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Abstract

In classification methods that explicitly model class-conditional probability distributions, the true
distributions are often not known. These are estimated from the data available, to approximate
the true distributions. Errors in classificaiton that arise due to this approximation can be reduced
to some extent if the estimated distributions are used merely to project data into a space of like-
lihoods and classification is performed in that space suing discriminant functions. In this article,
we discuss the rationale behind this, and also the general properties of likelihood projections. We
demonstrate the utility of likelihood projections in improving classification performance through
experiments carried out on a standard image database and a standard speech database.
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In classification methods that explicitly model class-conditional probability distributions, the true distri-
butions are often not known. These are estimated from the data available, to approximate the true dis-
tributions. Errors in classification that arise due to this approximation can be reduced to some extent if
the estimated distributions are used merely to project data into a space of like lihoods and classification
is performed in that space using discriminant functions. In this article, we discuss the rationale behind
this, and also the general properties of likelihood projections. We demonstrate the utility of likelihood
projections in improving classification performance through experiments carried out on a standard image
database and a standard speech database.
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1. INTRODUCTION

Pattern classification methods can be broadly categorized
into two groups, those that explicitly require class-conditional
probability values of the data being classified and those that
do not. The former category is sometimes referred to as the
sampling approach, whereas the latter category is called the
diagnostic paradigm (Dawid 1976; McLachlan 1992). Meth-
ods in the former category require explicit representations of
the probability distributions of classes. These distributions are
usually estimated either using nonparametric kernel methods,
such as Parzen windows (Parzen 1962), or parametric meth-
ods that assume specific parametric forms for the distributions,
such as Gaussian mixtures (McLachlan and Peel 2000). Class-
conditional probabilities are used to estimate a posteriori class
probabilities, which form the basis for classification (Duda,
Hart, and Stork 2000). In this article we refer to these meth-
ods as distribution-based methods. The latter category of meth-
ods (i.e., methods that do not require explicit computation of
class-conditional probability values), typically compute func-
tions, called discriminant functions, of the data being classified
and classify the data based on the values taken by these func-
tions. The functions used may be diverse, ranging from sim-
ple linear functions of the data (Highleyman 1962) to complex
structures such as classification and regression trees (Breiman,
Friedman, Olshen, and Stone 1984) and need bear no direct re-
lation to the a posteriori probabilities of the classes. We refer to
such methods as discriminant-based methods in this article.

The dichotomy between the two categories of methods is,
however, not complete. Methods that use explicit representa-
tions of class probability distributions are effectively based on
discriminant functions. For instance, the classification rule of a
distribution-based two-class classifier is based on the compar-
ison of the ratio of the a posteriori probabilities of the classes
against a threshold. In this case, this ratio is the discriminant
function. Multiclass classification can be expressed similarly as
the successive application of a series of such two-class discrim-
inants. In this article, however, we maintain the categorization
of classification methods as we have described them, because
it imparts conceptual clarity to the subject matter of the article.

Distribution-based classifiers are widely used for classifica-
tion tasks in diverse disciplines and are particularly useful in

classifying real-valued data (Brown and Prescott 2000; Durbin,
Eddy, Krogh, and Mitchison 1999; Mantegna and Stanley 2000;
Wilks 1995). However, the performance of these classifiers is
dependent on obtaining good estimates of the class-conditional
distributions of the various classes. Although it is relatively
easy to determine the best set of parameters for a given para-
metric model of distributions, determining the most appropri-
ate parametric form is frequently a difficult problem. Inaccurate
models can lead to reduced classification accuracies.

This article demonstrates how the performance of dis-
tribution-based classifiers can be improved under this scenario,
by classifying in a different space into which the data are pro-
jected. In the rest of the article we refer to the space in which the
original data reside as the data space. Instead of treating class-
conditional probability distributions as facilitators for the esti-
mation of a posteriori class probabilities to be used for Bayesian
minimum error or minimum risk classification, we now treat
them as facilitators for nonlinear projections, which we call
likelihood projections, into a likelihood space. The coordinates
of this space are the class-conditional likelihoods of the data
for the various classes. In this space, the Bayesian classifier
between any two classes in the data space can be viewed as a
simple linear discriminant of unit slope with respect to the axes
representing the two classes. The key advantage to be derived
from working in the likelihood space is that we are no longer
restricted to considering only this linear discriminant. Classifi-
cation can now be based on any suitable classifier that operates
on the projected data. When the projecting distributions are the
true distributions of the classes, the optimal classifier in the
likelihood space is guaranteed to result in error rates identical
to those obtained by classifying the data in the original space.
When the projecting distributions are not the true distributions,
the optimal classification accuracy in the likelihood space is
still guaranteed to be no worse than that obtainable with the
projecting distributions in the data space. On the other hand,
classification accuracy in the likelihood space can be higher
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than that in the data space in this situation. This feature of like-
lihood projections permits us to use them to compensate, to
some extent, for errors in the modeling of class distributions in
the original data space.

The use of secondary projections of data for improved classi-
fication has been widely considered in the field of kernel-based
classification methods (Burges 1998; Cortes and Vapnik 1995;
Schölkopf et al. 1999). Several density function have also been
used as kernels in these methods (e.g., Schölkopf et al. 1997;
Tresp 2001). Most of these methods, however, are specific to
binary classification (Vapnik 1998), and although they can be
restructured to perform multiclass classification (e.g., Lee, Lin,
and Wahba 2001; Weston and Watkins 1998), their performance
is frequently not as good as that obtainable with other mul-
ticlass classifiers. Although likelihood projections and likeli-
hood spaces can be related to kernel methods, the treatment in
this article is different in that it does not propose specific den-
sities or projections to go with specific classifiers. The state-
ment that we attempt to make in this article is that when a
distribution-based classifier is the classifier of choice, then,
rather than using it directly to classify in the data space, us-
ing the class-conditional distributions to project the data into its
likelihood space and performing classification therein is a rel-
atively better option. Furthermore, we do not impose any spe-
cific form on the classifiers to be used in the likelihood space.
The approach proposed here is only a simple incremental step
from distribution-based classification, but it can result in sig-
nificant improvements in classification accuracy. The simplic-
ity of the approach should make it appealing in any situation
where distribution-based classification is to be performed for
real-valued data. Many of the consequences or properties of
likelihood projections are not immediately obvious. These have
been discussed in greater detail in this article and may serve
to throw some light on empirically observed results in various
fields. For instance, researchers in the field of computer speech
recognition have observed large improvements in recognition
accuracy when classification of speech sounds is performed in
the space of a posteriori class probabilities (Hermansky, Ellis,
and Sharma 2000). These have largely been unexplained so far.

