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Abstract

Missing feature methods of noise compensation for speech recognition operate by first identi-
fying components of a spectrographic respresentation of speech that are considered to be cor-
rupt. Recognition is then performed either using only the remaining reliable components, or
the corrupt components are reconstructed prior to recognition. These methods require a spec-
trographic mask which accurately labels the reliable and corrupt regions of the spectrogram.
Depending on the missing feature method applied, these masks must either contain binary val-
ues or probabilistic values. Current mask estimation techniques rely on explicit estimation of the
characterristics of the corrupting noise. The estimation process usually assumes that the noise
is pseudo-stationary or varies slowly with time. This is a significant drawback since the miss-
ing feature methods themselves have no such restrictions. We present a new mask estimation
technique that uses a Bayesian classifier to determine the reliability of spectrographic elements.
Features used for classification were designed that make no assumptions about the correupting
noise signal, but rather exploit characteristics of the speech signal itself. Experiments were per-
formed on speech corrupted by a variety of noises, using missing feature compensation methods
which require binary masks and probabilistic masks. In all cases, the proposed Bayesian mask
estimation method resulted in significantly better recognition accuracy than conventional maask
estimation approaches.
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Abstract

Missing feature methods of noise compensation for speech recognition operate by first identifying com-

ponents of a spectrographic representation of speech that are considered to be corrupt. Recognition is then

performed either using only the remaining reliable components, or the corrupt components are recon-

structed prior to recognition. These methods require a spectrographic mask which accurately labels the

reliable and corrupt regions of the spectrogram. Depending on the missing feature method applied, these

masks must either contain binary values or probabilistic values. Current mask estimation techniques rely

on explicit estimation of the characteristics of the corrupting noise. The estimation process usually

assumes that the noise is pseudo-stationary or varies slowly with time. This is a significant drawback since

the missing feature methods themselves have no such restrictions. We present a new mask estimation tech-

nique that uses a Bayesian classifier to determine the reliability of spectrographic elements. Features used

for classification were designed that make no assumptions about the corrupting noise signal, but rather

exploit characteristics of the speech signal itself. Experiments were performed on speech corrupted by a

variety of noises, using missing feature compensation methods which require binary masks and probabilis-

tic masks. In all cases, the proposed Bayesian mask estimation method resulted in significantly better rec-

ognition accuracy than conventional mask estimation approaches.

1 Introduction

When speech is corrupted by noise, speech recognition accuracy degrades, especially when the recogni-

tion system has been trained on clean speech (e.g. [13]). There have been many algorithms proposed that

compensate for the negative effects of noise in speech and greatly improve recognition accuracy. However,

many of these methods assume that the corrupting noise is stationary or slowly varying. If this assumption

is violated, these methods perform poorly. 

Missing feature methods (e.g. [18][20][5][22]) are a group of techniques developed over the last several

years for compensating for additive noise, regardless of its stationarity. The missing feature paradigm is
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based on the notion that noise affects different time-frequency regions of speech differently. In a spectro-

graphic display of noisy speech, there will be regions of low SNR and high SNR depending on the relative

energies of the speech and the noise at each time-frequency location. Regions with low SNR are consid-

ered “corrupt” while regions with high SNR are dubbed “reliable”. In conventional missing feature

approaches, the low SNR components are deemed unreliable and disregarded (hence, “missing”). Missing

feature compensation techniques operate on this incomplete spectrogram either by estimating the proper

values of unreliable components and then performing recognition on the now-complete sequence of feature

vectors [18], or by passing the incomplete feature vectors directly to a recognition system which has been

modified to operate on partial vectors [5]. We refer to the former family of methods as feature-compensa-

tion methods and the latter family as classifier-compensation methods [19].

Unlike other compensation methods, these techniques require no assumptions about the corrupting

noise signal, e.g. stationarity. However, all missing feature approaches do require all components in a spec-

trographic display of speech to have a labelling describing their degree of “reliability” or “corruption”. We

refer to such a labelling as a spectrographic mask. Conventional missing feature methods require a binary

tagging of spectrographic locations, typically using a local SNR criterion. That is, elements below a given

SNR are tagged as corrupt (0), while those above are labelled reliable (1). This labelling for all elements in

an utterance is captured in a binary spectrographic mask. 

More recent missing feature methods, such as [2], have shown improved performance using soft deci-

sions in the mask estimation process. The use of binary masks forces a hard decision to be made about

whether each element is dominated by speech or by noise. In contrast, the label assigned to each spectro-

graphic element by a soft-decision mask can take on a continuum of values between 0 and 1. This label can

be interpreted as the probability that a particular element is dominated by speech. Elements with a mask

probability approaching 1 have strong evidence that they contain primarily speech and very little noise,

while those elements with a mask probability approaching 0 are strongly believed to contain primarily

noise and very little speech. 
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Missing feature methods have been shown to be very successful at compensating for the effects of sta-

tionary and non-stationary noise when this mask is computed from a priori knowledge of the SNR of all

spectrographic components. However, when the masks are unknown, these techniques are unusable. 

