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Abstract

A UWB positioning system which performs NLOS identification and TOA-based location estimation is described.

For NLOS identification, we consider both a simple variance test, and a more complex non-parametric identification

test. The ranging technique is based on TOA estimation, where the nodes can adopt a two-way ranging scheme in

the absence of a common clock. From the NLOS identification and range estimation steps, an approximate MLE

technique is employed for the node positioning.

Index Terms—Ultra-wideband (UWB), geolocation, time of arrival (TOA), maximum likelihood estimation.

I. NLOS IDENTIFICATION

The problem of NLOS identification can be seen as a detection problem, which compares the LOS hypothesis to

the NLOS hypothesis. The probability distribution of the measurements under the LOS hypothesis is usually known

except for its mean. If the distribution under NLOS hypothesis is also assumed to be known, then the problem can

be solved by the conventional hypothesis testing method [1]. However, the probability distribution of NLOS errors,

hence that of the measurements under the NLOS hypothesis, is usually unknown. Therefore, a technique which

does not assume the knowledge of NLOS error statistics is needed.

The simplest of such a technique is the “variance test”, which compares the sample variance of a set of

measurements to the known variance of the measurement error [1]. Since the variance becomes larger in a NLOS

situation, the simple test

σ̂2 > σ2
m −→ NLOS (1)

σ̂2 ≤ σ2
m −→ LOS (2)

can be used for identification, wherêσ2 is the sample variance, andσ2
m is the known measurement error in a LOS

situation.

Instead of comparing the variances, we can also take a non-parametric approach for the NLOS identification

[2]. Since the statistics of TOA delays due to NLOS are not known exactly, a non-parametric approach is adopted

to approximate the probability density function of the measurements. Then, a suitable distance metric between

a known measurement error distribution and a non-parametrically estimated distance measurement distribution is
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defined to determine whether a given BS is within LOS or NLOS of the MS. The distance between these two

distributions can also be used as a reliability measure for the measurements from the given BS.

Consider a situation in whichm independent identically distributed (iid) range measurements (obtained from

TOA measurements multiplied by the speed of light) between an MS and a BS are taken. Assume that the change

in the location of the MS during these measurements can be ignored. Hence the distance between the MS and

the BS can be considered approximately constant for the geolocation purpose. Then, for theith measurement, the

hypotheses can be expressed as:

H0 : ri = d + ni

H1 : ri = d + ni + ei, (3)

for i = 1, ..., m, where H0 is the LOS hypothesis andH1 is the NLOS hypothesis. In the former case, the

measurement is modelled as the summation of the true distanced and a measurement noise,ni, while in the latter

case, the NLOS errorei is also present, which is modelled by a positive random variable.

We assume that the measurement noise statistics are completely known and is modelled by a zero mean Gaussian

random variable. However, neitherd nor the probability density function of the NLOS error are known. Therefore,

it is not possible to invoke conventional hypothesis testing techniques like generalized likelihood ratios.

Let the probability density function (pdf) of the measurement noise bepn(x), which is completely known.

Then, the pdf of the measurements in the LOS hypothesis case is given bypn(x− d). Note that this distribution is

completely known except for one parameter,d, which affects only the mean of the distribution. The main idea in the

non-parametric NLOS identification test is to compare the closeness of this pdf to the pdf of range measurements.

Thus we first approximate the pdf of the range measurements non-parametrically, compare the closeness of this

pdf to the LOS pdf by defining a distance metric, and then decide LOS/NLOS after a threshold test. This test can

be summarized as follows:

1) Estimate the pdf of the distance fromm iid range measurements. Let this estimate be denoted byp̂r(x).

2) Calculate the distance betweenpn(x− d) and p̂r(x) for all possibled values and find the minimum distance.

3) Compare this minimum distance to a threshold: DecideH0 if the minimum distance is smaller than the threshold,

and decideH1 otherwise.

We will discuss these steps in more details in the following subsections.

