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Abstract

We present a novel method for automatic fingerspelling
recognition which is able to discriminate complex hand
configurations with high amounts of finger occlusions. Such
a scenario, while common in most fingerspelling alphabets,
presents a challenge for vision methods due to the low in-
tensity variation along important shape edges in the hand
image. Our approach is based on a simple and cheap mod-
ification of the capture setup: a multi-flash camera is used
with flashes strategically positioned to cast shadows along
depth discontinuities in the scene, allowing efficient and
accurate hand shape extraction. We then use a shift and
scale invariant shape descriptor for fingerspelling recogni-
tion, demonstrating great improvement over methods that
rely on features acquired by traditional edge detection and
segmentation algorithms.

1. Introduction
Sign language is the primary communication mode used by
most deaf people. It consists of two major components: 1)
word level sign vocabulary, where gestures are used to com-
municate the most common words and 2) fingerspelling,
where the fingers on a single hand are used to spell out more
obscure words and proper nouns, letter by letter. Facial ex-
pressions can also be employed to distinguish statements,
questions and directives.

Over the past decade, great effort has been made to
develop systems capable of translating sign language into
speech or text, aiming to facilitate the interaction between
deaf and hearing people. Extensive research has been done
in both word level and fingerspelling components.

Previous approaches to word level sign recognition rely
heavily on statistical models such as Hidden Markov Mod-
els (HMMs) [17, 18, 4]. Excellent recognition rates were
obtained for small word lexicons, but scalability is still an
issue for glove-free sign recognition. For fingerspelling
recognition, most successful approaches are based on in-
strumented gloves, which provide information about finger
positions. Lamar and Bhuiyant [8] achieved letter recogni-

Figure 1: (a) Letter ’R’ in ASL alphabet. (b) Canny edges.
Note that important internal edges are missing, while edges
due to wrinkles and nails confound scene structure. (c)
Depth edges obtained with our multi-flash technique.

tion rates ranging from 70% to 93%, using colored gloves
and neural networks. More recently, Rebollar et al. [14]
used a more sophisticated glove to classify 21 out of 26
letters with 100% accuracy. The worst case, letter ’U’,
achieved 78% accuracy.

In general, non-intrusive vision-based methods, while
useful for recognizing a small subset of convenient hand
configurations [7, 1], are limited to discriminate configura-
tions with high amounts of finger occlusions - a common
scenario in most fingerspelling alphabets. In such cases,
traditional edge detectors or segmentation algorithms fail to
detect important internal edges along the hand shape (due
to the low intensity variation in skin-color), while keeping
edges due to nails and wrinkles, which may confound scene
structure and the recognition process (see Figure 1b). Also,
some signs might look very similar to each other, with small
differences on finger positions, thus posing a problem for
appearance-based approaches [7].

We address this problem by using a technique we have
recently proposed for conveying shape in non-photorealistic
rendering [13]. Our approach is based on a simple and
cheap modification of the capture setup: a multi-flash cam-
era is used with flashes strategically positioned to cast shad-
ows along depth discontinuities in the scene, allowing effi-
cient and accurate hand shape extraction, as shown in Fig-
ure 1c. Our method was also extended to handle dynamic
scenes, being suitable for real-time processing.

We show that depth discontinuities (aka depth edges)

1



Figure 2: Imaging geometry. Shadows of the gray object are
created along the epipolar ray. We ensure that depth edges
of all orientations create shadow in at least one image while
the same shadowed points are lit in some other image.

may be used as a signature to reliably discriminate among
complex hand configurations in the ASL alphabet, which
would not be possible with current glove-free vision meth-
ods. For classification, we have used a shape descriptor sim-
ilar in spirit to shape context matching [2], which is invari-
ant with respect to image translation and scaling.

The remaining of this paper is organized as follows: in
Section 2 we describe our multi-flash technique for extrac-
tion of depth edges. Section 3 covers our shape descriptor
and classification method. We report our experimental re-
sults in Section 4 and discuss issues and related work of
our tecnique in Section 5. Section 6 describes our imple-
mentation details. Finally, conclusions and future work are
addressed in Section 7.

