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Abstract

We propose a novel local appearance modeling method for object detection and recognition in
cluttered scenes. The approach is based on the joint distribution of local feature vectors at multi-
ple salient points and factorization with Independent Component Analysis (ICA). The resulting
densities are simple multiplicative distributions modeled through adaptative Gaussian mixture
models. This leads to computationally tractable joint probability densities which can model
high-order dependencies. Our techinque has been initially tested under different natural and
cluttered scenes with different degrees of occlusions with promising results. With this present
work, we provide a large statistical test with the MNIST digit database in order to demonstrate
the improved performance obtained by explicit modeling of high-order dependencies.
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ABSTRACT

We propose a novel local appearance modeling method for ob-
ject detection and recognition in cluttered scenes. The approach is
based on the joint distribution of local feature vectors at multiple
salient points and their factorization with Independent Component
Analysis (ICA). The resulting densities are simple multiplicative
distributions modeled through adaptative Gaussian mixture mod-
els. This leads to computationally tractable joint probability densi-
ties which can model high-order dependencies. Our techinque has
been initially tested under different natural and cluttered scenes
with different degrees of occlusions yielding promising results. In
this work, we provide a large statistical test with the MNIST digit
database in order to demonstrate the improved performance ob-
tained by explicit modeling of higher-order dependencies.

1. INTRODUCTION

For appearance based object modeling in images, the choice of
method is usually a trade-off determined by the nature of the ap-
plication and the availability of computational resources. Exist-
ing object representation schemes provide models either for global
features [1], or for local features and their spatial relationships
[2, 3, 4, 5]. With increased complexity, the latter provides higher
modeling power and accuracy. Among various local appearance
and structure models, there are those that assume rigidity of ap-
pearance and viewing angle, thus adopting more explicit models
[4, 2, 6]; while others employ stochastic models and use proba-
bilistic distance and matching metrics [5, 7, 3].

Recognition and detection of objects is achieved by the extrac-
tion of low level feature information in order to obtain accurate
representations of objects. Extracted low level features must be
carefully selected and it is often necessary to use as many salient
features as possible. But one of the most common problems en-
countered is the computational cost of dealing with high dimen-
sional data as well as the intractability of joint distributions of
multiple features.

We propose a novel local appearance and color modeling
method for object detection and recognition in cluttered scenes.
The approach is based on the joint distribution of local feature
vectors at multiple salient points and their factorization with In-
dependent Component Analysis (ICA). Using the new statistically
independent space to create � � � tuples (� � � salient points) of
the most salient points of an object, we are able to obtain a set of
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joint probability densities which can model high-order dependen-
cies. In order to model the tuple space, we use an adaptative Gaus-
sian mixture model based on the Minimum Description Length
(MDL)[8] criterion to properly estimate our probability densities.

We have tested our method in a closed environment where we
detect real objects with different configurations, poses and levels
of occlusions. Our technique is however able to manage with real,
complex and cluttered environments and we present some results
of object detection in these scenarios with promising results. Fur-
thermore, a very large and statistically significant experiment (us-
ing the MNIST database) illustrates the generality of feature rep-
resentations in our scheme as well as explicitly demonstrating the
advantage of modeling higher-order statistics of our tractable joint
distributions.

2. METHODOLOGY

We propose to use an adaptative Gaussian mixture model as a para-
metric approximation of the joint distribution of image features of
local color and appearance information at multiple salient points.

Let � be the index for elementary feature components in an im-
age, which can be pixels, corner/interest points [9, 10], blocks, or
regions in an image. Let �� denote the feature vector of dimen-
sion � at location �. �� can be as simple as �R,G,B� components
at each pixel location, some invariant feature vectors extracted at
corner or interest points [11, 2, 12], transform domain coefficients
at an image block, and/or any other local/ regional feature vectors.

For model-based object recognition, we use the a posteriori
probability

m���� ����� � (1)

where �� is the object model and � � ���� represents the fea-
tures found in the test image. Equivalently, by assuming equal pri-
ors, classification/detection will be based on maximum likelihood
testing:

m���� �� ���� (2)

For the class-conditional density in equation (2), it is intractable
to model dependencies among all ��’s (even if correspondence is
solved), yet to completely ignore these dependencies is to severely
limit the modeling power of the probability densities. Objects fre-
quently distinguish themselves not by individual regions (or parts),
but by the relative location and comparative appearance of these
regions. A tractable compromise between these two modeling ex-
tremes (which does not require correspondence) is to model the
joint density of all �-tuples of ��’s in T. Figure (1) shows a general
scheme of our methodology.