A. Parzen Window Density Estimation

In order to estimate the pdf of the distance, a non-parametric density estimation technique, called Parzen window

density estimation, is employed, which approximates the pdf using some window functions around the samples.

The reason for employing this technique is its flexibility in choosing density estimation parameters depending on

the sample size.

Given iid distance measurementsr1, ..., rm, the distance pdf can be estimated by the following formula [3]

p̂r(x) =
1
m

m∑

i=1

1
hm

φ(
x− ri

hm
), (4)
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whereφ(.) is the window function andhm is a scaling parameter. The window function must be a probability

density function in order for̂pr(x) to be a valid pdf. In other words, it is always non-negative and integrates to

one. Commonly used window functions include Gaussian and rectangular windows [3].

B. Distance Function

After obtaining the approximate pdf of the distance, our next step is to determine whether these distance

measurements are coming frompn(x− d) or the pdf under the NLOS hypothesis. Since the pdf under the NLOS

hypothesis is unknown, it is reasonable to compare the distance betweenpn(x− d) and p̂r(x) and accept the LOS

hypothesis if the distance is smaller than a threshold, that is, if the two distributions are sufficiently close. Since

the true distance,d, is unknown, the minimum distance betweenpn(x − d) and p̂r(x) must be calculated among

all possibled’s.

The Kullback-Leibler (KL) distance [4] can be used to calculate the distance between two probability distributions.

For given pdf’sp1 andp2, the KL distance between them is given by

D(p1‖p2) =
∫

p1(x) log
p1(x)
p2(x)

dx. (5)

C. Decision Criterion

The decision criterion to determine LOS or NLOS hypothesis becomes the following test:

inf
d
{D(p̂r(x)‖pn(x− d))}

H0

S
H1

δ, (6)

whereδ is the threshold.

If the value of thed minimizing the decision variable can be found, the test can be expressed simply as

D(p̂r(x)‖pn(x− d̂))
H0

S
H1

δ. (7)

We assume that the measurement noise is a zero mean Gaussian random variable, which is a valid approximation

when the TOA’s are acquired with a matched filter approach at high signal-to-noise ratio (SNR) [5]. Then,pn(x−d)

is expressed as

pn(x− d) =
1√
2πσ

e−(x−d)2/(2σ2). (8)

In this case, the following result indicates the simplification of the decision test.

Proposition 1 For a zero mean Gaussian measurement error and a symmetric window function, i.e.,φ(x) =

φ(−x) for all x, the value ofd minimizing the distance function of (6) is the sample mean of the measurements,

that is, d̂ = 1
m

∑m
i=1 ri.

Proof See [2].

Proposition 2.1 states that for a symmetric window function, the minimum distance to be used in the decision

criterion can be computed by simply shifting the Gaussian measurement error pdf by the sample mean of the

measurements and calculating the KL distance between this shifted pdf and the estimated pdf,p̂r(x).
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Another important issue is the appropriate choice of the threshold value,δ. Since the pdf’s are not known exactly

under either hypothesis, it does not seem possible to set the “false alarm” (i.e. misinterpret a LOS situation as

NLOS) and “miss detection” (i.e. misinterpret an NLOS situation as LOS) probabilities. However, the following

result states that in some situations the false alarm probability can be set even though the true distanced is not

known, that is, without any information about the mean of the random variable underH0.

Proposition 2 For a zero mean Gaussian measurement error and a symmetric window function, the false alarm

probability can be set independently of the true distance between the mobile and the base station.

Proof See [2].

Proposition 2.2 states that under suitable conditions the distance function is independent of the true distance

under the LOS hypothesis and it is therefore theoretically possible to set the false alarm rate.

Under the conditions stated in the above two propositions, the decision test can be expressed as follows [2]:

∫
p̂r(x) log(

√
2πσp̂r(x))dx +

σ̂2

2σ2

H0

S
H1

δ
′
, (9)

whereσ̂2 is the sample variance2 of the range measurements, that isσ̂2 = 1
m

∑m
i=1(ri − d̂)2.