2. Multi-flash Imaging
The technique for detecting shape features in images was
recently described in [13], for non-photorealistic rendering.
For completeness we review the basic idea here.

The method is motivated by the observation that when
a flashbulb (close to the camera) illuminates a scene dur-
ing image capture, thin slivers of cast shadow are created
at depth discontinuities. Moreover, the position of the shad-
ows is determined by the relative position of the camera and
the flashbulb: when the flashbulb is on the right, the shad-
ows are create on the left, and so on. Thus, if we can shoot
a sequence of images in which different light sources illu-
minate the subject from various positions, we can use the
shadows in each image to assemble a depth edge map using
the shadow images.

2.1 Imaging Geometry

In order to capture the intuitive notion of how the position
of the cast shadows are dependent on the relative position
of the camera and light source, we examine the imaging ge-
ometry, illustrated in Figure 2. Adopting a pinhole camera
model, the projection of the point light source at Pk is at
pixel ek on the imaging sensor. We call this image of the
light source the light epipole. The images of (the infinite set

Figure 3: (a) Our prototype to capture depth discontinuities.
(b) Setup for static scenes. (c) Setup for dynamic scenes.

of) light rays originating at Pk are in turn called the epipolar
rays, originating at ek. We use the terms depth discontinu-
ities and depth edges interchangeably here.

There are two simple observations that can be made
about cast shadows:

• A shadow of a depth edge pixel is constrained to lie
along the epipolar ray passing through that pixel.

• When a shadow is induced at a depth discontinuity,
the shadow and the light epipole will be at opposite sides of
the depth edge.

These two observations suggest that if we can detect
shadow regions in an image, then depth edges can be lo-
calized by traversing the epipolar rays starting at the light
epipole and identifying the points in the image where the
shadows are first encountered.

2.2 Removing and Detecting Shadows

Our approach for reliably removing and detecting shadows
in the images is to position lights so that every point in the
scene that is shadowed in some image is also captured with-
out being shadowed in at least one other image. This can
be achieved by placing lights strategically so that for every
light, there is another on the opposite side of the camera to
ensure that all depth edges are illuminated from two sides.
Also, by placing the lights close to the camera, we minimize
changes across images due to effects other than shadows.

To detect shadows in each image, we first compute a
shadow-free image, which can be approximated with the
MAX composite image, which is an image assembled by
choosing at each pixel the maximum intensity value among
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Figure 4: Detecting depth edges. (a) Hand image. (b) Ratio
image (right flash). (c) Detected edges.

the image set. The shadow-free image is then compared
with the individual shadowed images. In particular, for each
shadowed image, we compute the ratio image by perform-
ing a pixel-wise division of the intensity of the shadowed
image by the intensity of the MAX image. The ratio im-
age is close to 1 at pixels that are not shadowed, and close
to 0 at pixels that are shadowed. This serves to accentuate
the shadows and remove intensity transitions due to surface
material changes.

2.3 Algorithm

Codifying the ideas discussed we arrive at the following al-
gorithm. Note that the shadowed images Ik in the algorithm
below have ambient component I0 removed, where I0 is an
image taken with only ambient light and none of the n light
sources on.

Given n light sources positioned at P1, P2...Pn,
• Capture ambient image I0

• Capture n pictures Ik,0, k = 1..n with a light source
at Pk

• Compute Ik = Ik,0 − I0

• For all pixels x, Imax(x) = maxk(Ik(x)), k = 1..n

• For each image k,
	 Create a ratio image, Rk, where

Rk(x) = Ik(x)/Imax(x)
• For each image Rk

	 Traverse each epipolar ray from epipole ek

	 Find pixels y with step edges with negative transition
	 Mark the pixel y as a depth edge

We propose using the following configuration of light
sources: four flashes at left, right, top and bottom positions
(Figure 3). This setup makes the epipolar ray traversal effi-
cient. For the left-right pair, the ray traversal is along hor-
izontal scan lines and for the top-bottom pair, the traversal
is along vertical direction. Figure 4 illustrates depth edge
detection.