Clearly then, reliable estimation of spectrographic masks is of critical importance to the success of

missing feature methods. Conventional mask estimation methods (e.g. [27]) rely on noise-estimation tech-

niques, such as those used in spectral subtraction [4] to estimate the local SNR at each time-frequency

location. Each element’s SNR estimate is compared to a specified threshold and the element is labelled

accordingly. Such mask estimation methods perform well when the corrupting noise is stationary or

slowly-varying, as this assumption is required for spectral subtraction. However, when the noise is non-sta-

tionary, masks estimated in this manner can be very inaccurate. In Figure 1, cluster-based reconstruction

[18], a feature-compensation missing feature method, has been applied to noisy speech using masks esti-

mated via spectral subtraction and “oracle” masks generated from full a priori knowledge of the noise sig-

nal. The figure on the left shows recognition accuracy vs. SNR for speech that has been corrupted with

white noise. There is significant improvement over baseline accuracy using spectral subtraction to estimate

the masks. The figure on the right shows the same plot for speech corrupted by music, which is highly non-

stationary. Here, spectral subtraction-based mask estimation completely fails. In fact, recognition accuracy

after compensation using these masks is slightly worse than the baseline uncompensated recognition.

However, the accuracy obtained using oracle masks in both plots show the potential of missing feature

methods for noise compensation if the masks can be estimated reliably.

FIGURE 1 - ABOUT HERE 

The mask estimation problem is further magnified when we consider the potential for larger improve-

ments in recognition accuracy that has been demonstrated using missing feature methods based on “soft”

mask decisions. Simple noise estimation techniques do not provide the probabilistic measurement of an

element’s reliability that these methods require. Two current methods of solving this problem have been
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proposed in the literature. The first, by Barker et. al. [2] attempts to convert a boundless spectral-subtrac-

tion-based SNR estimate into a bounded [0,1] measurement via a warping function such as a sigmoid. This

method has been shown to be successful on speech corrupted with pseudo-stationary noises. However,

because it relies on spectral-subtraction-based SNR estimates, it is still subject to the same stationarity

assumption that hindered the spectral-subtraction-based binary mask estimation methods. It has the poten-

tially more significant drawback that the mask values are not actually probabilities. They are SNR esti-

mates presented on a different scale. The second soft-decision mask estimation method, by Renevey and

Drygajlo [21], overcomes this drawback and does compute actual probabilities. In this method, the noise

corrupting the speech signal is assumed to follow a Gaussian distribution and the parameters of the distri-

bution are estimated using the non-speech segments of an utterance. Using these estimated parameters, the

probability that the signal-plus-noise to noise ratio (referred to as a posteriori SNR in [21]) is above a

specified threshold is computed and used as the mask value. However, this method, while capable of com-

puting true probabilities, still assumes that the corrupting noise is both stationary and Gaussian. Yet, there

are many real-world noises where both of these assumptions are invalid. 

In this paper we present a mask-estimation technique that uses a Bayesian classification strategy to

determine the reliability of each spectrographic element [24]. Classification is performed using a set of fea-

tures representative of the characteristics of speech, with no explicit reference to the noise. Casting mask

estimation as a Bayesian classification problem has four distinct advantages. First, the problem of mask

estimation is reduced from the difficult task of noise or SNR estimation to a simpler classification task.

Second, the classification scheme allows any information that is pertinent to be easily incorporated as fea-

tures into the mask estimation decision process. Third, with an appropriate choice of features, mask esti-

mation can be free of assumptions about the corrupting noise. Finally, by using a Bayesian classification

scheme, we are easily able to generate truly probabilistic spectrographic masks. 

In Section 2 we describe the feature set used by the classifier-based mask estimator to estimate the

spectrographic masks. In Section 3 we describe the classification strategy we use. Section 4 briefly
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describes the missing feature methods that we will use to test the mask estimation method proposed. We

describe experiments that were performed to evaluate the proposed method in Section 5. Finally, we sum-

marize our results and highlight directions for future research in Section 6.

2 Feature Extraction

As speech recognition systems become deployed in more areas, the variety of environments encoun-

tered and the types of noises which may corrupt the speech signal increase. We have learned that for robust

speech recognition in unknown environments, it is preferable to extract cues directly from the speech sig-

nal, rather than try to estimate characteristics of the corrupting noise [25]. This choice is quite intuitive,

because in any given real-world environment, the variety of noise sources is virtually limitless, while the

speech signal remains essentially invariant. It is much easier to study and model speech than to study and

model every type of noise. With this in mind, we seek a mask estimation classifier which utilizes features

designed to exploit the inherent characteristics of the speech signal itself while making few, if any, assump-

tions about the environmental noise. In focusing on speech properties, it is apparent that because voiced

speech and unvoiced speech are generated by different production mechanisms, they have very different

characteristics. As a result, we make a distinction between features used to estimate mask values for voiced

and unvoiced segments of speech.

