth estimates could be used to produce
a mesh of the scene with displacement maps.

Furthermore, we would like to add additional geometric
constraints. For example, the user could assign a planar con-
straint to certain image regions, such as walls and ground
planes, to improve the reconstruction. We also would like
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Figure 14: Cell carving geometry for the table scene.

Figure 15: Images of the garage scene with label images.

Figure 16: Upper row: Visual hull geometry of the garage scene. Lower row: Output of cell carving. Note how cell carving
reconstructs the concavity. All images rendered from novel viewpoints.
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to introduce interactive scene editing tools as used in Oh et
al. 20. A promising idea is to use plenoptic image editing 28

that propagates edits in one image to all other images using
the reconstructed 3D model.

9. Conclusions

We presented a novel method for reconstructing an arbitrary
3D scene from a set of input images. Instead of relying on
computer vision algorithms for segmentation and object cor-
respondence, our approach divides the tasks equitably be-
tween user and computer: Human beings are good at recog-
nizing and finding corresponding objects in a set of images,
whereas computers are well suited to automatically con-
structing the 3D model consistent with the user’s labeling.
We have introduced a new formulation of the 3D reconstruc-
tion problem for labeled image regions. We have shown nec-
essary conditions for label consistency, and we have proved
the correctness of using cells for reconstruction. Our novel
cell carving algorithm can be efficiently implemented and
produces polygon meshes that can be immediately texture-
mapped and displayed.
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Appendix A: Cell Reconstruction Theorem

Lemma 1: A cell is the maximum volume that projects to the set of
regions listed in its cell ID.

Proof (by contradiction): Assume there is another point in the
scene outside the cell that projects to the same set of regions. By
definition, it is part of the cell. QED.

Lemma 2: The intersection of cells with different cell IDs is
empty.

Proof (by contradiction): Assume the intersection is not empty.
There must be a point in the intersection of the two cells that has
two different point IDs. By construction, every point in the scene
has one and only one point ID. QED.

Lemma 3: The scene is completely partitioned by cells C, or
R3

−
⋃

Ci = ∅.

Proof: This follows directly from Lemma 1 and Lemma 2. QED.

Lemma 4: All points of a cell C have the same visibility in all
cameras.

Proof (by contradiction): Suppose there are two points in the cell
with different visibility in camera Ck, e.g., Pi is invisible, and Pv
is visible. Because region IDs are determined by visible points, Pi
and Pv must project to regions with different IDs in camera Ck. That
means their point IDs are not the same, which is impossible if they
are in the same cell. QED.

Lemma 5: Given n label images. The scene with maximum vol-
ume V that produces the label images is composed of cells C such
that: ∀C : V ∩C = C.

Proof (by contradiction): Suppose there is a cell C that is partially
occupied by V . As shown by 11, V contains all consistent points, and
V ′ = R3

−V contains all inconsistent points. That means C must
contain at least one consistent point Pc and one inconsistent point
Pi. By definition, consistency is determined by the point ID and the
point visibility. Point Pc and Pi have the same point ID by definition
of a cell, and they have the same visibility because of lemma 4. That
means their consistency is the same. QED.

Theorem (Cell Reconstruction Theorem): Given n label im-
ages. The scene with maximum volume V that produces the label
images is composed only of consistent cells C. Cells outside of V
are inconsistent.

Proof: By Lemma 3 and Lemma 5, R3 and V are composed com-
pletely of cells. Assume there exists a consistent cell Cc that is not
part of V . Because Cc is consistent, all points in Cc produce the same
region IDs. That means we can add it to V . Assume there is an in-
consistent cell Ci that is part of V . That means Ci produces different
region IDs, so it can not be part of V . QED.

Corollary: The cell-carving algorithm correctly computes the
maximum volume V that produces the label images.

Proof: The cell carving algorithm removes all inconsistent cells
from R3. The remaining cells are in V by the cell reconstruction
theorem. QED.
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