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Abstract

This paper extends the face detection framework proposed
by Viola and Jones 2001 to handle profile views and rotated
faces. As in the work of Rowley et al 1998. and Schneider-
man et al. 2000, we build different detectors for different
views of the face. A decision tree is then trained to deter-
mine the viewpoint class (such as right profile or rotated
60 degrees) for a given window of the image being exam-
ined. This is similar to the approach of Rowley et al. 1998.
The appropriate detector for that viewpoint can then be run
instead of running all detectors on all windows. This tech-
nique yields good results and maintains the speed advantage
of the Viola-Jones detector.

1. Introduction
There are a number of techniques that can successfully
detect frontal upright faces in a wide variety of images
[11, 7, 10, 12, 3, 6]. While the definition of “frontal” and
“upright” may vary from system to system, the reality is that
many natural images contain rotated or profile faces that
are not reliably detected. There are a small number of sys-
tems which explicitly address non-frontal, or non-upright
face detection [8, 10, 2]. This paper describes progress to-
ward a system which can detect faces regardless of pose
reliably and in real-time.

This paper extends the framework proposed by Viola and
Jones [12]. This approach is selected because of its compu-
tational efficiency and simplicity.

One observation which is shared among all previous re-
lated work is that a multi-view detector must be carefully
constructed by combining a collection of detectors each
trained for a single viewpoint. It appears that a monolithic
approach, where a single classifier is trained to detect all
poses of a face, is unlearnable with existing classifiers. Our
informal experiments lend support to this conclusion, since
a classifier trained on all poses appears to be hopelessly in-
accurate.

This paper addresses two types of pose variation: non-
frontal faces, which are rotated out of the image plane, and
non-upright faces, which are rotated in the image plane.
In both cases the multi-view detector presented in this pa-
per is a combination of Viola-Jones detectors, each detector
trained on face data taken from a single viewpoint.

Reliable non-upright face detection was first presented
in a paper by Rowley, Baluja and Kanade [8]. They train
two neural network classifiers. The first estimates the pose
of a face in the detection window. The second is a conven-
tional face detector. Faces are detected in three steps: for
each image window the pose of “face” is first estimated; the
pose estimate is then used to de-rotate the image window;
the window is then classified by the second detector. For
non-face windows, the poses estimate must be considered
random. Nevertheless, a rotated non-face should be rejected
by the conventional detector. One potential flaw of such a
system is that the final detection rate is roughly the product
of the correct classification rates of the two classifiers (since
the errors of the two classifiers are somewhat independent).

One could adopt the Rowley et al. three step approach
while replacing the classifiers with those of Viola and Jones.
The final system would be more efficient, but not signifi-
cantly. Classification by the Viola-Jones system is so effi-
cient, that derotation would dominate the computational ex-
pense. In principle derotation is not strictly necessary since
it should be possible to construct a detector for rotated faces
directly. Detection becomes a two stage process. First the
pose of the window is estimated and then one of � rotation
specific detectors is called upon to classify the window.

In this paper detection of non-upright faces is handled
using the two stage approach. In the first stage the pose of
each window is estimated using a decision tree constructed
using features like those described by Viola and Jones. In
the second stage one of � pose specific Viola-Jones dete-
tectors are used to classify the window.

Once� pose specific detectors are trained and available,
an alternative detection process can be tested as well. In this
case all � detectors are evaluated and the union of their de-



tections are reported. We have found that this simple try-
all-poses system in fact yields a slightly superior receiver
operating characteristics (ROC) curve, but is about �

�
times

slower. This contradicts a conjecture by Rowley in his the-
sis, which claims that the false positive rate of the try-all-
poses detector would be higher.

Both for the estimation of pose, and for the detection of
rotated faces, we found that the axis aligned rectangle fea-
tures used by Viola and Jones were not entirely sufficient.
In this paper we present an efficient extension of these fea-
tures which can be used to detect diagonal structures and
edges.

In this paper we have also investigated detectors for non-
frontal faces (which include profile faces). Using an identi-
cal two stage approach, an efficient and reliable non-frontal
face detector can be constructed. We compare our results
with those of Schneiderman et al. which is one of the few
successful approaches to profile face detection. Li et al. [2]
also built a profile detector based on a modification of the
Viola-Jones detector, but did not report results on any pro-
file test set.

The main contributions of this paper are:

� A demonstration that the Viola-Jones framework can
be extended to rotated and profile faces.

� A more general two-stage approach to multi-view de-
tection which can be applied to rotated faces as well as
profile views.