Fig. 1. System diagram for �-tuple density factorization using ICA
and Gaussian mixture models.

2.1. Joint Distribution of �-tuples

Instead of modeling the total joint likelihood of all ��	 ��	 
 
 
 �� ,
which is an �� � ��-dimensional distribution, we model the alter-
native distribution of all �-tuples as an approximation:

� ������ 	 ��� 	 
 
 
 	 ��� ������ (3)

This becomes a �� � ��-dimensional distribution, which is still
intractable (Note: � � � and � �� �). We can use multi-
dimensional histograms as an approximation of the joint distri-
bution of image features with, i.e 20 histogram bins along each
dimension, and such a framework would require ������� bins.
Therefore, a factorization of this distribution into a product of low-
dimensional distributions is required. We achieve this factorization
by transforming � into a new feature vector 
 whose components
are (mostly) independent. This is where Independent Component
Analysis (ICA) comes in.

2.2. Density Factorization with ICA

ICA originated in the context of blind source separation [13, 14]
to separate ”independent causes” of a complex signal or mixture.
It is usually implemented by pushing the vector components away
from Gaussianity by minimizing high-order statistics such as the
4�� order cross-cumulants. ICA is in general not perfect therefore
the IC’s obtained are not guaranteed to be completely independent.

By applying ICA to ����, we obtain the linear mapping
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 (4)

and

� ���
�� 	 
�� 	 
 
 
 	 
��������

�

��

	��

� ����	�� 	 �
	
��
	 
 
 
 	 �

	
��
������ (5)

where A is a n-by-m matrix and 
� is the ”source signal” at lo-
cation � with nearly independent components (Note: � � �).
The original high-dimensional distribution is now factorized into
a product of � k-dimensional distributions, with only small dis-
tortions expected. We note that this differs from so-called ”naive
Bayes” where the distribution of feature vectors is assumed to be
factorizable into 1D distributions for each component. Without
ICA the model suffers since in general these components are al-
most certainly statistically dependent.

After factorization, each of the � dimensional factored distribu-
tions becomes manageable if � is small, e.g., � � � or 3. More-
over, matching can now be performed individually on these low-
dimensional distributions and the scores are additively combined
to form an overall score.

Figure (2) is a graphical model showing the dependencies be-
tween a pair of 3-dimensional feature vectors ��	 ��. The joint
distribution over all nodes is 6-dimensional and all nodes are (po-
tentially) interdependent. The basic approach towards obtaining a
tractable distribution is to remove intra-component dependencies
(vertical and diagonal links) leaving only inter-component depen-
dencies (horizontal links). Simultaneously, we seek to reduce the
number of observed components from � � � to a smaller number
� � � of ”sources”. Ideally, a perfect ICA transform results in the
graphical model shown in the right diagram where the pair 
�	 
�
only have pair-wise inter-component dependencies. Therefore, the
resulting factorization can be simply modeled by 2D histograms
or Gaussian mixture models1.

(a) (b)

Fig. 2. Graphical models: (a) fully-connected graph denoting no
independence assumptions (b) the ICA-factorized model with pair-
wise only dependencies.

2.3. Class-Conditional ICA

When object recognition consists of having � different classes and
each class represented using a specific ICA model, it turns out that
the combination of all ICA models must be normalized. In [15] a
class-conditional ICA (CC-ICA) model is introduced that, through
class-conditional representations, ensures class-conditional inde-
pendence. The basic CC-ICA model is estimated from the training
set for each class. If �
 and �
 are the projection matrix and the
independent components for class �
 with dimensions �
 � �
and�
 respectively, then �
 � � 
����
�where � � �
 and �


is the class mean, estimated from the training set. Most ICA meth-
ods require, or at least advise, data whitening as preprocessing.
Since some simple denoising is also recommended, dimensional-
ity reduction and whitening through PCA is very common practice
as a preprocessing stage for ICA. In this case, �
 can be decom-
posed as � 
 � �
�
, where �
 is the �
 �� PCA whitening

matrix and �
 the ICA unmixing matrix. Also �

��

� �
����
�

is the whitened data. Assuming the class-conditional represen-
tation actually provides independent components, we have that
the class-conditional probability in transformed space noted as

�
���
��

� ���
� can now be expressed in terms of unidimensional

densities,

�����
� � �
�

��� � �


���

���

�
���� (6)

1We should note that in practice with an approximate ICA transform,
the diagonal links of the original model are less likely to be removed than
the vertical ones.



with �
 � �
�
�
��������, a normalizing constant. Actually, from

the change of variables rule, �
 � � ��	��
��. See [15] for more
information.