This distinction between voiced and unvoiced speech is important not just in the design of features for

mask estimation, but in the performance of missing feature compensation algorithms themselves. As an

example, Figure 2 shows a plot of SNR vs. recognition accuracy for speech corrupted with white noise

using the cluster-based reconstruction method [18]. The uppermost curve shows the performance using full

oracle masks. The dotted curve shows the recognition accuracy when only the unvoiced segments are com-

pensated, and the voiced segments are left uncompensated. Similarly, the dashed curve shows the recogni-

tion accuracy achieved when only the voiced segments are compensated and the unvoiced segments are

left untouched. As the figure clearly indicates, effectively compensating for the unvoiced segments is more
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important to recognition performance than compensating the voiced regions. This make intuitive sense

when we consider that unvoiced speech is typically of lower energy than voiced speech. For a given global

SNR, the unvoiced segments will be more corrupt than the voiced segments. 

FIGURE 2 - ABOUT HERE 

Yet, for a variety of reasons, the estimation of spectrographic masks for unvoiced speech segments is

more difficult than for voiced segments. For instance, since unvoiced segments are relatively low in energy

compared to voiced segments, they frequently end up as “negative energy” regions in spectral-subtraction-

based noise-estimation schemes, because the energy of the noisy speech component is less than the esti-

mate of the noise energy alone. This results in an erroneous SNR estimation which may result in mask

error. 

These observations further suggest that designing a mask estimation scheme that is not based on noise-

estimation techniques will result in significant improvements in performance over conventional mask esti-

mation methods. The following sections describe the features designed for the mask estimation classifier

for voiced and unvoiced segments of speech.

2.1 Features for voiced speech segments

Voiced speech is characterized largely by its strong periodicity and harmonicity arising from the strong

presence of a fundamental frequency, or pitch, and its harmonics. Additionally, voiced speech has a defi-

nite spectral contour across frequency, with more energy present in the low frequencies, and tapering off at

the higher frequencies. We attempt to exploit these characteristics with the several classification features.

Of course, in order to utilize features that exploit the periodicity and harmonicity of voiced speech, we

require a pitch estimator that is robust to noise. In this work we use the pitch estimator “get_f0” based on

the RAPT algorithm [26] and provided in the Entropic xwaves package. In the algorithm, initial pitch esti-

mates are made using a normalized autocorrelation function and the final values are chosen from potential
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candidates via dynamic programming. Voiced/unvoiced decisions are also made by the pitch estimator. 

2.1.1 Comb Filter Ratio

Because of the harmonic nature of voiced speech, the majority of the energy of a clean voiced speech

signal resides in its harmonics [14]. Additive noise does not typically have this characteristic. When addi-

tive noise is mixed with voiced speech, the overall signal energy increases both at the harmonics of the

pitch and at the frequencies in between. Therefore, a measure that compares the energy at the harmonics of

voiced speech to the energy outside the harmonics is a good indicator of noise present in the signal. 

A comb filter is constructed based on the pitch estimates to capture the energy present in the harmonics

of voiced speech. We use an IIR comb filter implementation given by the following transfer function: 

(1)

where  is the pitch period and g is a tunable parameter which sets the sharpness of the teeth of

the comb. It was determined empirically that setting g = 0.7 captures most of the harmonic information of

voiced speech. To capture the energy of the components of the signal that fall in between the harmonics,

the comb filter is simply shifted by . The transfer function for this shifted comb filter is given by

(2)

If we assume that most energy in voiced speech resides at the harmonics of the fundamental frequency

while noise may reside in all frequency bands, the energy at the output of the comb filter is a measure of

speech plus noise energy while that of the shifted comb filter is a measure of noise energy only. Thus, the

log ratio of the energies of the speech signal passed through the comb and shifted comb filters is a measure

of speech-plus-noise to noise. The cleaner the speech signal is, the larger this ratio will be. We call this fea-

ture the Comb Filter Ratio (CFR). The CFR is given by

Hcomb z( ) z p– 1 gz p––( )⁄=

p 1 F0⁄=

F0 2⁄

Hcombshift z( ) z– p– 1 gz p–+( )⁄=
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(3)

where  and  are the outputs obtained after the speech signal in frame  and subband 

has been passed through the comb and shifted comb filters, respectively.

Figure 3 shows a plot of the average CFR for all voiced frames of an utterance of speech corrupted by

music and by white noise at various SNRs. As the figure shows, the CFR is a reliable predictor of noise-

level in the signal. Additionally, the lines show similar trajectories even though the corrupting noises are

significantly different. 

FIGURE 3 - ABOUT HERE

From an auditory scene analysis point of view, comb filtering can be interpreted as means of identifying 

harmonicity cues. Alternatively, the authors in [3] used an autocorrelelogram to identify these cues in order 

to generate a “harmonicity mask”. Using the harmonicity mask in conjunction with a conventional SNR-

based mask produced improved recognition results over using solely the SNR-based mask. 