� It shows that the advantage of the two or three stage
approach is speed and not false positive rate as Rowley
had hypothesized.

� A new set of rectangle features that are useful for ro-
tated face detection.

The remainder of this paper i) reviews the face detec-
tion framework and our extensions; ii) describes the pose
estimation classifier; iii) describes our experimental results;
and iv) concludes with a discussion.

2. Face Detection Framework
As is typical for face detection, the input image is scanned
across location and scale. At each location an independent
decision is made regarding the presence of a face. This
leads to a very large number of classifier evaluations; ap-
proximately 50,000 in a ���� ��� image.

Viola-Jones use a boosted collection of features to clas-
sify image windows. Following the AdaBoost algorithm
of Freund and Schapire [1] a set of weak binary classifiers
is learned from a training set. Each classifier is a simple
function made up of rectangular sums followed by a thresh-
old. Since they can be visualized and interpreted, Viola and
Jones call these classifiers features.

In each round of boosting one feature is selected, that
with the lowest weighted error. The feature is assigned
a weight in the final classifier using the confidence rated
AdaBoost procedure of Schapire and Singer [9]. In sub-
sequent rounds incorrectly labeled examples are given a
higher weight while correctly labeled examples are given
a lower weight.

In order to reduce the false positive rate while preserving
efficiency, classification is divided into a cascade of classi-
fiers. An input window is passed from one classifier in the
cascade to the next as long as each classifier classifies the
window as a face. The threshold of each classifier is set to
yield a high detection rate. Early classifiers have few fea-
tures while later ones have more so that easy non-faces are
quickly discarded. Each classifier in the cascade is trained
on a negative set consisting of the false positives of the pre-
vious stages. This allows later stages to focus on the harder
examples.

In order to train a full cascade to achieve very low false
positive rates, a large number of examples are required, both
positive and negative. The number of required negative ex-
amples is especially large. After 5 stages the false positive
rate is often well below 1%. Therefore over 99% of the
negative data is rejected and is unavailable for training sub-
sequent stages.

The main parts of the Viola-Jones framework are de-
scribed in more detail below.

2.1. Filters and Features
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Figure 1: Example rectangle filters shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the gray
rectangles.

Following [12] image features are called Rectangle Fea-
tures and are reminiscent of Haar basis functions (see [4]
for the use of Haar basis functions in pedestrian detection).
Each rectangle feature, ���� is binary threshold function
constructed from a threshold �� and a rectangle filter ����
which is a linear function of the image:



����� �

�
�� if ����� � ��
�� otherwise

Here � is a �� � �� pixel sub-window of an image. Fol-
lowing Schapire and Singer [9], �� and �� are positive or
negative votes of each feature set by Adaboost during the
learning process.

Previously Viola and Jones used three types of rectangle
filters. The value of a two-rectangle filter is the difference
between the sum of the pixels within two rectangular re-
gions. The regions have the same size and shape and are
horizontally or vertically adjacent (see Figure 1 A and B).
A three-rectangle filter computes the sum within two out-
side rectangles subtracted from twice the sum in a center
rectangle (see C). Finally a four-rectangle filter computes
the difference between diagonal pairs of rectangles (see D).

Given that the base resolution of the classifier is 24 by 24
pixels, the exhaustive set of rectangle filters is quite large,
over 100,000, which is roughly ��� �� where N=24 (i.e.
the number of possible locations times the number of possi-
ble sizes). The actual number is smaller since filters must fit
within the classification window. Note that unlike the Haar
basis, the set of rectangle features is overcomplete1.

Computation of rectangle filters can be accelerated using
an intermediate image representation called the integral im-
age [12]. Using this representation any rectangle filter, at
any scale or location, can be evaluated in constant time.

2.2. Diagonal Filters
Experiments showed that the three types of filters given
above were not sufficient to detect non-upright faces and
non-frontal faces with sufficiently high accuracy. To ad-
dress this we created a fourth type of rectangle filter that
focuses on diagonal structures in the image window. These
diagonal filters are illustrated in figure 2. They consist of
four overlapping rectangles that combine to yield the blocky
diagonal areas shown in the figure. They operate in the same
way as the previous filters. The sum of the pixels in the dark
gray shaded region is subtracted from the sum in the light
gray shaded region. Using an integral image, the diagonal
filter can be computed by only looking at the 16 corner pix-
els.

2.3. Classifier
The form of the final classifier returned by Adaboost is a
perceptron - a thresholded linear combination of features.
The weights on each feature are encoded in the � � and ��
votes described earlier. The classifier is described by the
following equation:

1A complete basis has no linear dependence between basis elements
and has the same number of elements as the image space, in this case
��� �� � ���. The full set of filters is many times over-complete.