At the outset, we would like to point out that the concept of
likelihood spaces is equally applicable to both discrete-valued
and continuous-valued data. For this reason, we use the term
“probability distribution,” or simply “distribution,” generically
to represent both probability densities for the case of continu-
ous valued data and probability distributions for discrete-valued
data. Where the treatment is specific to continuous valued data,
we use the term “probability density,” or “density.” In Section 2
we discuss likelihood projections and some key issues related
to classification in likelihood spaces. In Section 3 we describe
experiments that support our statements. Finally, we present our
conclusions in Section 4.

2. LIKELIHOOD–BASED PROJECTIONS

Consider an N-class classification problem, where data must
be classified as belonging to one of N classes C1,C2, . . . ,CN .
Let PX(X|C1),PX(X|C2), . . . ,PX(X|CN) represent the true dis-
tributions of the data from each of the N classes. In this no-
tation the subscripted “X” represents the random vector and

the X within the parentheses represents a specific instance of
the random vector PX(X|Ci) thus represents the probability that
the random vector X takes the value X, given that it belongs
to class Ci. Let P̃X(X|C1), P̃X(X|C2), . . . , P̃X(X|CN) be the es-
timates of the true distributions that have been obtained for
a distribution-based classifier. Such estimates could have been
obtained by, for example, assuming a parametric form for the
distributions and estimating their parameters from some train-
ing data using a likelihood maximization algorithm such as ex-
pectation maximization (Dempster, Laird, and Rubin 1977).

We define the likelihood projection of a vector X as the op-
eration LN(X), resulting in an N-dimensional likelihood vec-
tor, YX , as

YX = LN(X)

= [ log(̃PX(X|C1)) log(̃PX(X|C2)) · · · log(̃PX(X|CN)) ].
(1)

The ith component of the likelihood vector YX , Y(i)
X is

obtained as Y(i)
X = log(̃PX(X|Ci)). We call the distributions

P̃X(X|C1), P̃X(X|C2), . . . , P̃X(X|CN) the projecting distribu-
tions, and the N-dimensional space whose coordinates are
log(̃PX(X|C1)), log(̃PX(X|C2)), . . . , log(̃PX(X|CN)) the likeli-

hood space. YX has N components Y(1)
X ,Y(2)

X , . . . ,Y(N)
X , that is,

as many components as the number of classes being classified.
When the dimensionality of the data vector X is greater than N,
the likelihood projection operation LN(X) is a dimensionality-
reducing operation. When the dimensionality of X is greater
than N, LN(X) is a dimensionality-increasing transformation.

2.1 Some Properties of Likelihood Projections

Likelihood vector representations have the following proper-
ties that relate to classification in likelihood spaces.

Property 1. Decision regions in the data space are com-
pacted into contiguous regions in the likelihood space.

The projecting distributions represent a set of decision
boundaries in the space of X that partition the data space
into N decision regions, one for each class. Here, by the term
“decision region” of a class, we mean the regions of the space
that would be demarcated as belonging to that class by an opti-
mal Bayesian classifier. Thus the decision region Di for class Ci

is the region defined by

X ∈ Di if P(Ci)̃PX(X|Ci) > P(Cj)̃PX(X|Cj) ∀ j �= i,

(2)

where P(Ci) represents the a priori probability of class Ci.
The boundary regions where P(Ci)̃PX(X|Ci) = P(Cj)̃PX(X|Cj)

for some j are not attributed to any class by (2), and must be
attributed to one of the competing classes based on some preset
rule. The decision regions defined by (2) may consist of several
disjoint regions or may be multiply connected. In the likelihood
space, these (possibly disjoint or multiply connected) regions
are projected into a region Ei, defined by

YX ∈ Ei if Y(i)
X + Zi = Y( j)

X + Zj ∀ j �= i, (3)

where Zi = log(P(Ci)). It is trivial to show that the region Ei
is convex and therefore simply connected; from (3), we can
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(a) (b)

Figure 1. Scatter of Speech and Nonspeech Data in an Audio Signal. (a) The scatter in the data space; (b) the scatter in the likelihood space.
The two axes represent the first and second components of vectors derived using a Karhunen Loeve transform (Jain 1976) based projection of
the log spectra of 25-ms frames of the speech signal. In (a) the dark crosses represent data vectors from nonspeech regions. The gray dots
represent data from speech regions. In (b) the colours are inverted for visual clarity. The projecting distributions for both classes were mixtures of
32 Gaussians, computed from speech and nonspeech training data. The dotted line in (b) represents the optimal classifier in the data space. The
solid lines represent the optimal linear and quadratic discriminants in the likelihood space.

deduce that if YX1 and YX2 both lie within Ei, then, for any
0 ≤ α ≤ 1,

αY(i)
X1

+ (1 − α)Y(i)
X2

+ Zi

> αY( j)
X1

+ (1 − α)Y( j)
X2

+ Zj ∀ j �= i; (4)

that is, αYX1 + (1 − α)YX2 also lies in Ei, thereby proving that
Ei is convex and therefore simply connected. Thus the likeli-
hood projection transforms even disjoint or multiply connected
decision regions in the data space to convex, simply connected
regions in the likelihood space.

Figure 1 illustrates this property through an example wherein
data vectors from two classes, in a recording of a parametrized
speech signal, have been projected into a likelihood space using
projecting distributions that were estimated from representative
training data. The classes correspond to speech and nonspeech
regions of the recorded signal. The figure shows the scatter of
these classes in the original data space and the likelihood space.
We observe that the result of the likelihood projection is to com-
pact the classes, although the decision region for the speech
class is not convex in Figure 1(a).

Property 2. The optimal classifier in the likelihood space is
guaranteed to perform no worse than the optimal Bayesian clas-
sifier based on the projecting distributions.