2.1.2 Autocorrelation Peak Ratio

Voiced speech is a quasi-periodic signal. The secondary peaks in the autocorrelation function of a frame

of voiced speech will be less than or equal to the height of the main peak. The less periodic the signal is,

the smaller the secondary peaks will be. Adding uncorrelated noise to a signal effectively reduces its peri-

odicity, decreasing the ratio of the height of the largest secondary peak to the height of the main peak. We

use this ratio as a measure of periodicity. This autocorrelation peak ratio feature will be close to one for

clean speech and decrease as the signal is increasingly corrupted by noise.

2.1.3 Subband Energy to Fullband Energy Ratio

CFR n ω,[ ] 10 10

ycomb n ω,[ ] 2

n
∑

ycombshift n ω,[ ] 2

n
∑
-----------------------------------------------

 
 
 
 
 
 

log=

ycomb ycombshift n ω
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In addition to its characteristic harmonicity, voiced speech has a distinct spectral shape. In general, the

energy of voiced frames is concentrated at the lower frequencies and tails off at higher frequencies. As

noise is added to the speech, its spectral shape changes as a function of the spectral characteristics of the

noise. We measure this impact as the log ratio of the energy in a subband to the overall frame energy as a

measure of effect of additive noise on a particular subband and on the overall contour. 

2.1.4 Kurtosis

Higher order spectra are used to capture information about a signal’s deviation from Gaussianity [7].

Many real world audio signals, including speech, are generally regarded as a super-Gaussian signals; that

is, their distribution has greater kurtosis than a Gaussian signal, with a sharper peak and more mass in the

tails. When two super-Gaussian signals are combined, the kurtosis of the resulting signal typically goes

down [11]. This characteristic has been exploited in the blind-source separation and speech enhancement

literature (e.g. [11][9]) where algorithms have been designed using kurtosis maximization objective func-

tions. We assume as well that a clean speech signal and its noisy counterpart will have different kurtoses,

and that we can capture this difference as a feature for classification. We use the kurtosis defined in (4),

where expectations are estimated from sample averages in each subband of each frame.

(4)

2.1.5 Flatness

As was noted earlier, voiced speech exhibits a very definitive trajectory across frequency, and when

noise is added to speech, this spectral shape will change. The valleys in the spectrum tend to flatten as

noise is added to a speech signal. This “flatness” can be characterized by the variance of the subband

energy in a neighborhood of spectrographic locations around a given pixel. For a given subband, a signal

corrupted with noise tends to have shallower, flatter valleys than its uncorrupted counterpart. Therefore,

κx
E x4{ }
E x2{ }{ }

2
------------------------ 3–=
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we expect noise-corrupted spectrographic locations to have a lower variance than cleaner ones. 

2.1.6 Subband Energy to Subband Noise Floor Ratio

Having knowledge of the noise floor of a noise-corrupted speech signal is obviously very useful for

estimating the SNR. An accurate measure of the noise floor is difficult to obtain. We can, however,

coarsely estimate the level of the noise floor in a particular subband by looking at the distribution of the

energy in that subband across all frames in an utterance. These distributions typically have two modes, one

at a low energy value representing the silence and low energy speech segments and one at a higher energy

representing high energy speech segments. The idea of statistically modeling the energy distributions of

speech has been used for speech endpoint detection using HMMs [1]. We have used a much simpler tech-

nique based on the noise estimation technique in [10] to get a rough estimate of the noise floor. The ener-

gies of all frames of an utterance are put into a histogram and the lower energy peak is found. The energy

bin in the histogram corresponding to this peak value is considered the noise floor of the noisy speech sig-

nal. We use the ratio of the energy in a subband of a frame of speech to the estimate of the noise floor in

that subband of the utterance as a feature to help determine the likelihood that a specific spectrographic

location has been corrupted by noise. We note that this technique is similar to spectral subtraction in that

we are using the energy of the silence frames to estimate the noise floor of the entire utterance. If the noise

is highly non-stationary, the noise floor estimate will not necessarily be accurate. However, because this is

one of many features in our classifier, we do not expect this to adversely affect the performance of the clas-

sifier in this situation.

2.1.7 Spectral-subtraction-based SNR Estimate

As mentioned in the Introduction, relying on assumptions of noise stationarity for mask estimation can

result in poor recognition if the noise environment changes rapidly. However, in some environments, such

a stationarity assumption is at least partially valid. For example, in an automobile or factory, the environ-
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mental noise can often be broken down into a stationary background noise and non-stationary impulses or

other phenomena. In these quasi-stationary environments, spectrographic masks based on SNR estimation

are able to provide improvement over the baseline recognition result [27]. By including it as one of several

features in our classifier, the SNR estimate can influence but not exclusively control the classification deci-

sion. 