We have also extended our method to dynamic scenes.
As in the static case, we bypass the hard problem of finding

Figure 5: Shape descriptor used for classification.

the rich per-pixel motion representation and focus directly
on finding the discontinuities i.e., depth edges in motion.
We refer to [13] for a description of the algorithm. The
setup is similar to the static case with flashes around the
camera, but triggered in a rapid cyclic sequence, one flash
per frame (see Figure 3c).

3. Shape Descriptor and Classification
In this section, we present a shape descriptor for depth edges
which is invariant with respect to image translation and
scale. Our approach is simple and yet very effective. It has
been recently evaluated on a large dataset for content-based
image retrieval [11].

The basic idea is illustrated on Figure 5. For each edge
pixel of interest, we first analyze its context by counting the
number of other edge pixels in eight neighboring regions,
as shown in Figure 5(a). This gives us a vector of eight
elements Ci, 1 ≤ i ≤ 8 (Figure 5b). We then normalize
each element for scale invariance (Figure 5c) by denoting
Si = Ci/C, where C =

∑8
i Ci. Finally, thresholding is

applied (Figure 5d), so that each element encodes the infor-
mation of either high or low density of edge pixels along
a specific direction of the pixel of interest. The threshold
value 0.15 is obtained empirically.

Inspired by the concept of Local Binary Patterns [12] in
the field of texture analysis, the values ”0”s and ”1”s are
arranged counter-clockwise from a reference region (in our
example, the bottom-right region) to express an 8-bit binary
number. The correspondent decimal number d, 0 ≤ d ≤
255 is used to vote for the respective bin in the histogram
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Figure 6: (a) Letter ’K’ of ASL alphabet. (b),(c) Mean Shift
segmentation algorithm with different parameter settings.
(d) Output of our method.

shown in Figure 5e. A 256-dimensional feature vector is
then obtained by applying the above mentioned process to
all edge pixels in the depth edge image.

Since the descriptor is based on the relative position of
edge pixels, it is clear that it is invariant with respect to
image translation. Scale invariance is obtained in the nor-
malization step. The descriptor can also be made rota-
tion invariant [11]. However, this may not be appropriated
for some fingerspelling alphabets (e.g., Japanese Sign Lan-
guage), which might have letters that are rotated versions of
the others.

We have used a nearest-neighbor technique for classifi-
cation. Initially, supervised learning is carried out by ac-
quiring a set of images for each letter in the fingerspelling
alphabet. Depth edges are then extracted and the shape de-
scriptor technique is applied, so that a training database
comprised of labeled 256-dimensional feature vectors is
formed. Given a test image, features are extracted and the
class of the best match training sample according to Eu-
clidean distance is reported.

4. Experiments
We compared the hand contours obtained using our tech-
nique with the output of a traditional Canny edge detec-
tor [3] and a state-of-the-art Mean Shift segmentation al-
gorithm [5]. We refer to Figure 1 for a comparison of our
method with Canny edges. Changing parameter settings in
the Canny algorithm could reduce the amount of clutter, but
important edges along the hand shape would still not be de-
tected. Figure 6 shows a comparison with Mean Shift algo-
rithm. Clearly, due to the low intensity skin-color variation
in the inner hand region, the segmentation method is not
able to detect important boundaries along depth discontinu-
ities. Our method accurately locates depth edges and also
offers the advantage that no parameter settings are required.

We realized that depth edges are good features to dis-
criminate among signs of fingerspelling alphabets. Even
when the signs look very similar (e.g., letters ’E’,’S’ and
’O’ in ASL alphabet), the depth edge signature is quite dis-
criminative (see Figure 7). This poses an advantage over
vision methods that rely on appearance or edge-based rep-

Figure 7: From left to right: input image, Canny edges and
depth edges. Note that our method misses finger boundaries
due to the absence of depth discontinuities. This turns out
to be helpful to provide unique signatures for each letter.

resentations. Note that our method does not detect edges in
finger boundaries with no depth discontinuity. It turns out
that this is helpful to provide more unique signatures for
each letter.