3. EXPERIMENTAL RESULTS

For our experiments, we used a Harris operator [10, 12] to detect
interest points and extracted the first 9 differential invariant jets
[11] at each point as the corresponding feature vector �. Using
these jets as our features results in a local appearance model which
is not only invariant to in-plane rotation (and translation) but is also
robust with respect to partial occlusions as we shall see later. We
must emphasize however that our methodology is not restricted to
differential invariant jets and can in principal be used for any lo-
cal set of features, for example, color, curvature, edge-intensity,
texture moments or even shape descriptors. We then performed
ICA to get � � 
 independent components for the feature vectors
(jets). We then used � � �, resulting in a set of 3D Gaussian mix-
ture models which were used to model 3-tuple joint component
densities. Once an ICA space is defined, we used the definition of
class-conditional ICA of Equation (6) in order to obtain the prob-
ability of a tuple belonging to each training class.

We evaluated this approach with real laboratory scenes where
deformable objects can appear under various configurations, poses
and occlusions. Figure (3) shows the objects and images used for
this experiment. Two different objects with similar colors but dif-
ferent shapes were learned in order to detect them in a complex
environment. As noted in this figure (3), objects can be hard to
recognize since they contain different levels of occlusions and can
be seen under different poses. Despite these difficulties, objects
are correctly detected thus indicating the degree of robustness in
our system.

As seen, our method works for real imagery where various con-
figurations, poses and occlusions of objects may appear. The pre-
vious experiment was carried out using a hand-selected � � � tu-
ple model, however proper model order selection remains an issue.
Increasing the tuple model would imply to incorporate high-order
dependencies between the detected keypoints but, also, an incre-
ment of computational resources. Thus, a good trade-off between
the model order and the computational resources required must be
found and analyzed.

We have also applied our object recognition scheme in a totally
different context in order to demonstrate how to integrate mutiple
instances into a single model and that increasing of the tuple order
does in fact lead to improved performance. Our scheme is de-
signed to work with different keypoint dependencies (from � � �
to � � �) but when we consider a high model order, more de-
pendencies are generated and the complexity is also increased. We
want to test different high-order dependencies (modifying the �
parameter) with a huge database to obtain statistically reliable and
significant evidence of the behaviour: Performance of our tech-
nique is increased when we incrementing the order of our joint
distributions. We chose the MNIST [16] digit database because it
contains a huge number of training and testing samples (��	 ���
training samples and ��	 ��� testing samples), so we can statis-
tically verify that incrementing the order of our models will lead
to better recognition rates. We must note that our scheme is not
especially adapted to work with the MNIST database rather it is
a general technique for use in complex and cluttered scenes with
the presence of occlusions. Our main goal here is to explore how
increasing tuple order affects to the recognition rates using a well-

(a) (b)

(c) (d) (e)

Fig. 3. Two objects (a) and (b) with similar colors but differing in
shape used to train our models. First column (c) contains 4 testing
images where the two learned objects are present under different
occlusions and poses. Columns (d) and (e) show the detection
maps for objects (a) and (b), respectively.

known and large database.
In particular, features were extracted from hand-written MNIST

digits using the same technique as in [17] where they obtain a set
of shape histograms for each digit. In our case, each digit is rep-
resented by a set of 75 points sampled from the shape contour (75
pixel locations sampled from the output of the Canny detector).
Having 75 pixel locations, we have represented each location us-
ing a shape histogram (exactly the same as in [17]), so that each
digit is represented by 75 shape histograms of �� dimensions. In
order to find the “right” ICA dimension to reduce our feature vec-
tors, we did a k-NN (with k=5) based classification using the orig-
inal shape histograms taking a reduced set of training and testing
samples (��� training samples per each digit and the first 
	 ���
testing samples) using the �� test statistic (as in [17]) as a distance
metric. Also, a k-NN (with k=5) based classification was done us-
ing the ICA projected feature vectors between � � 
 to � � 
�
ICA dimensions with the same training and testing set as before
using the �� norm as a distance metric in order to evaluate which
is the ICA dimension that preserves the same recognition rates of
the original space. The dimension found by the experiments to be
the most suitable one for our ICA scheme was 25, which was used
thereafter.