2.2 Features for Unvoiced Speech

Unvoiced speech is much more difficult to characterize than voiced speech. There is no harmonicity or

other distinctive regularity as in voiced speech. As a result, the pitch-related features developed for voiced

speech will be ineffective for unvoiced speech. Unvoiced speech also has less energy than voiced speech

and is therefore more affected by noise than voiced frames. However, it does have a general spectral shape

that is unlike voiced speech and most naturally occurring noises. The features that do not rely on pitch

characterize a frame of speech in terms of the relative energy levels in each of the subbands, spectral shape,

and statitical properties. They are useful features because we know that adding noise to a speech signal

alters these characteristics. This is true for both voiced and unvoiced speech. For example, while the

energy distribution of unvoiced speech across frequency is very different from that of voiced speech, it too

will be altered by additive noise. As a result, all pitch-independent features used for classifying voiced

speech can also be used for unvoiced speech. In our work, the mask estimation for the unvoiced segments

is therefore performed using the features described above, with the exception of the two pitch-dependent

features, the Comb Filter Ratio and the Autocorrelation Peak Ratio.

3 Classification Strategy

To estimate the reliability of the spectrographic elements using the features described in the previous

section, a two-class Bayesian classifier was designed. Each class, reliable and corrupt, was represented by

a mixture of Gaussians with a single full covariance matrix tied across all densities in the mixture. Because
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the number of features used for voiced and unvoiced speech differ (with unvoiced speech having two fewer

features) we constructed a separate classifier for each type of speech. In addition, the values of each feature

can vary significantly across frequency so a classifier was constructed for each subband as well. 

Missing feature methods use an empirically-derived, method-dependent SNR threshold to determine

whether a spectral component is reliable or corrupt (or in the soft-decision case, the degree of reliability or

corruption). This threshold is used to label the data used to train the classifier. 

The prior probabilities of the two classes can be estimated from training data as the fraction of spectro-

graphic components in each subband whose local SNR is above or below a given threshold. For an SNR

threshold of 0 dB, Figure 4a shows the prior probabilities of being reliable for both voiced and unvoiced

speech, for each of the components of a log spectral vector computed using twenty Mel filters. Figure 4b

shows the average energy in each of the Mel subbands for both voiced and unvoiced speech, also com-

puted from training data. Comparing the two figures, a clear correlation can be seen between the variation

of the probability of being reliable across frequency and the energy profile of voiced and unvoiced speech

across frequency. However, different missing feature methods operate differently and the effect of mask

misclassifications on their performance is also different. Therefore, the priors estimated from the training

data may not result in the best recognition. Improved performance can be obtained by tuning the prior

probabilities using a cross-validation set. 

FIGURE 4 - ABOUT HERE

4 Missing Feature Compensation Methods

In missing feature compensation methods, the mask estimation and the missing feature algorithm itself

work together to form a complete missing feature compensation system. To test the quality of the masks

generated by the proposed Bayesian classification method, it is not enough to simply test mask classifica-

tion accuracy against some ground truth such as oracle masks, constructed with full a priori knowledge of
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the SNR. Because there are many stages of processing between a missing feature algorithm and the final

hypothesis output by the recognizer, measuring performance in terms of hits, misses, false alarms, and cor-

rect rejections, relative to the oracle mask, will not necessarily be a good indicator how the well the masks

will perform with a given missing feature algorithm. Thus, the only “proper” measure of mask estimation

performance is the recognition accuracy achieved when the estimated masks are used in conjunction with

missing feature compensation methods. In fact, in soft-decision missing feature methods, there is no notion

of ground truth for the masks, as all spectrographic elements are tagged in a probabilistic manner. Recogni-

tion accuracy is the only way to evaluate these masks. 

We have tested the masks generated using two missing feature compensation methods. The first

method, cluster-based reconstruction is a feature-compensation method; all the processing takes place on

the features, prior to recognition [18]. It is a hard-decision method, so it requires spectrographic masks

which label elements in a binary fashion. The second method, soft-decision bounded integration (also

commonly called soft-decision bounded marginalization) is a classifier-compensation method; the incom-

plete log spectral vectors are used directly for recognition, and the basic manner in which class likelihoods

are computed is modified inside the recognizer [2]. As its name suggests, this is a soft-decision method. It

requires probabilistic spectrographic masks which label the reliability of each element along a continuum

of values between 0 and 1. A brief description of each method follows. 

4.3 Cluster-based reconstruction

In the cluster-based reconstruction method, the log-spectral vectors of a training corpus of clean speech

are grouped into a number of clusters using conventional expectation-maximization techniques [6]. The

distributions of the vectors within each cluster are assumed to be Gaussian, and the mean, covariance, and

a priori probability of each cluster are estimated from the training data. To compensate for noisy speech,

the missing features are estimated by first identifying the cluster to which each corrupted log-spectral vec-

tor belongs, and then using the distributions of these clusters to estimate the missing elements of the vector.
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Cluster membership is given by the cluster k that has the highest likelihood of generating the noisy vector

.