This follows as a consequence of Property 1. In the data
space, the optimal minimum-error Bayesian classifier is given
by the rule (Duda et al. 2000)

X ∈ Ci : i = arg max
j

{PX(X|Cj)P(Cj)}; (5)

that is, X is classified as belonging to the class Ci, such that
i indexes the class with the largest value for PX(X|Ci)P(Ci).
A classifier that uses the set of estimated distributions approxi-
mates this as

X ∈ Ci : i = arg max
j

{̃PX(X|Cj)P(Cj)}, (6)

which can be equivalently stated in terms of log-likelihoods as

X ∈ Ci : i = arg max
j

{
log(̃PX(X|Cj)) + log(P(Cj))

}
. (7)

Equation (7) can be restated as a sequence of pairwise
comparisons between classes. Classification between any two
classes Ci and Cj is performed as

X ∈
{

Ci if log(̃PX(X|Ci)) − log(̃PX(X|Cj)) > Tij

Cj otherwise,
(8)

where Tij is log(P(Cj)) − log(P(Ci)). Classification between
N classes requires N − 1 pairwise classifications of the kind
defined by (8). The pairwise comparisons represented by (8)
can be easily translated into the likelihood space. To do this,
we define a vector Aij as Aij = [0 0 1 0 · · · −1 0 · · · ], where
the 1 occurs in the ith position and the −1 is in the jth position.
Equation (8) can now be redefined in the likelihood space as

X ∈
{

Ci if AT
ijYX > Tij

Cj otherwise,
(9)

where YX represents the likelihood projection of X. Equa-
tion (9) is a simple linear discriminant with a slope of unity.
In the likelihood space, as in the data space, classification
between N classes requires N − 1 classifications of the kind
defined by (9). It is thus possible to define a classifier in the
likelihood space that performs identically to a Bayesian clas-
sifier based on the projecting distributions in the space of X.
It follows that the performance of the optimal classifier in the
likelihood space cannot be worse than that obtainable with the
projecting distributions in the data space. It also follows that
if the projecting distributions are the true distributions of the
classes PX(X|Cj), then the optimal classification performance
in the likelihood space is identical to the optimal classification
performance in the data space.

TECHNOMETRICS, ???? 0, VOL. 0, NO. 0
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2.2 Classification in Likelihood Spaces

As a consequence of Property 2 in Section 2.1, the perfor-
mance of the optimal classifier in the likelihood space is lower
bounded by the classification accuracy obtainable with the op-
timal Bayesian classifier based on the projecting distributions
in the data space. Therefore, it may actually be possible to
estimate classifiers in the likelihood space that perform better
than the optimal Bayesian classifier estimated from the project-
ing distributions. This constitutes the subject of discussion in
this section.

In the data space the true distributions of the data may be
extremely complex, and the distributions modeling the classes
could result in complicated, possibly even multiple, disjoint
estimated decision boundaries. Likelihood projections map the
regions demarcated by these boundaries onto a single contigu-
ous region in the likelihood space. A Bayesian classifier be-
tween any two classes in the data space maps onto a linear
discriminant of slope 1.0 in the likelihood space. When project-
ing densities are continuous at the decision boundaries in the
data space, data points that are misclassified in the data space,
but lie adjacent to the decision boundaries, get mapped onto
the region adjoining this linear discriminant in the likelihood
space, regardless of the spatial complexity of the boundaries in
the data space.

The geometrical simplicity of having misclassified regions
adjoin the convex region representing any class in the likelihood
space makes it possible to easily determine a different func-
tional form for the discriminant that reduces the average clas-
sification error, compared with the linear discriminant of
slope 1.0. Even simple classifiers, such as linear, quadratic,
or logistic discriminants, that are effective only on contiguous
classes, can be used. This is illustrated in Figure 1(b), where
the dotted line represents the optimal Bayesian classifier esti-
mated in the original data space. The slope of the line is 1.0.
The Y intercept of the line was estimated using held-out
test data. The thin solid line represents the optimal linear dis-
criminant in the likelihood space, also estimated using the
same held-out data. This discriminant results in 4.5% lower
classification error relative to the dotted line. The solid curve
represents a quadratic discriminant function, also estimated on
the same held-out data, that results in even lower error than the
thin solid line.

The determination of a new linear discriminant can be inter-
preted as corresponding to the determination of linear or non-
linear transformations of class distributions in the data space to
achieve better approximation of optimal classification bound-
aries. For instance, a linear discriminant of slope 1.0 with
a Y intercept other than that of the original linear discrimi-
nant corresponds to scaling of class distributions in the data
space. A linear discriminant of slope other than 1.0 in the
likelihood space corresponds to exponentiating the class den-
sities by some power in the data space. The transformations
of the densities result in a different set of decision boundaries
than those obtained from the original class-conditional den-
sities. The discriminants in the likelihood space can be con-
strued to map onto these modified decision boundaries in the
data space. Figure 2 illustrates this with an example. In this
example, 120-dimensional log-spectral vectors, derived from a

Figure 2. Illustration of Classification Boundaries Obtained From
Original Class Distributions and From the Transformed Class Distribu-
tions Represented by Linear Discriminants of Nonunit Slope in Likeli-
hood Space. The gray and black regions represent the scatter of data
from two classes. The white spots in the centers of these classes rep-
resent the location of their means. The dotted curve represents the
decision boundary obtained by modeling both classes as Gaussians.
The solid curve represents the mapping of the optimal linear classifier in
the likelihood space defined by the Gaussian class densities back into
the data space.

speech signal as explained later in Section 3, have been pro-
jected into two dimensions. The probability density of each of
the classes was modeled by a single Gaussian density. The dot-
ted curve shows the classification boundary obtained from these
Gaussian densities. The solid curve shows the decision bound-
ary obtained by mapping the optimal linear discriminant sep-
arating the two classes in the corresponding likelihood space
back into the data space. The reverse mapping of the linear
discriminant is simple in this case. Let C1 and C2 represent
the two classes, let P̃X(X|C1) and P̃X(X|C2) be their estimated
Gaussian densities, and let YX represent the likelihood vector
derived by projecting a vector X using these densities. We have

YX = (
Y(1)

X ,Y(2)
X

) = (
log(̃PX(X|C1)), log(̃PX(X|C2))

)
. (10)

The optimal linear discriminant in the likelihood space can be
represented as

AY(1)
X + B = Y(2)

X . (11)

This can be represented in terms of the projecting densities as

P̃X(X|C1)
A

eB = P̃X(X|C2). (12)

The new decision boundary is thus the locus of all vectors X
that satisfy (12).

More generally, however, such simple interpretations are not
possible. For instance, a quadratic discriminant of the form(

Y(1)
X

)2 + D
(
Y(2)

X

)2 + EY(1)
X Y(2)

X + F = 0 (13)

maps onto the following discriminant in data space:

P̃X(X|C1)
log(̃PX(X|C1))+E log(P̃X(X|C2))

× P̃X(X|C2)
D log(̃PX(X|C2))eF = 1. (14)

Clearly, this cannot be obtained by any simple transformation
of the individual class distributions, due to the presence of the
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cross-term Y(1)
X Y(2)

X . Other, more complex discriminants in like-
lihood space are mapped onto even more complex functions of
class distributions in the data space.