Figure 2: Example diagonal filters shown relative to the enclos-
ing detection window. The sum of the pixels that lie within the
light gray area is subtracted from the sum of pixels in the dark
gray area. The two basic types of diagonal filters are shown in A
and C. A diagonal filter is constructed from 4 rectangles as illus-
trated in B and D. The base rectangles can be any aspect ratio and
any size that fits within the detector’s query window.
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2.4. Cascade
In order to greatly improve computational efficiency and
also reduce the false positive rate, Viola and Jones use a
sequence of increasingly more complex classifiers called a
cascade. An input window is evaluated on the first classifier
of the cascade and if that classifier returns false then com-
putation on that window ends and the detector returns false.
If the classifier returns true then the window is passed to the
next classifier in the cascade. The next classifier evaluates
the window in the same way. If the window passes through
every classifier with all returning true then the detector re-
turns true for that window. The more a window looks like a
face, the more classifiers are evaluated on it and the longer
it takes to classify that window. Since most windows in an
image do not look like faces, most are quickly discarded as
non-faces. Figure 3 illustrates the cascade.

3. Pose estimator
3.1. Purpose and Operation
Our approach to detecting faces from multiple views is to
divide the space of poses into various classes and train dif-
ferent detectors for each pose class. In order to avoid the
computational expense of having to evaluate every detector
on every window in the input image, we use a two stage
approach which first estimates the pose of the face in the
window and then evaluates only the detector trained on that
pose. When the pose estimator is evaluated on a non-face



T

F

T

F

T

F

T

F

1 2 3 4

Reject Sub−window

Further
Processing

All Sub−windows

Figure 3: Schematic depiction of a the detection cascade.
A series of classifiers are applied to every sub-window. The
initial classifier eliminates a large number of negative exam-
ples with very little processing. Subsequent layers eliminate
additional negatives but require additional computation. Af-
ter several stages of processing the number of sub-windows
have been reduced radically. Further processing can take
any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

window, its output can be considered random. Any detec-
tor chosen to evaluate on a non-face window should return
false. As mentioned earlier this approach is very similar to
that of Rowley et al. [8].

3.2. Decision Tree

The pose estimator is thus a multi-class classifier. Further-
more, it needs to be about the same speed as a single face
detector to make it advantageous to use over the try-all-
poses approach. This speed constraint is a stringent one
since a pose-specific face detector only evaluates about 8
features per window on average.

A decision tree classifier meets these constraints. Un-
like a boosted classifier for multi-class problems, it is very
straightforward to learn a multi-class decision tree. In ad-
dition a decision tree is quite efficient, since only one path
from the root to a leaf is evaluated for each example. Even
for very large and complex trees the number of features
evaluated per window is logarithmic in the total number of
nodes in the tree.

One criticism of decision trees is that they are somewhat
brittle, and sometimes do not generalize well. This is one
reason that the face detector uses boosting rather than deci-
sion trees. For this application we have found decision trees
to be quite reliable.

In order to and maximize efficiency, rectangle features
are used as the tests in the nodes of the tree (see Section 2.1).
These features are fast and allow the reuse of the integral
image.

3.3. Decision Tree Training
The decision tree learning algorithm follows the work of
Quinlan [5]. In short the criteria for splitting nodes is mu-
tual information, the node functions are rectangle features,
and there is no pruning. Every node of the tree is split until
a maximum leaf depth is attained or the leaf contains exam-
ples of only one node.

The training algorithm is almost identical to the boosting
algorithm. The two main differences are the criteria for fea-
tures selection (mutual information rather than Z criteria)
and the splitting of the training set at each node.

4. Experiments
4.1. Non-upright Faces
The frontal face detector from Viola-Jones handles approx-
imately ��� degrees of in-plane rotation. Given this, we
trained 12 different detectors for frontal faces in 12 differ-
ent rotation classes. Each rotation class covers 30 degrees
of in-plane rotation so that together, the 12 detectors cover
the full 360 degrees of possible rotations.