In order to quantitatively evaluate the advantages of us-
ing depth edges as features for fingerspelling recognition,
we considered an experiment with the complete ASL alpha-
bet, except letters ’J’ and ’Z’, which require motion analysis
to be discriminated. We collected a small set of 72 images
using our multi-flash camera (three images per letter, taken
at different times, with resolution 640x480). The images
showed variations in scale, translation and slight variations
in rotation. The background was plain, with no clutter, since
our main objective is to show the importance of obtaining
clean edges in the interior of the hand. It is worth men-
tioning that textured but flat/smooth backgrounds would not
affect our method, but would make an edge detection ap-
proach (used for comparison) much more difficult.

For each image, features were extracted as described in
Sections 2 and 3. For sake of comparison, we also con-
sidered shape descriptors based on Canny edges. Recogni-
tion rate was obtained using a leave-one-out scheme in the
collected dataset. Our approach achieved 96% of correct
matches, compared with 88% when using Canny edges.

Rebollar [14] mentioned in his work that letters ’R’, ’U’
and ’V’ represented the worst cases, as their class distribu-
tions overlap significantly. Figure 8 shows these letters and
their corresponding depth edge signatures. Note that they
are easily discriminated with our technique. In the exper-
iment described above, the method based on Canny edges
fails to discriminate them.

Figure 9 shows a difficult case for traditional methods,
where our method also fails to discriminate between letters
’G’ and ’H’. In this particular case, we could make use of
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Figure 8: Letters ’R’, ’U’ and ’V’, the worst cases reported
in [14]. Note that the use of a depth edge signature can
easily discriminate them.

Figure 9: A difficult case for traditional algorithms (letters
’G’ and ’H’), where our method may also fail.

additional information, such as the intensity variation that
happens between the index and the middle finger in letter
’H’ and not ’G’.

All the images in our experiment were collected from the
same person. We plan to build a more complete database
with different signers. We believe that our method will bet-
ter scale in this case, due to the fact that texture edges (e.g.,
wrinkles, freckles, veins) vary from person to person and
are eliminated in our approach. Also, shape context de-
scriptors [2] have proven useful for handling hand shape
variation from different people. For cluttered scenes, our
method would also offer the advantage of eliminating all
texture edges, thus considerably reducing clutter (see Fig-
ure 10)

For segmented hand images with resolution 96x180, the
computational time required to detect depth edges is 4ms
on a Pentium IV 3GHz. The shape descriptor computa-
tion requires on average 16ms. Thus, our method is suitable
for real-time processing. For improving hand segmentation,
depth edges could be computed in the entire image. In this
case, the processing time for 640x480 images is 77ms.

We intend to adapt our method for continuous sign
recognition in video. Demonstration of detection of depth
edges in motion are showed in our previous work [13]. We
are currently exploiting a frequency division multiplexing
scheme, where flashes with different colors (wavelength)
are triggered simultaneously. We hope this will allow for
efficient on-line tracking of depth edges in sign language
analysis.

5. Discussion
In this section, we discuss issues related to our method and
propose ways to overcome failure situations. Then we fol-
low with a brief discussion on related work.

There is a tradeoff in choosing the baseline distance be-
tween camera and light sources. A larger baseline is better
to cast a wider detectable shadow in the internal edges of the

Figure 10: (a) Canny edges (b) Depth edges. Note that our
method considerably reduces the amount of clutter, while
keeping important detail in the hand shape.

hand, but a smaller baseline is needed to avoid separation
of shadow from the fingers (shadow detachment) when the
background is far away. The width of the abutting shadow
in the image is d = fB (z2 − z1)/(z1z2), where f is the
focal length, B is baseline in mm, and z1, z2 are depths,
in mm, to the shadowing and shadowed edge. Shadow de-
tachment occurs when the width, T , of the object is smaller
than (z2 − z1)B/z2. Fortunately, with rapid miniaturiza-
tion and sophistication of digital cameras, we can choose
a small baseline while increasing the pixel resolution (pro-
portional to f), so that the product fB remains constant.