2.3 Dependence of Classifiers in Likelihood Spaces
on Projecting Distributions

The reduced classification error in the likelihood space is
a consequence of compensation for errors in modeling class
distributions in the data space. In the context of classification,
distribution modeling errors can result from two causes. First,
the analytical model chosen to represent the distribution of a
dataset may be inappropriate for the data. Second, the parame-
ters of the model for any class are usually estimated such that
the resulting distribution best represents the distribution of the
training data for that class, without reference to the distribu-
tions of other classes. Figure 3(a) illustrates the problems that
can result from this using a synthetic example. In the example,
the data are one-dimensional. Two classes with Rayleigh distri-
butions have been erroneously modeled as Gaussian. The dotted
curves in Figure 3(a) show the true probability densities of the
two classes, and the solid curves show the estimated Gaussian
densities. The first and second moments of the Gaussians shown
in the figure are identical to those of the true (Rayleigh) distrib-
ution of the data; that is, they represent the maximum likelihood
Gaussian estimates that would be obtained with unlimited train-
ing data from the two classes. The optimal decision boundary,
Btrue, is the value of the abscissa at the point where the true den-
sities cross over. This is indicated by the vertical dotted line.
The estimated decision boundary, Bestimated, occurs at the ab-
scissa where the Gaussian estimates of the densities cross over
and is indicated by the vertical solid line. The gray-shaded re-
gion represents data that will be misclassified due to the differ-
ence between Btrue and Bestimated. This error is the direct result
of erroneous modeling of Rayleigh distributions as Gaussian.

Figure 3(b) shows the two-dimensional likelihood projection
of data from the two classes. We note that the curve represents

a one-dimensional manifold in the two-dimensional likelihood
space. This is expected because the projection is a determin-
istic dimensionality increasing transform (Conlon 1993). The
estimated Bayesian classifier in the data space is represented by
the solid line of slope 1.0. The star on the curve represents the
optimal decision threshold, Btrue in the data space. Thus the op-
timal classifier in the likelihood space can be any line or curve
that passes through the point marked by the star, for example,
the linear discriminant represented by the dotted diagonal line.

As explained in Section 2.2, classification with a linear de-
terminant other than the solid line in the figure is equivalent to
classification with a transformed version of the class distribu-
tions in the data space. For example, the optimal discriminant
represented by the dotted line in Figure 3(b) is equivalent to
classification with the scaled Gaussians shown in Figure 3(c).
As a result of the scaling, the Gaussians now cross over at the
optimal classification boundary.

The optimal classification boundary may also be obtained
by modeling the classes with a different set of Gaussians in
the first place, by discriminatively training them to optimize
classification. Several methods for such discriminative train-
ing of class distributions have been proposed in the literature
(e.g., Normandin, Cardin, and De Mori, 1994). Figure 3(c) also
shows an example of such discriminative Gaussian estimates
for the Rayleigh class distributions of Figure 3(a). They too
cross over at the optimal classification boundary. The princi-
ple of classification in likelihood spaces remains valid, how-
ever. Even when class distributions are discriminatively trained,
the performance of the optimal classifier in the likelihood space
derived from these distributions is only lower bounded by that
of the Bayesian classifier based on the distributions in the data
space. Also, regardless of the manner in which class distribu-
tions are trained, the form of the classification boundaries in
the data space is constrained by the model chosen for the dis-
tributions. For instance, if class distributions are modeled as
Gaussian, then the resultant Bayesian classifier is constrained
to be a quadratic discriminant. On the other hand, the data-
space discriminants corresponding to a discriminant in like-

(a) (b) (c)

Figure 3. Synthetic Two-Class Example Illustrating Why It May Be Possible to Obtain Improved Classification Performance in Likelihood Spaces.
(a) The true densities of the classes are Rayleigh (shown by the dotted curves) but are inaccurately modeled as Gaussians (solid curves). The gray
region between the true decision boundary Btrue and the estimated decision boundary Bestimated represents data that will be misclassified. (b) The
scatter of likelihood space representations of the data from the two classes. The gray and black portions of the figure represent data from the two
classes. The solid line represents Bestimated , and the star represents the true optimal decision threshold Btrue. The dotted line passing through the
star represents an optimal linear discriminant. (c) The dark solid curves represent the scaled versions of the Gaussians in (a) that are implicit in
the optimal (dotted) linear discriminant in (b). They intersect at the optimal classification boundary. The lighter dotted curves represent examples of
discriminatively estimated Gaussian distributions for the classes. They too intersect at the optimal classification boundary.

TECHNOMETRICS, ???? 0, VOL. 0, NO. 0



TECH asa v.2004/01/14 Prn:14/05/2004; 8:47 F:tech02100r.tex; (R) p. 6

6 RITA SINGH AND BHIKSHA RAJ

1 60

2 61

3 62

4 63

5 64

6 65

7 66

8 67

9 68

10 69

11 70

12 71

13 72

14 73

15 74

16 75

17 76

18 77

19 78

20 79

21 80

22 81

23 82

24 83

25 84

26 85

27 86

28 87

29 88

30 89

31 90

32 91

33 92

34 93

35 94

36 95

37 96

38 97

39 98

40 99

41 100

42 101

43 102

44 103

45 104

46 105

47 106

48 107

49 108

50 109

51 110

52 111

53 112

54 113

55 114

56 115

57 116

58 117

59 118

lihood space can be significantly more complex than those
obtainable with the Bayesian classifier in data space. For ex-
ample, when class distributions are Gaussian, even a simple
quadratic discriminant in the likelihood space with no cross
terms corresponds to a fourth-order polynomial discriminant in
the data space. It is therefore plausible that a superior classi-
fier may be obtained in the likelihood space even when class
distributions are discriminatively trained.

It must be clear from the discussion thus far that when clas-
sifiers in the likelihood space are simple linear or quadratic dis-
criminants, improved classification in the likelihood space is
largely a consequence of compensating for classification errors
in regions adjoining the classification boundaries in the data
space. Such discriminants cannot be expected to compensate
for classification errors that occur for other reasons. Such er-
rors, for example, can occur when the distributions model-
ing the classes in the original space miss entire regions of
the optimal decision regions (given by the true class distribu-
tions) altogether.

Classifiers that are more complex than simple linear or
quadratic discriminants may also be defined in the likelihood
space. For instance, one may define distribution-based classi-
fiers within the likelihood space. Such classifiers may result
in better classification than linear or quadratic discriminants.
In general, however, as the decision boundaries in the data space
approach the optimal boundaries, the gains to be expected from
classifying in likelihood spaces quickly diminish. Also, in this
situation the decision boundaries in the data space onto which
the optimal discriminant in the likelihood space maps approach
the decision boundaries given by the class densities themselves.