(5)

However, because  has unreliable elements, cluster membership cannot be identified in this way.

The unreliable elements must first be integrated out of the cluster distributions so that cluster membership

is estimated only from the components in vector that are present. Because the observed value (considered

noisy or corrupt) represents the combined energy of the speech and the additive noise, we can use it as an

upper bound for integration. Cluster membership is now given by (6) where  is a vector of the miss-

ing elements of vector and  is the vector of their observed values. 

(6)

Once the cluster membership k of a vector has been determined, missing feature reconstruction is per-

formed using bounded MAP estimates based on the Gaussian distribution of the appropriate cluster and the

upper bounds given by the observed corrupt values, as shown in (7).

(7)

After the missing features have been reconstructed, cepstral coefficients can be extracted from the now-

complete log spectral vectors in the usual manner and passed to a conventional HMM recognizer for

decoding. 

4.4 Soft-decision bounded integration

In general, bounded integration missing feature methods operate by marginalizing the components of

the feature vector labelled as unreliable out of the HMM state distributions, again using the known value of

the noisy element as an upper bound on the value of the component. The likelihood of each class is then

S t( )

kS t( ) argmaxk P S t( ) k( )P k( ){ }=

S t( )

Sm t( )

S t( ) Ym t( )

k̂S t( ) argmaxk P k( ) P S t( ) k( ) Sm t( )d
∞–

Ym t( )

∫ 
 
 

=

Ŝm t( ) argmaxSm
P Sm t( ) So t( ) µk̂S t( )

Σk̂S t( )
Sm t( ) Ym t( )≤, , ,( ){ }=
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computed using only the remaining “reliable” elements in the vector. This is considered bounded integra-

tion using hard decisions [5]. This method has recently been extended in [2] to use soft decisions on the

element reliability. Under the soft-decision framework, each element  is assigned a probability 

that it is reliable and dominated by speech rather than noise. Likewise, each of these elements is assigned a

probability  that the element is noise-dominated. Assuming all components in the vector are inde-

pendent, the total likelihood of each component then becomes a weighted sum of the likelihood of the

component and its normalized cumulative probability. Mathematically, this can be expressed as

(8)

In practice, state output densities are modelled by Gaussian mixtures with diagonal covariance matri-

ces, and vector components are only assumed independent conditional on the Gaussian identity. In this

case, (8) is applied to the individual Gaussians within the mixture.

5 Experimental Results

Experiments in classifier-based mask estimation were performed using the DARPA Resource Manage-

ment (RM) corpus [16], corrupted by three different noise environments: stationary white noise, factory

noise, consisting of quasi-stationary background noise mixed with non-stationary impulsive noises, and

music from the “Marketplace” radio program, which is highly non-stationary, and in places, highly har-

monic. The experimental procedures described in the following paragraphs were followed for each of the

three noise environments.

Noise-corrupted speech was passed through a Mel filterbank consisting of twenty triangular FIR filters.

For each frame and each subband, the features for mask estimation were extracted along with the log spec-

tra for missing feature compensation and recognition.

The mask estimation classifier was trained on 2880 utterances from RM, corrupted by noise to various
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SNRs. For each frame and each subband, the features were extracted as described in the Section 2. For

training, the pitch estimates required for the pitch-dependent features were obtained from clean speech

using the xwaves “get_f0” pitch estimation package. The local SNR was computed for every time-fre-

quency location, and the training data were labelled by comparing the SNR to a threshold. For the cluster-

based reconstruction, the SNR threshold for reliability was -5 dB [17], while the soft-decision bounded

integration method has a threshold of 0 dB [3]. For each subband and each type of speech (voiced or

unvoiced), mixtures of three Gaussians were estimated using conventional EM. A global full-covariance

matrix was also estimated for each mixture. 

A cross-validation data set of 200 utterances from RM was used to estimate the prior probabilities of

reliability. A single prior probability estimate was used across all SNRs and subbands for the mask estima-

tion classifiers for both the voiced and unvoiced speech segments. Although this is believed to be sub-opti-

mal, performing a comprehensive search for the best set of prior probabilities for each subband was

considered to be too computationally costly. There was no overlap between the cross validation, training,

and test sets. 

The test set consisted of 400 utterances from RM. The pitch estimates for the test set were derived

directly from the noisy speech for all environments. Frames with a non-zero pitch estimate were classified

using the voiced speech mask estimation classifier for the appropriate subband, while those with no pitch

estimate were classified using the unvoiced mask classifiers. For mask estimation purposes, no distinction

was made between silence segments and unvoiced speech, nor was any segmentation performed. For each

utterance the posterior probability of reliability was estimated for every spectrographic location to generate

a probabilistic spectrographic mask. For the cluster-based missing feature approach, the probabilistic mask

was converted to a binary mask using a probability of 0.5 as the threshold. 