Depending on the technique to locate the mobile user, the classification of BS’s may not be necessary. Instead

some reliability information about the measurements from each BS might be required. In this case, the distance

value between the LOS and NLOS pdf’s can be used as a reliability information, which can help us to locate the

mobile more accurately.

II. T IME-OF-ARRIVAL ESTIMATION

Due to the fine resolution of UWB signals, time-based geolocation techniques are more appropriate for UWB

systems. Here we consider a TOA estimation approach, which tries to estimate the first arriving signal path in order

to reduce the effects of NLOS propagation. The estimation technique can be considered as a two-step algorithm:

(1) Estimate the delay of a signal path of the incoming signal (acquisition step),

(2) Starting from the detected path, estimate the delay of the first arriving path.

The first step can be very time-consuming for a UWB system due to its high time resolution. Therefore, fast

acquisition algorithms have been considered in the literature [6]-[8].

For the second step, we consider the first path detection algorithm in [9]. Given the location of the path detected

in the previous step, the suboptimal algorithm searches backwards from the the given paths by estimating the delays

and the amplitudes of the previous paths.

2The sample variance is often defined ass2 = 1
m−1

∑m
i=1(ri − r̄)2, wherer̄ is the sample mean. This definition makess2 an unbiased

estimate of the population variance.
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III. L OCATION ESTIMATION

After obtaining the TOA estimates from the previous step, the final job is to estimate the location of the mobile

node. The conventional technique uses the least-squares technique to estimate the location [10]:

p̂ = arg min
p

{
B∑

i=1

αi(ri − ‖p− pi‖2)2
}

, (10)

whereαi is the reliability of theith measurement,pi and p are the locations of theith node and the node in

question, respectively,ri is the ith distance measurement (obtained from TOA measurement) from theith node,

andB is the number of reference nodes. Assuming a two-dimensional positioning problem, that is,p = [x y] and

pi = [xi yi], ‖p− pi‖2 is given by

‖p− pi‖2 = di =
√

(xi − x)2 + (yi − y)2. (11)

The LS technique in (10) is optimal if theith measurement error is modelled by zero mean Gaussian random

variable with variance1/αi. This model is approximately true for most LOS scenarios. However, in an NLOS

situation, the error is usually biased since the first arriving signal has travelled an extra distance.

Considering the IEEE channel model [11], we see that multipath arrival times follow a Poisson distribution. In

other words, the time difference between any two paths is an exponentially distributed random variable. The IEEE

channel measurements provide the mean of this exponential random variable in different scenarios. Assuming that

we are able to detect the first arriving path in the NLOS situation by the algorithm in Section II, the absent LOS

path can be considered as the preceding path of that first arriving NLOS path. Hence, the NLOS error can be

modelled as an exponentially distributed random variable as specified by the channel measurements. Therefore, we

can now model the measurements fromB reference nodes as

ri = di +





ni + ei, i = 1, . . . , M

ni, i = M + 1, . . . , B
, (12)

whereni ∼ N (0 , σ2
i ) and ei ∼ E(λi). We assume, without loss of generality, that the firstM nodes are NLOS

and the remaining ones are LOS.

In most cases, the NLOS error is much more significant than the Gaussian measurement error. Therefore, we

can model the measurements more simply as

ri = di +





ei, i = 1, . . . , M

ni, i = M + 1, . . . , B
, (13)

which will result in a much simpler estimator at the end.