It must be recognized that we are guaranteed only that the
best classifier in the likelihood space performs at least as well
as the best Bayesian classifier in the data space based on the
projecting distributions. There is no guarantee that it performs
at least as well as the best classifier of any kind in the data space.
In fact, there is no assurance that the best possible classifier in
the likelihood space can perform comparably to the best possi-
ble classifier in the data space, unless the likelihood projection
is invertible.

2.4 Localization of Data Vectors by Their
Likelihood Projections

The likelihood projection would be invertible if it could be
guaranteed that no more than a single data vector projects onto
any likelihood vector. But likelihood projections are generally
not invertible, as shown in Figure 4, and the likelihood projec-
tion of a data vector cannot be guaranteed to uniquely identify
the data vector. Nevertheless, we do note that as the number
of class distributions in the likelihood projection increases, the
likelihood projection of a vector increasingly localizes it in the
data space. Consider a likelihood vector YX with components
Y(1)

X ,Y(2)
X , . . . ,Y(N)

X , that has been obtained by the projection
of a vector X. Let Ui

X represent the region in the data space
such that

exp
(
Y(i)

X

) ≤ P̃X(X : X ∈ Ui
X|Ci) ≤ exp

(
Y(i)

X

) + ε, (15)

where ε is an infinitesimally small number. By this definition,
Ui

X is the set of all data vectors that have a class-conditional

probability for Ci lying in the interval [exp(Y(i)
X ), exp(Y(i)

X )+ ε].
The size of Ui

X is the volume of the data space that lies within it.

Knowledge of Y(i)
X localizes X to lie in Ui

X . Further, knowledge
of Y(i)

X and Y( j)
X localizes X to the region Ui

X ∩ Uj
X . Thus, know-

ing the first j components of the likelihood vector localizes X to
lie in the region Vj

X defined by

Vj
X =

j⋂
i=1

Ui
X. (16)

It is easy to see that

V1
X ⊇ V2

X ⊇ · · · ⊇ VN
X ; (17)

that is, Vj
X is a decreasing series. Knowledge of the likeli-

hood vector YX is equivalent to knowing that X lies within VN
X ;

that is, YX contains the positional information that X lies in VN
X .

We note that VN
X is guaranteed not to be larger than the small-

est Ui
X , whereas it can be much smaller. We also note that

VN
X may be empty for many likelihood vectors and is nonempty

only if the likelihood vector has been generated from any data
vector. Conversely, for any likelihood vector YX that has been

(a) (b)

Figure 4. Illustration of the Invertibility of Likelihoods. The two Gaussians transform the data point Xa into the pair of density values
G1(Xa) and G2(Xa). In (a), the two Gaussians have different means. The two vertical dotted lines show the other values of X that result in density
values G1(Xa) and G2(Xa). It is clear that there is only one point that results in both G1(Xa) and G2(Xa) . Thus G1(Xa) and G2(Xa) uniquely iden-
tify Xa. In (b), the means of the two Gaussians are identical. In this case there is a second value of X that has density values G1(Xa) and G2(Xa),
and the mapping from X values to density values cannot be inverted.
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generated thorough the projection of a data vector X, VN
X can-

not be empty and must contain at least one data point, namely
X itself.

3. EXPERIMENTS

In the discussion so far, we have only discussed the exis-
tence of classifiers in the likelihood space that can classify no
worse than a Bayesian classifier in the data space. But the mere
existence of such classifiers provides no assurance that they
can in fact be estimated, or that the actual classification per-
formance of the classifiers estimated in likelihood space will
always be superior to that of the Bayesian classifier. Estimation
of classifiers is always difficult, and the final performance of
any estimated classifier is governed by many factors, includ-
ing the estimation procedure used, size of the training data,
and so on. We hypothesize that since decision regions of the
Bayesian classifier are mapped onto convex regions of the like-
lihood space, it would be simpler to estimate better classifiers
in the likelihood space. This hypothesis must be experimentally
substantiated, and we do so in this section with experiments
on the Brodatz texture database (Brodatz 1966) and the TIMIT
speech database (Zue, Seneff, and Glass 1990).

3.1 Classification of Visual Textures

Visual textures are images characterized by some degree of
homogeneity that typically contain repeated structures, often
with some random variation. Thus images of the surface of
water, fabrics, cloudy skies, and even wallpaper are all con-
sidered textures. In 1966 a photographer named Phil Brodatz
published a set of 112 textures, including pictures of walls,
matted surfaces, and so on, in a book titled Textures: A Photo-
graphic Album for Artists and Designers. The “Brodatz texture
database” has been derived by extracting subimages from 8-bit
512×512 pixel digitization of these images (e.g., Picard, Kabir,
and Liu 1993). Nine nonoverlapping 128×128 pixel subimages
have been extracted from each of the textures, resulting in a set
of 1,008 images. Figure 5 shows a few examples of Brodatz’s
textures.

We evaluated classification in likelihood spaces on this data-
base. For our experiments, the 9 subimages for each texture
were separated into a training set of 8 images and 1 test image,
resulting in an overall training set of 996 images and a test set of
112 images. The partitioning into train and test sets was done in
9 different ways in a jackknife procedure, effectively increasing

Figure 5. Examples of Brodatz Textures.

the test set size to 1,008 images. The aim of all experiments was
to identify the textures from which the test images were drawn.

For the experiments, each 128 × 128 pixel image was para-
meterized into a set of 4,096 64-dimensional vectors as follows.
The image was segmented into squares of 8 × 8 pixels, where
adjacent squares overlapped by 6 pixels. The edges of the image
were padded with zero-valued pixels such that every pixel in
the image was included in exactly 16 squares. A 64-component
discrete cosine transform (DCT) was computed for each square
(Vasconcelos and Carneiro 2002). The 64-dimensional DCT
vectors for any image were assumed to be independent and
identically distributed. The distributions of the DCT vectors for
the textures were assumed to be mixtures of Gaussians with
diagonal covariance matrices. The number of Gaussian compo-
nents in the mixtures represented a parameter that controlled
the degree to which the estimated density fit the data. Mixtures
with 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024, and 4,096
Gaussians were trained from the 32,768 vectors derived from
the 996 training images for each texture. In each experiment, the
distributions for all textures had the same number of Gaussian
components. The a priori probabilities of all textures were as-
sumed to be identical.