The spectrographic masks were estimated from the noise-corrupted test data. For comparison, masks

were also estimated using the conventional noise-estimation-based techniques described in Section 1.
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Binary masks were estimated using the spectral subtraction approach with a threshold of 2.5 dB. This

threshold was empirically determined to be optimal for spectral-subtraction-based masks applied to clus-

ter-based reconstruction in [17]. For the soft decision bounded integration method, soft masks were devel-

oped using spectral-subtraction-based noise estimates using a threshold of 0 dB in conjunction with a

sigmoid warping function, as described in [2] and [3]. A sigmoid is described by two parameters  and .

We initially set the sigmoid parameters to , which the authors reported in [3] to be

optimal, but we obtained better performance with . 

Examples of masks estimated using each of these techniques are shown in Figure 5 for a small segment

of a test utterance. The black pixels represent reliable regions and the white pixels represent corrupt

regions. Compared to the masks estimated using the noise-estimation-based techniques, the Bayesian

masks capture more of the reliable regions of speech. Some of the reliable regions missed by the binary

masks are present as shades of gray in both soft-decision masks. However, these regions are a darker gray

in the Bayes mask, correctly indicating a higher probability of being reliable. 

FIGURE 5 - ABOUT HERE 

Once estimated, the masks were then used by each of the missing feature techniques for compensation.

For cluster-based reconstruction, the features labelled as missing by the mask were reconstructed. After

reconstruction, the now-complete twenty-dimensional log spectral vectors were converted to thirteen-

dimensional cepstra via a DCT. Recognition was performed using the SPHINX-3 speech recognition sys-

tem [15]. The system was trained on clean speech using the same 2880 utterances used to train the mask

estimation classifier. Context-dependent continuous density HMMs were trained with one Gaussian per

state. No delta or delta-delta features were used. 

For the soft decision bounded integration experiments, the noise-corrupted log spectra and the esti-

mated spectrographic masks were processed by a modified version of SPHINX-3. Since this method oper-

ates exclusively in the log spectral domain, the training set was used to train context-dependent continuous
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density HMMs on twenty-dimensional log spectra. Again, one Gaussian per state was used, and no delta or

delta-delta features were used. 

The recognition accuracies obtained for the three noise conditions using estimated masks with cluster-

based reconstruction and soft-decision bounded integration are shown in Figures 6 and 7, respectively. Fig-

ures 6a and 7a show the performance for speech corrupted with white noise, Figures 6b and 7b, speech cor-

rupted by factory noise and Figures 6c and 7c, speech corrupted by music. As the plots indicate, significant

improvements in recognition accuracy were achieved for both missing feature methods using the proposed

Bayesian mask estimation method, as compared to the noise-estimation-based techniques. 

FIGURE 6 - ABOUT HERE 

FIGURE 7 - ABOUT HERE 

In the previous series of experiments, the noise environment, though not the SNR, was assumed to be

known a priori. In some situations, this is a realistic assumption. However, there are many situations, e.g.

mobile telephony, where this assumption is not valid. Furthermore, the authors of [2] noted that the sig-

moid-based mask estimation technique is capable of better performance if the sigmoid parameters are

tuned to match the test conditions.

To both test the performance of our mask estimation scheme in unknown environments and provide a

fairer comparison to the sigmoid-based masks in the soft decision case, the masks for the factory and music

noise conditions were re-estimated, using the mask-estimation classifier that had been trained on speech

corrupted only by white noise. Now, both the SNR and the noise type are unknown to the mask estimator.

The last mask in Figure 5 has been estimated in this manner. It has correctly identified almost all of the

major blocks labelled by the mask trained with a matched noise type. However, it seems to be making

more “extreme” decisions, as there are fewer grey regions compared to its matched-environment counter-

part. 

The performance of environment-independent mask estimation is shown by the dotted curves in plots
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(b) and (c) of Figures 6 and 7 for the feature-reconstruction method and the bounded integration method,

respectively. As the plots in Figure 6 indicate, the recognition accuracy obtained with the feature recon-

struction method using classifier-based masks trained only on white noise is virtually identical to the accu-

racy obtained when the mask estimator has been trained on the matching noise type. For bounded

integration, the recognition accuracy obtained using the environment-independent masks is somewhat

lower than that achieved when the mask estimation classifier operates in a known environment. However,

as Figure 7 indicates, this performance is still better than that obtained by the noise-estimation-based

masks. 

In addition, classifier-based mask estimation was performed on clean speech, uncorrupted by additive

noise. In this case, the mask estimator should, in principle, label all spectrographic components as “reli-

able”. Although the mask estimator did mark several components as “corrupt” (predominantly in the

silence regions), applying missing feature compensation to clean speech using the estimated mask resulted

in no degradation in speech recognition accuracy.

6 Conclusions and Future Work

In this paper we have presented a new Bayesian classifier for spectrographic mask estimation for miss-

ing feature compensation. Our classifier-based technique operates on the principle that it is better to con-

centrate on information we can extract from the noisy signal about the underlying speech, rather than

trying to estimate properties of the noise. We have shown significant and consistent improvements over

conventional noise-estimation based mask techniques under a variety of noise types and SNRs using two

different missing feature techniques, one requiring binary masks and one requiring probabilistic masks.