What if there is no cast shadows due to lack of back-
ground? In these cases only the outermost depth edge,
the edge shared by foreground and distant background,
is missed in our method. This could be detected with a
foreground-background estimation technique. The ratio of
I0/Imax (image acquired with no flash over max composite
of flash images), is near 1 in background and close to zero
in interior of the foreground.

Another solution for both problems cited above is to con-
sider a larger baseline and explore it to detect only internal
edges in the hand, while using traditional methods (such as
skin-color segmentation or background subtraction) to ob-
tain the external hand silhouette.

We noticed that depth edges might appear or disappear
with small changes in viewpoint (rotations in depth). This
was in fact explored in the graphics community with the
concept of suggestive contours [6]. We believe this may be
a valuable cue for hand pose estimation [1].

A common thread in recent research on pose estimation
involves using a 3D model to create a large set of exem-
plars undergoing variation in pose, as training data [16, 1].
Pose estimation is formulated as an image retrieval problem
in this dataset. We could use a similar approach to handle
out-of-plane hand rotations. In this case, a 3D hand model
would be used to store a large set of depth edge signatures
of hand configurations under different views.

5.1. Related Work
Shadows have already been exploited for gesture recogni-
tion and interactive applications. Segen and Kumar [15] de-
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scribes a system which uses shadow information to track the
user’s hand in 3D. They demonstrated applications in object
manipulation and computer games. Leibe et al. [9] pre-
sented the concept of a perceptive workbench, where shad-
ows are exploited to estimate 3D hand position and point-
ing direction. Their method used infrared lighting and was
demonstrated in augmented reality gaming and terrain nav-
igation applications.

These approaches consider light sources far away from
the camera center of projection and casted shadows are sep-
arated from the objects. In contrast, our approach consider
light sources with small baseline distance from the cam-
era, allowing them to be built in a self-contained device,
no larger than existing digital cameras.

We have not seen any previous technique that is able
to precisely acquire depth discontinuities in complex hand
configurations. In fact, stereo methods for 3D reconstruc-
tion would fail in such scenarios, due to the textureless
skin-color regions as well as low intensity variation along
occluding edges.

Many exemplar-based [1] and model-based [10] ap-
proaches rely on edge features for hand analysis. We be-
lieve that the use of depth edges would lead to significant
improvements in these methods. Word level sign language
recognition could also benefit from our technique, due to the
high amounts of occlusions involved. Flashes in our setup
could be replaced by infrared lighting for user interactive
applications.

6. Implementation
Our basic prototype for static scenes (Figure 3b) makes use
of a 4 MegaPixel Canon Powershot G3 digital camera. The
four booster (slaved Quantarray MS-1) 4ms duration flashes
are triggered by optically coupled LEDs turned on sequen-
tially by a PIC microcontroller, which in turn is interrupted
by the hot-shoe of the camera. For dynamic scenes, our
video camera (Figure 3c) is a PointGrey DragonFly cam-
era at 1024x768 pixel resolution, 15 fps which drives the
attached 5W LumiLeds LED flashes in sequence.

7. Conclusions
We have introduced the use of depth edges as features for
reliable, vision-based fingerspelling recognition. We ba-
sically bypass dense 3D scene reconstruction and exploit
only depth discontinuities, which is a valuable information
to recognize hand postures with high amounts of finger oc-
clusions, without making use of instrumented gloves.

Our method is simple, efficient and requires no parame-
ter settings. We demonstrated preliminary but very promiss-
ing experimental results, showing that the use of depth
edges outperforms traditional Canny edges even consider-
ing simple scenarios with uncluttered background. In more

complex scenarios, our technique significantly reduces clut-
ter by eliminating texture edges and keeping only contours
due to depth discontinuities.

We are currently evaluating our method in a large
database with different signers. We also plan to address the
problem of continuous signing in dynamic scenes.
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