Classification in the data space was performed using the joint
log-likelihood of all 4,096 feature vectors obtained from the test
image. Joint log-likelihoods of the classes were also used to
project test images into likelihood space. Although the num-
ber of classes (112) is greater than the number of components
in the feature vector (64), the projection into likelihood space
nevertheless constituted a dimensionality-reducing transform,
because the entire set of 4,096 64-dimensional vectors for each
image was projected onto a single 112-dimensional likelihood
vector. For classification in likelihood space, linear discrim-
inants were trained to classify between each pair of classes
using a least squares procedure (Duda et al. 2000). Because
there were 8 training images from each texture, only 16 like-
lihood vectors were available to train any linear discriminant.
A total of 6,216 linear discriminants were trained. Classifica-
tion was performed using the voting mechanism based on ex-
haustive pairwise classification suggested by Friedman (1996),
where pairwise classification was performed between all pairs
of classes. The class that was selected most frequently by the
pairwise classifiers was chosen to be the output of the multi-
class classifier.

Figure 6 shows the combined results from the 9 jackknife
experiments. The dotted line shows the classification accura-
cies obtained in the data space as a function of the number of
Gaussian components in the class distributions, and the solid
line shows classification accuracies obtained in the correspond-
ing likelihood space. In almost all cases, the classification
accuracy obtained in the likelihood space is higher than that
in the data space. In the data space, the best classification result
is obtained with mixtures of 128 Gaussians. In the likelihood
space, the best classification accuracy is obtained when the pro-
jecting densities are mixtures of 64 Gaussians. For mixtures of
more than 16 Gaussians and fewer than 512 Gaussians, how-
ever, the difference between the performance obtained in the
data and likelihood spaces is statistically insignificant as mea-
sured using McNemar’s test (Siegel 1956). On the other hand,
the differences between the two at the extremes of the curves in
the figure are significant to the .05 level or better.
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Figure 6. Classification Accuracy on Brodatz Textures in the Space of
the Original 64-Dimensional DCT Vectors and in the Likelihood Space.
The X-axis represents the log of the number of Gaussians in the mix-
ture Gaussian distributions used to model class distributions in the data
space. The dotted line represents classification accuracy obtained by
a Bayesian classifier in the data space, and the solid line represents
classification accuracy in the corresponding likelihood space.

These results are as expected from our discussion in Sec-
tion 2. When the projecting class distributions are suboptimal
for classification, large gains are obtained by classifying in like-
lihood space. The gains diminish as the projecting distributions
become more optimal. In some cases, classification in likeli-
hood space is in fact less accurate than that in the data space.
This is not unexpected either, because only 16 training exam-
ples were available to estimate each pairwise classifier in the
likelihood space, and hence the estimated classifiers did not
generalize to the test data better than the Bayesian classifier in
data space. In general, however, the classification performance
in likelihood space is observed to be much more robust to vari-
ations in the class distributions than the data-space Bayesian
classifier based on those distributions.

Although Figure 6 demonstrates only the robustness of clas-
sification in likelihood space to the number of Gaussians in the
mixture Gaussian class distributions, it was also found to be
robust to variations in the estimates of the distributions them-
selves. In our experiments, the expectation maximization (EM)
algorithm used to train the mixture Gaussians was observed to
be rather sensitive to the initial settings for the parameters, es-
pecially for mixtures with 512 or more components. To estimate
the distributions reliably, we estimated each mixture Gaussian
density several times, by restarting the EM algorithm with dif-
ferent initial values. The results in Figure 6 were obtained with
distributions that resulted in the highest likelihood for the train-
ing data.

Table 1 gives classification accuracies obtained with two dif-
ferent sets of mixture Gaussian densities on one of the nine
train/test partitions of the Brodatz textures. Because the test set
here consisted of only 112 images, the table reports the actual
number of images correctly classified, rather than the percent-
age of accuracy. The mixture densities in the first set, labelled
“Gaussian mixture 1” in the table, were poorly trained and re-
sulted in poor classification in the data space. The second set
of densities, labelled “Gaussian mixture 2,” were well trained

Table 1. Number of Brodatz Textures Correctly Classified Using Mixture
Gaussian Densities With 512, 1,024, and 2,048 Mixture Components

Number of Gaussians in mixture 512 1,024 2,048

Gaussian mixture 1 Baseline classification 91 70 54
Classification in likelihood space 104 106 102

Gaussian mixture 2 Baseline classification 101 100 98
Classification in likelihood space 103 103 103

NOTE: The test set has 112 texture images in all. The first two rows, labelled as Gaussian
mixture 1, show classification results obtained with poorly trained mixture Gaussian densities
that do not generalize well to the test data. The third and fourth rows, labelled as Gaussian
mixture 2, show classification results obtained with well-trained densities that generalize well to
the test data.

and resulted in significantly better classification than the first
set. In both cases, better classification was achieved in the like-
lihood space. More importantly, the classification performance
in likelihood space was almost identical for both sets of project-
ing distributions, the difference being statistically insignificant.
Classification in likelihood space thus appears to compensate
for the poor generalizability of the distributions in Gaussian
mixture 1.

3.2 Classification of Speech Sounds

We conducted experiments using the TIMIT speech data-
base (Zue et al. 1990) provided by the Linguistic Data Con-
sortium (LDC). TIMIT is a standard database used by speech
researchers for the development of signal processing and clas-
sification algorithms. The TIMIT corpus consists of 5.38 hours
of individually recorded spoken utterances, of which 3.94 hours
have been designated as training data and 1.44 hours as test
data. In this corpus, the sounds in American English have been
categorized into 61 phonemes (or sound units) by linguistic ex-
perts. Phoneme boundaries have been manually marked and
provided with signals. The classes considered in our experi-
ments were obtained by grouping the 61 phonemes into 10 sets,
as listed in Table 2. Note that although the names given to the
sets are coincident with those provided with the TIMIT cor-
pus, the composition is not the one specified in the corpus. The
names here are simply indicative of broad phonetic characteris-
tics of the elements of the sets.