The MLE for the node location is given by

p̂ = arg max
p

p (r|p), (14)

wherer = [r1 · · · rB].
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Using the approximate model in (13), the MLE for the node location can be obtained, after some manipulation,

as

p̂ = arg min
p

{
M∑

i=1

λi(ri − di) +
B∑

i=M+1

1
2σ2

i

(ri − di)2
}

. (15)

In order to obtain the exact decision rule, consider the summation of exponential and Gaussian r.v.’s. For an

exponential r.v. with parameterλ and for a zero mean Gaussian r.v. with varianceσ2, the p.d.f. for the sum can be

obtained as

p(x) = λe−λ(x−λσ2/2)Q
(
λσ − x

σ

)
. (16)

Then the MLE for the node position becomes

p̂ = arg min
p

{
M∑

i=1

λi(ri − di − λiσ
2
i /2)−

M∑

i=1

log
[
Q

(
λiσi − ri − di

σi

)]
+

B∑

i=M+1

1
2σ2

i

(ri − di)2
}

. (17)

Note that forσ2
i = 0 for i = 1, . . . ,M , (17) reduces to (15).

IV. L OCATION TRACKING [13]

When the aim is to track a specific node, some smoothing operation on the location estimates, obtained as

described in the previous section, is needed. This smoothing operation is achieved by a Kalman-Bucy filter.

Assume that each reference node takes measurements from the mobile node every4t seconds. The location

estimate obtained from the location estimation algorithm in Section III method at timet is denoted byY(t) where

Y(t) = [Y1(t) Y2(t)]T . (18)

Let the state vector be defined as

X(t) = [X1(t) X2(t) X3(t) X4(t)]T (19)

whereX1(t) andX2(t) denote thex andy coordinates, respectively, of the mobile node, whereasX3(t) andX4(t)

denote thex and y coordinates, respectively, of the velocity vector at timet. Then, the state and measurement

equations can be expressed as follows:

Xi+1 = FiXi + GiUi (20)

Yi = HiXi + Vi (21)

for i = 0, 1, ... where i is the time at which theith location estimation is performed,Fi, Gi and Hi are the

following matrices:

Fi =




1 0 4t 0

0 1 0 4t

0 0 1 0

0 0 0 1




,Gi =




0 0

0 0

4t 0

0 4t




,Hi =




1 0

0 1

0 0

0 0




T

.
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Ui is the two dimensional random acceleration component which is modelled by a zero mean Gaussian process,

andVi is the two-dimensional zero mean Gaussian measurement error.

For the linear stochastic system of (20) and (21), the discrete-time Kalman-Bucy filter equations can be used

assuming thatUi andVi are independent sequences that are also independent from the initial state. The estimated

state at timei given i measurements is the conditional expectation of the state given those previous measurements

(Y0,Y1, ...,Yi), which is simply denoted as follows:

X̂i|i = E{Xi|Yi
0}. (22)

The estimateŝXi|i = E{Xi|Yi
0} and X̂i+1|i = E{Xi+1|Yi

0} are given recursively by the following equations

[12]:

X̂i|i = X̂i|i−1 + Ki(Yi −HiX̂i|i−1) i = 0, 1, ..., (23)

and

X̂i+1|i = FiX̂i|i i = 0, 1, ..., (24)

where the Kalman gain matrixKi is given by

Ki = Σi|i−1H
T
i (HiΣi|i−1H

T
i + Ri)−1, (25)

with Σi|i−1 = Cov{Xi|Yi−1
0 } andRi = Cov{Vi}. Here,Σi|i−1 represents the covariance matrix of the prediction

error Xi − X̂i|i−1, conditioned onYi−1
0 . This matrix and the filtering error covariance,Σi|i = Cov{Xi|Yi

0}, can

be computed using the following recursion:

Σi|i = Σi|i−1 −KiHiΣi|i−1 i = 0, 1, ..., (26)

Σi+1|i = FiΣi|iFT
i + GiQiGT

i i = 0, 1, ..., (27)

whereQi = Cov{Ui}.
With proper initial values, equations (23) through (27) can be used to evaluate the state of the mobile node at

each time. The initial value for the state variable estimate can be set as follows:

X̂0|0 = [x̂1(i) x̂2(i) 0 0]T , (28)

where x̂ = [x̂1(i) x̂2(i)]T is the first location estimate obtained by the algorithm in Section III, and the initial

velocity is assumed to be zero.
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