4.1.1 Detectors for each rotation class

The training sets for each rotation class consist of 8356
faces of size �� � �� pixels and over 100 million back-
ground (non-face) patches. The face examples are the same
for each rotation class modulo the appropriate rotation. In
practice, we only needed to train 3 detectors. One for 0 de-
grees (which covers -15 degrees to 15 degrees of rotation),
one for 30 degrees (which covers 15 degrees to 45 degrees)
and one for 60 degrees (which covers 45 degrees to 75 de-
grees). Because the filters we use can be rotated 90 degrees,
any detector can also be rotated 90 degrees. So a frontal
face detector trained at 0 degrees of rotation can be rotated
to yield a detector for 90 degrees, 180 degrees and 270 de-
grees. The same trick can be used for the 30 degree and 60
degree detectors to cover the remaining rotation classes.

All of the resulting face detectors coincidentally turned
out to have 35 layers of classifiers. They all took advan-
tage of diagonal features (although for the frontal, upright
detector, the added diagonal features did not improve the
accuracy of the detector over previously trained versions).
Training was stopped after new cascade layers ceased to
significantly improve the false positive rate of the detector
without significantly reducing its detection rate. This hap-
pened to be after 35 layers in all three cases.

4.1.2 Pose estimator

For the pose estimator we trained a decision tree with 1024
internal nodes (11 levels) to classify a frontal face into one



of the 12 rotation classes. The decision tree was trained us-
ing 4000 faces (also of size ��� �� pixels) for each of the
12 rotation classes. The set of faces for a particular rotation
class used to train the decision tree was a subset of the faces
used to train a single face detector (4000 of the 8356 faces).
The limit of 4000 was imposed by memory and speed con-
straints of the decision tree training algorithm.

The resulting decision tree achieves 84.7% accuracy on
the training set and 76.6% accuracy on a test set (consisting
of the remaining 4356 faces for each rotation class). Be-
cause the pose estimator has multiple chances to predict the
rotation class for each face when scanning, the loss in detec-
tion rate per face is much less than 23.4% (100% - 76.6%).

4.1.3 Two-stage rotated face detector

A two stage detector for rotated faces was created as de-
scribed in section 3. It first runs the decision tree classi-
fier on each window in the image and then runs the single
face detector corresponding to the rotation class predicted
by the decision tree. The decision tree takes approximately
the same time to run as a single detector, so the running
time of the two stage detector is about twice as long as the
running time of a single detector. On a ���� ��� pixel im-
age, the two stage rotated face detector takes about 0.14 sec-
onds on a 2.8 GHz Pentium 4. The try-all-rotations detector
takes about 0.66 seconds (4.7 times longer). This is a lit-
tle less than the 6 times speed-up for the two stage detector
that you would expect because the decision tree is actually
a little slower than the average rotated face detector.2

4.1.4 Results on the non-upright test set

This two stage rotated face detector was tested on the non-
upright (also called “tilted”) test set from Rowley et al. [8].
The non-upright test set consists of 50 images with 223 total
faces. Some example detections are shown in figure 5. In
the figure, the white bars on the detected boxes indicate the
top of the head. A ROC curve for this two stage detector is
given in figure 4. It plots the number of false positives on
the non-upright test set versus the correct detection rate 3.
The number of false positives is plotted as opposed to the
false positive rate to allow comparision with previous re-
sults. In our case, we examined 10,515,781 image windows
in the test set so the number of false positives for a particu-
lar detection rate can be divided by this number to yield the
false positive rate.

2These speeds are a little slower than one might expect from Viola and
Jones’s previous results. However, the running time of the average rotated
face detector is about 2.2 times slower than the frontal upright face detector
reported in Viola, Jones 2001.

3Note: when multiple detections significantly overlap, they are merged
into a single detection.

Figure 4 also shows the ROC curve for the try-all-
rotations detector. The try-all-rotations detector is only
slightly more accurate but as noted above is nearly 5 times
slower.

It is not obvious how to manipulate the detectors to get
different points on the ROC curve since each detector is a
cascade of classifiers each of which has a threshold and we
have multiple such detectors. We use the same strategy as
in Viola-Jones [12]. To decrease the false positve rate (and
decrease the detection rate), the threshold of the final classi-
fier is increased. To increase the detection rate (and increase
the false positive rate), classifier layers are removed from
the end of the cascade. This is done simultaneously for all
of the detectors.