For our experiments, each speech signal in the TIMIT cor-
pus was first transformed into a sequence of feature vectors.
For this, the signal was divided into segments, or frames,
of 20 ms, where adjacent frames overlapped by 10 ms. Thus
each second of speech yielded 100 frames. From each frame,
a 40-dimensional Mel-frequency log-spectral vector was de-
rived (Davis and Mermelstein 1980). Each vector was further

Table 2. Listing of Phoneme Groupings to Generate Classes

Set name Phoneme composition

Affricates /jh/ /ch/
Back /ih/ /eh/ /ae/ /aa/ /ah/ /ao/
Closures /kcl/ /tcl/ /pcl/ /gcl/ /pcl/ /bcl/ /pau/ /epi/ /h#/
Diphthongs /iy/ /ey/ /ay/ /aw/ /oy/
Fricatives /s/ /sh/ /z/ /zh/ /f/ /th/ /v/ /dh/
Nasals /m/ /n/ /ng/ /em/ /en/ /eng/ /nx/
Round /ow/ /uw/ /ux/ /uh/
Schwa /ix/ /ax/ /axr/ /ax-h/ /er/
Semivowels /l/ /r/ /w/ /y/ /hh/ /hv/ /el/
Stops /b/ /d/ /g/ /p/ /t/ /k/ /dx/ /q/

NOTE: Each entity enclosed in “/ · /” represents a phoneme.
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augmented by a 40-dimensional difference vector, computed as
the difference of the log-spectral vectors of the succeeding and
preceding frame, and a 40-dimensional double difference vec-
tor, computed as the difference between the difference vectors
of the succeeding and preceding frame. The final vector repre-
senting any frame of speech was thus 120-dimensional. Note
that Mel-frequency log-spectral representations derived in this
manner, or their linear transformations, have been empirically
determined to be highly effective for classifying speech (Davis
and Mermelstein 1980). There were 142,910 phonetic segments
composed of approximately 1.42 million vectors available for
training the 10 classes and 51,681 phonetic segments composed
of approximately .5 million vectors in the test set.

The goal of the experiments was to classify each pho-
netic segment in the test data into one of the 10 classes (and
not merely to classify individual frames). The joint evidence
of all the frames in a segment was used to classify it. For
the purpose of this experiment, log-spectral vectors within
any segment were assumed to be independent and identically
distributed. The probability distribution of the log-spectral vec-
tors belonging to each sound class was modeled by a mixture
of Gaussians. Mixture Gaussian distributions are widely used
to model the distributions of Mel-frequency log-spectra and
their linear derivatives for the purpose of classifying speech
sounds (Huang, Acero, and Hon 2001). Mixtures with 1, 2, 4,
8, 16, 32, 64, 128, 256, 512, 1,024, 2,048, 4,096, and 8,192
Gaussian components were computed for each of the classes,
using the EM algorithm. All Gaussians were assumed to have
diagonal covariance matrices.

Classification in the data space was performed using the joint
log-likelihood of all frames within a segment. The normalized
joint log-likelihoods of the classes were also used to project
speech segments into likelihood space. The normalization was
performed by dividing the joint log-likelihood of the frames in
a segment by the number of frames in the segment. This was
necessary, because different segments have different numbers
of frames. Each segment was thus represented by a single vector
in likelihood space.

3.2.1 Discriminant-Based Classifiers in Likelihood Space.
To perform discriminant-based classification, linear discrimi-
nants were trained to classify between each pair of classes using
a least squares procedure (Duda et al. 2000). A total of 45 linear
discriminants were trained. Classification was performed using
the voting mechanism based on exhaustive pairwise classifica-
tion as suggested by Friedman (1996).

Figure 7(a) shows classification error rates obtained on
120-dimensional log-spectral feature vectors in the data and
likelihood spaces. Classification in likelihood space is observed
to be superior to classification in data space in all cases. The dif-
ference between the two is particularly large when the number
of Gaussians in the projecting class distributions is either very
small or very large. The best performance is obtained with mix-
tures of 1,024 Gaussians. Even here, classification in likelihood
space is significantly superior to classification in data space.

Although the best performance is obtained with 1,024 com-
ponent Gaussian mixture class densities, the fact that classi-
fication performance is better in the likelihood space, even
with simple linear discriminants, indicates that the estimated
Gaussian mixtures do not optimally model class densities
in the 120-dimensional space. We therefore projected the
120-dimensional vectors down into a 9-dimensional subspace
using linear discriminant analysis (Duda et al. 2000). Linear
discriminant analysis identifies subspaces within which the
classes are most separated, and the lower dimensionality of the
space makes it simpler to estimate class distributions. Gaussian
mixture class distributions were trained for the 9-dimensional
vectors and used both for Bayesian classification and for pro-
jection of segments into likelihood space.

Figure 7(b) shows classification performance on the
9-dimensional vectors. We observe that classification perfor-
mance on the 9-dimensional data is superior to that on the
120-dimensional data when the projecting Gaussian mixtures
have a small number of Gaussian components. The best per-
formance is obtained with mixtures of 128 Gaussians. Again,
classification in likelihood space is consistently superior to
classification in the data space. Surprisingly, as the number of

(a) (b)

Figure 7. Classification Error on the TIMIT Data. (a) Classification error in the space of 120-dimensional log-spectral vectors, and the likelihood
spaces derived from it. (b) Classification error in the space of 9-dimensional projections of log-spectral vectors, and the likelihood spaces derived
from it. In both panels the X-axis represents the log of the number of Gaussians in the mixture Gaussian distributions used to model class
distributions in the data space. The dotted lines represent classification error rates obtained by a Bayesian classifier in the data space, and the solid
lines represent classification error rates in the corresponding likelihood space.
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Gaussians in the class distributions increases, classification in
the 120-dimensional space is superior to classification in the
9-dimensional space. The best segment level classification per-
formance is obtained for the 120-dimensional features, with
mixtures of 1,024 Gaussians. Although we do not speculate on
the reason for these results, we point out that the lowest overall
classification error (28.2%) is obtained with likelihood projec-
tions of the 120-dimensional features.

3.2.2 Distribution-Based Classifiers in Likelihood Space.
A major distinction between distribution-based and discrimi-
nant-based classifiers lies in the fact that whereas class distribu-
tions in distribution-based classifiers can be trained
independently of one another, discriminant-based classifiers
are discriminatively trained; that is, they are trained to ex-
plicitly optimize some measure of the expected classification
error and thus must consider all classes. Thus, whereas the
class distributions for the classifiers in our experiments were
not discriminatively trained, the classifiers in the likelihood
space were discriminatively trained, and thereby optimized for
classification.

A question that arises naturally is whether the observed
improved classification in likelihood space is simply a conse-
quence of the discriminative training of the classifiers in like-
lihood space, or whether the projection into likelihood space
makes it simpler to estimate good classifiers. To investigate
this, we evaluated the performance of distribution-based clas-
sifiers in the likelihood space. The experiments were conducted
on likelihood projections of the 120-dimensional log-spectral
feature vectors. In a preliminary diagonalization step, the like-
lihood vectors were rotated by multiplication with the ma-
trix of eigenvectors of the overall covariance of the training
set. Mixture Gaussian class distributions were trained from the
(rotated) likelihood vectors for each of the classes. In every
experiment, all class distributions had an identical number of
Gaussians. Likelihood-space distributions were not discrimina-
tively trained. As a result, there was no discriminatively trained
component in the classifier.