We have tested two different approaches: (1) learn an adaptative
mixture model per each training instance and (2) learn an adapta-
tive mixture model per each digit class. Our factored � � � and
� � � high-order models generate a huge number of tuples. In



this particular case, when using � � � tuples, we generate an or-
der of 
	 ��� tuples per each digit and when using � � � tuples,
���	 ��� possible tuples are generated. We have not tested higher
dependencies because the number of possible tuples is really huge.
Thus, having a huge number of tuples, we have to choose a reduced
number of them in order to train our factored models. We have
tested three different approaches: (1) a random selection of tuples,
(2) tuples with close keypoints and (3) tuples with distant key-
points. Since we are working with digits, tuples created from hav-
ing 3 close keypoints would not be as significant as having tuples
created from 3 distant keypoints because digits are homogeneous
representations (they do not have changes in texture or colors and
the neighborhood of two close keypoints does not change signifi-
cantly) and relevant changes are manifested when considering two
different shape contexts (distant keypoints).

Our random tuple selection consists of randomly selecting
�	 ��� � � � tuples and 
	 ��� � � � tuples to learn our adaptative
Gaussian mixture models. When considering tuples with near key-
points, we take the �	 ��� � � � tuples and 
	 ��� � � � tuples
with the closest keypoints. Finally, we select tuples with distant
keypoints and we take the first most distant �	 ��� � � � tuples
and 
	 ��� � � � tuples. For our experimental tests, we used 
��
training samples per each digit (
	 ��� in total) and all the test-
ing MNIST set (��	 ��� digits). Experimental results are shown
in Table (1) where we can clearly see that incrementing the order
of our models leads to an improvement in the recognition rates.
Interestingly enough, we note also that there seems to be little dif-
ference between the two different approaches of handling multiple
training instances: using one model/instance vs. one model/class.
Also, it can be seen that a good selection of tuples leads to obtain
improved recognition rates.

� tuples 1 Model / Instance 1 Model / Class
� � � tuples ������ ����	�

Random ������ ���
��

� � � tuples Near ������ �	����

Distant �	�
�� ������

Random ���	�� ������

� � � tuples Near ������ ������

Distant ���
�� ����	�

Table 1. Experiments done using 
�� digits per each class as train-
ing and ��	 ��� testing digits. First column of results indicates
each training instance is represented by one model (
	 ��� train-
ing models) and second column indicates each class is represented
by one model (�� training models in total). Recognition rates are
represented according to the tuple order used and tuple selection
technique.

Using the nearest neighbor classifier (k-NN with k=3) in the
original space of shape histograms with the �� test statistic, we
obtain a recognition rate of �

���. We are not using any kind of
point matching between our features as in [17] and it should be ob-
vious that our method is not best-suited for the MNIST database
(that is not the point here) but we do notice the improvement of
our factored distribution models from � � � to � � �. We should
emphasize that even though we do not achieve the best reported
recognition rates for the MNIST, our factored models with � � �
are not only significantly better than � � � but also better than us-
ing k-NN in the original space of shape histograms (a recognition
rate of �

���).

4. CONCLUSIONS

A novel probabilistic modeling scheme was proposed based on
factorization of high-dimensional distributions of local image fea-
tures. Our framework was initially tested using real imagery
where objects were correctly detected under different configura-
tions, poses and occlusions. These experiments with complex and
cluttered scenes demonstrate that this technique is well suited to
object detection and localization tasks in natural environments. Fi-
nally, a large experiment with the MNIST digit database was per-
formed in order to validate the underlying assumption that increas-
ing the high-order dependencies of our factored distributions does
in fact lead to improved performance. Also, it has been demon-
strated that a good selection of learning tuples is an important fac-
tor to take into account.
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