4.1.5 Comparison to Rowley et al.

Rowley et al’s results on this test set were very similar.
Unfortunately they only computed one point on their ROC
curve. Rowley et al. reported a detection rate of 89.2%
with 221 false positives using a three stage detector that de-
termines the rotation class for the current image window
then derotates the window and then evaluates the frontal up-
right detector on it. This compares with our result of 89.7%
correct detections with 221 false positives. When testing
all rotation classes on each window (there were 18 rotation
classes in their case), Rowley et al. report a detection rate
of 96.0% with 1345 false positives. This compares with
our result of 95% with 1345 false positives. Their conclu-
sion was that using the pose estimator lowered the detec-
tion rate as well as the false positive rate as compared to
the try-all-rotations detector. However, this conclusion is
not supported by their data because they only found a sin-
gle point on the ROC curve for each of their detectors and
these points are not comparable. In our case, by plotting
ROC curves, one can see that the two approaches are very
close with the try-all-rotations approach being slightly bet-
ter at most places on the ROC curve. The big win for the
two-stage detector therefore is not in false positive rate but
rather only in speed.

4.2. Profile Faces

4.2.1 Detectors for each profile view

We trained a right profile detector using 2868 manually
cropped �� � �� pixel profile faces and over 100 mil-
lion background (non-profile) patches. All profile faces
were derotated so that the faces were looking approximately
straight right. Artificial rotations of these faces of ��� de-
grees and ��� degrees were then created to generate vari-
ations in in-plane rotations. This should make the resulting
detector more robust to such rotations. In-plane rotations



Figure 5: Example detections for two stage rotated detector.

are fairly common in images of profile faces. Some exam-
ple training data are shown in figure 6.

The right profile detector uses diagonal filters as well as
two, three and four rectangle filters. The resulting cascade
has 38 layers of classifiers with the first six classifiers hav-
ing 2, 10, 20, 20, 25 and 35 features, respectively.

To create a left profile detector, we simply flipped all the
features of the right profile detector.

The resulting profile detectors handle out-of-plane rota-
tions from about 3/4 view to full profile. Since the frontal
upright detector handles poses from about left 3/4 view to
right 3/4 view, these three detectors combine to handle the
fulll range of upright poses from left profile to right profile.

4.2.2 Pose estimator

We also trained a decision tree to classify an image window
as left or right profile. We used the same positive training
data used for training the right profile detector and flipped
versions of each image for examples of left profile faces.
The trained decision tree has 256 internal nodes and 9 lev-

els. It achieves 95.4% accuracy on the training set.
Since there are only two classes in this case, the decision

tree is only useful to test its effect on the detection rate and
false positive rate and not to improve the detector’s speed.
We wanted to confirm that the ROC curves for the two stage
detector and the try-both-profiles detector were close as in
the non-upright face case.

4.2.3 Results on profile test set

We obtained a profile face test set from Schneiderman and
Kanade at CMU. The test set contains 208 images and ac-
cording to Schneiderman and Kanade it has 347 profile
faces (faces between 3/4 view and full profile). We, how-
ever, counted 355 profile faces. This difference is minor
and our results should still be comparable to their results re-
ported in [10]. In this test we are only trying to detect pro-
file faces although some of the images also contain frontal
faces.

We examined 48,303,529 image windows over the entire
profile test set.
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Figure 4: ROC curve showing the performance on the non-
upright test set for both the two stage detector (which is
much faster) and a detector that runs all 12 cascades on ev-
ery image window.

The results of running the two-stage profile detector on
some of the test images are shown in figure 8. A ROC curve
is plotted in figure 7 showing the detection rate for vari-
ous numbers of false positives. The figure shows the ROC
curves for the two-stage detector using the decision tree as
well as the try-both-profiles detector. As with the rotated
face detector, the two systems are very close in accuracy
with a slight edge going to the try-both-profiles detector.
For the two-stage detector we detect 70.4% of the profile
faces with 98 false positives and 83.1% with 700 false pos-
itives.

Schneiderman and Kanade [10] give a few points on the
ROC curve for their profile detector. They get a detection
rate of 92.8% with 700 false positives or 86.4% with 91
false positives or 78.6% with 12 false positives. Schneider-
man and Kanade’s results are better than ours but with a
large penalty in speed. Our detector processes a ���� ���
pixel image in about 0.12 seconds on a 2.8 GHz Pentium 4
machine.

5. Conclusions

We have demonstrated detectors for in-plane rotated faces
and for profile faces. Together these detectors handle most
face poses encountered in real images. This work confirms
that the Viola-Jones framework can handle non-frontal,
non-upright faces despite some previous doubts along these
lines.

We have also presented a general method for selecting
among a set of detectors while scanning an input image.
A decision tree is learned which can select the appropriate

Figure 6: Some profile faces from the training set. They
include artificially rotated versions of each face.

detector to run. This method works well and preserves the
speed advantage of the Viola-Jones detectors.
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Figure 7: ROC curve showing the performance on the pro-
file test set for both the two stage detector and a detector
that runs both left and right profile cascades on every image
window.
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