The results of the experiment are given in Table 3. The
first row presents classification errors obtained in the like-
lihood space, when the projecting class densities were sin-
gle Gaussians. The second row presents classification errors
when the projecting densities were the ones that resulted in
the best classification in the data space, that is, mixtures of
1,024 Gaussians. The first two columns of both rows of the ta-
ble present the classification errors obtained in the data space
and with linear discriminants in the likelihood space. Sub-
sequent columns provide classification errors obtained with
distribution-based classifiers in the likelihood space.

We observe that classification with distribution-based classi-
fiers in the likelihood space did in fact improve significantly on

classification in the data space itself. In fact, when projecting
class distributions (in the data space) were single Gaussians,
the best distribution-based classifier was observed to outper-
form the discriminant-based classifier. Even when the project-
ing class distributions were mixtures of 1,024 Gaussians, the
best distribution-based classifier in the likelihood space per-
formed significantly better than classification in data space,
although the discriminant-based classifier was better still. This
suggests that there is inherent merit to the mapping performed
by likelihood projections themselves that enables us to improve
on the classification performance obtained in the data space.
In a follow-up experiment, it was determined that classification
in a second likelihood space, obtained using the class densities
in the likelihood space as a projecting distributions, did not re-
sult in additional improvements; that is, there is no advantage
to recursively projecting data into newer likelihood spaces.

4. DISCUSSION AND CONCLUSIONS

As is evident from the experiments reported in Section 3,
classification is likelihood space is very robust to errors in the
modeling and estimation of class distributions in the data space.
Variations of classification performance with changes in class
distributions are much smaller in the likelihood space than in
the data space. The advantages to be derived from this fact are
clear. It may often be simpler to estimate a relatively crude
set of class distributions and perform the final classification
in the likelihood space than to search for the optimal set of
class distributions. In many situations, the computational re-
quirements of the classifier are important. The combined com-
putational requirement of a likelihood projection using simple
models for class distributions, followed by a simple classifier in
likelihood space, may be significantly lower than that of a more
complicated classifier in data space, while providing the same
performance.

For the most part, in our experiments we have restricted the
explored classifiers to linear discriminants, because our goal
was only to demonstrate that better classification is possible
in likelihood spaces, not to obtain the best classifier for the
data considered. One advantage of linear discriminants is that
the optimal Bayesian classifier in the data space is also a lin-
ear discriminant in the likelihood space. Thus any search for
an optimal linear discriminant in the likelihood space will also
consider this classifier. This ensures that the classifier in the
likelihood space does not perform worse than the one in the
data space, at least on the training data. However, better classi-
fication performance may be possible through the use of other
discriminant functions, such as quadratic discriminants (Gupta,
Riley, and White 1986) or logistic regressors (Darlington 1990).

Table 3. Percent Classification Errors Obtained With Distribution-Based Classifiers in Likelihood Spaces

Baseline Discriminant 1 Gaussian 2 Gaussians 4 Gaussians 8 Gaussians 16 Gaussians 32 Gaussians 64 Gaussians

1 Gaussian 48.2 38.0 41.3 40.8 39.1 37.7 36.9 35.7 35.5
1,024 Gaussians 30.1 28.2 33.7 31.2 30.0 29.1 29.1 28.8 29.1

NOTE: The two rows show classification errors obtained when projecting class distributions are single Gaussians, and mixtures of 1,024 Gaussians. The first column shows the baseline Bayesian
classification error in the data space. The second column shows the percent error obtained with a discriminant-based classifier in the likelihood space. The remaining columns show errors obtained
with distribution-based classifiers in the likelihood space. The numbers in the heading rows of the columns indicate the number of Gaussian components in the mixture Gaussian likelihood-space
class distributions.
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Figure 8. Scatter of Density Values of Data Shown in Figure 1, Mea-
sured Using the Densities of Two Classes. This must be compared with
the scatter of log-likelihood values shown in Figure 1.

Also, discriminant-based multiclass classification has been per-
formed by the combination of binary classifiers using the voting
mechanism of Friedman (1996). Several other methods have
been proposed, including the use of cyclic redundancy codes
(Dietterich and Bakiri 1995) or pairwise coupling (Hastie and
Tibshirani 1998), which might result in better performance.

In this article we have considered only log-likelihoods as pro-
jections. However, much of the discussion herein would also
apply if we were to use the logarithm of estimated a posteriori
class probabilities as projections. This is because likelihoods
and a posteriori class probabilities are related—the former are
just a scaled version of the latter. As mentioned in Section 1,
a posteriori probability-based projections have been used ear-
lier in speech recognition systems and have been found to result
in greatly improved recognition performance, as compared with
recognition using the data vectors (Hermansky et al. 2000).

The logarithm that we have used in the likelihood projec-
tions is an important component of these projections. Most data
points have very low likelihoods for at least one of the classes.
Consequently, any density-based projection that does not in-
corporate the logarithm projects most of the data points into
regions that are very close to one of the axes, making it difficult
to obtain simple discriminants for the data. The logarithm func-
tion tends to expand this region out, simplifying the problem.
Figure 8 illustrates this pictorially. Other functions with similar
properties could have also been used instead of the logarithm.

Although distribution-based classifiers in the likelihood
space are effective, they may be difficult to estimate when the
number of classes in the likelihood projection, and thereby the
dimensionality of the likelihood space, is greater than the di-
mensionality of the data space. In such situations, data vectors
are projected onto manifolds of the same dimensionality as the
data space within the likelihood space (Conlon 1993). Figure 3
shows such an example, where one-dimensional data are pro-
jected onto a one-dimensional manifold in two-dimensional
space. In such situations, the likelihood space is largely empty.
This makes using continuous densities difficult, because they
would also attempt to account for data in the empty regions of

the space. To avoid this problem, it may be advantageous to
unwrap the manifold into a lower-dimensional Euclidean space
using such methods as charting (Brand 2002), before classifica-
tion. This hypothesis remains to be evaluated.

Finally, we note from the TIMIT experiments in Sec-
tion 3.2.2 that for segment-level classification, distribution-
based classifiers in the likelihood space derived from the
120-dimensional log-spectral vectors are far more effective
than distribution-based classifiers in the 9-dimensional space
derived by linear discriminant analysis of the 120-dimensional
space. Both linear discriminant analysis and likelihood projec-
tions project the 120-dimensional data into a lower-dimensional
space; however, the likelihood projection has the added ad-
vantage of gathering class data from potentially disconnected
regions into convex regions. It is not clear whether the superior
performance obtained with likelihood projections is due en-
tirely to this reason, or whether this result will hold up on other
data. Further experiments are needed to resolve this question.
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