Our classifier has been shown to operate successfully across multiple SNRs and noise types. We were also

able to maintain good performance in situations where the environment is unknown to the mask estimator.

This last result validates our goal of speech-focused features, rather than noise-focused features. When the

noise changes, the features remain informative. 
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However, compared to previous methods, our classifier-based method is significantly more compli-

cated. There are many more parameters to optimize. Indeed, we believe the current mask estimator is per-

forming sub-optimally as a result of assumptions made for the sake of expediency. For example, we know

that the prior probabilities are not equal across subbands and voiced and unvoiced speech. However, doing

an exhaustive search of all combinations of priors is simply not feasible. Similarly, it may be the case that

not all features perform equally well in all subbands. For example, the pitch-based features may be less

informative in the higher subbands, since the energy in the higher harmonics is relatively low, and there-

fore, perhaps their contribution to the mask estimation decision should be de-weighted in those bands.

In addition, while Figures 6 and 7 show our classifier-based mask estimation methods consistently

improve over previous mask estimation methods in a variety of environments, the plots of speech cor-

rupted by music show the smallest relative improvement. In environments where both the speech and the

corrupting noise are harmonic, accurate pitch estimation is a difficult problem, especially as low SNRs. As

a result, the pitch-dependent mask estimation features may be unreliable. To improve the performance in

these conditions, pitch estimation algorithms capable of processing multiple harmonic streams may be

required.

Casting the mask estimation problem as one of Bayesian classification provides many opportunities to

improve mask estimation performance. For example, we can apply unsupervised adaptation using MAP

techniques or MLLR [8] to improve mask estimation performance. Additionally, this work has demon-

strated the importance of accurate mask estimation in the unvoiced speech segments. To improve perfor-

mance in this area, we need to develop more informative features for unvoiced speech. These can easily

then be incorporated into the classification scheme. In addition, the current classification scheme treats

each spectrographic element independently. However, it is clear from observing the spectrographic masks

that there is a high correlation between the reliability of neighboring pixels, indicated by the block-like

nature of the reliable and corrupt regions. We plan to try to capture this information by incorporating con-

text information around a given pixel into the classification framework, e.g. using a larger feature vector
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composed of an element’s features and the features of its neighbors, and by exploring image processing

techniques to post-process the mask estimates. Preliminary work in these areas was performed in [23].

Finally, the most challenging task remains developing a framework in which the missing feature meth-

ods and the speech recognizer are incorporated into the mask estimation procedure. This would allow esti-

mated masks to be optimized directly for speech recognition performance, rather than mask estimation

accuracy. Such an approach would provide the means for a more principled and ideally unsupervised

search for optimal values of the parameters for mask estimation, which we believe will greatly improve the

mask estimation performance
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Figure 1. Recognition accuracy vs. SNR when missing feature methods are applied to speech that has 
been corrupted by white noise (left) and speech that has been corrupted by music (right).
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Figure 2. Recognition accuracy vs.SNR on 
speech that has been corrupted by white noise. 
Missing feature compensation was applied using 
oracle masks applied to both the voiced and 
unvoiced segments, only the unvoiced seg-
ments, and only the voiced segments. 
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Figure 3. Average comb filter ratio (CFR) vs. 
SNR for all voiced frames of an utterance cor-
rupted by white noise and by music.
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Figure 4a. Prior probabilities of reliability of 
voiced and unvoiced speech from the mask estima-
tion training data as a function of Mel filter index 
The threshold for reliability is 0 dB SNR.
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Figure 5.  Examples of spectrographic masks for a speech signal corrupted by factory noise to 10 dB SNR. 
The utterance is the word “EARLIER”. Reliable regions are shown in black and corrupt regions are shown 
in white. The top row shows the oracle mask created from a priori knowledge of the local SNR, and esti-
mated binary masks created by spectral subtraction and the proposed Bayes classifier method. The bottom 
row shows soft-decision masks estimated using the spectral-subtraction sigmoid method, the Bayes classi-
fier method, and the Bayes classifier method trained on white noise. 
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Figure 6. Recognition accuracy vs. SNR using cluster-
based feature reconstruction on speech corrupted by (a) 
white noise, (b) factory noise, and (c) music, with binary
spectrographic masks estimated using the spectral-sub-
traction method, the proposed Bayes method, and in (b) 
and (c), the Bayes method using the mask classifier from
(a) trained only on white noise.
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Figure 7. Recognition accuracy vs. SNR using 
soft-decision bounded integration on speech cor-
rupted by (a) white noise, (b) factory noise, and (c)
music, with soft spectrographic masks estimated 
using the spectral-subtraction sigmoid method, the
proposed Bayes method, and in (b) and (c), the 
Bayes method using the mask classifier from (a) 
trained only on white noise.
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