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Abstract— For a multiple input multiple output system, an-
tenna selection reduces complexity at the expense of perfor-
mance. In this paper, we propose two novel RF pre-processing
architectures that significantly improve the performance of
antenna selection, which marginally increasing the complexity.
These architectures introduce a RF pre-processing matrix, M,
that multiplies the vector of incoming signals prior to down-
conversion. The elements of M use only the knowledge of the
channel statistics. In the first architecture, M outputs a reduced
number of streams – an explicit selection algorithm is therefore
not required. In the second architecture, the number of output
streams equals the number of input streams, and the reduction of
the number of streams is achieved by a selection switch that uses
instantaneous channel state information. We show that the opti-
mal pre-processing receiver projects the received signal along the
eigenvectors of the correlation matrix. In a correlated channel,
both these architectures significantly outperform conventional
antenna selection. We also develop a beam-pattern based intuition
and compare the performance of our scheme to other RF pre-
processing schemes previously proposed in the literature.

Index Terms— MIMO systems, Spatial multiplexing, Antenna
arrays, Antenna selection, Information rates, Phase shifters.

I. INTRODUCTION

It is well known that using multiple antennas at the trans-
mitter and the receiver for spatial multiplexing can achieve
high capacity in a wireless communication system [1]. How-
ever, those multiple input multiple output (MIMO) systems
significantly increase the signal processing complexity and
the hardware cost. Each antenna element requires a separate
modulator (demodulator) chain at the transmitter (receiver)
that consists of an up-converter (down-converter), a D/A
(A/D), and a power amplifier (low noise amplifier), which can
be expensive. Antenna selection [3]–[6] reduces the number of
required chains in MIMO systems by adaptively choosing the
signals from a subset of available antenna elements. Although
antenna selection maintains the diversity order of the system
[5], a penalty is paid in the form of a lower beamforming gain.

Recently [7]–[9], system architectures involving RF pre-
processing have been shown to significantly increase the

† This work was done when the author was at Mitsubishi Electric Research
Labs.
‡A. F. Molisch is also at the Department of Electroscience, Lund University,

Lund, Sweden.

beamforming gain of antenna selection systems for the same
number of modulator/demodulator chains, while retaining full
diversity. RF pre-processing at the receiver involves processing
the received signal using a RF matrix, M, prior to selection
and down-conversion. At the transmitter, the order is reversed.
Reference [8] considers the case when the entries of M can
tune to the instantaneous channel state information (CSI).
In [7], an alternate approach in which M – an FFT Butler
matrix – is completely independent of the CSI is proposed.
While the gains were promising, they were optimal for certain
fixed angles of arrival/departure (AoA/AoD) only.

In this work, we introduce a novel RF pre-processing
architecture that uses the knowledge of only the channel
statistics, which depend on the large-scale parameters of the
channel, such as mean AoA, mean AoD, angle spread etc.
These parameters vary very slowly compared to the small-
scale fading parameters. Using only the statistical knowledge
ignores the instantaneous channel induced variations and alle-
viates tighter design constrains on the RF elements required
in [8]. When pre-processing is employed at the transmitter,
this also considerably reduces the feedback burden. In this
paper, we focus on pre-processing and selection at the receiver;
similar arguments hold of the transmitter as well. Hereafter,
we refer to the channel statistics-based solution as the time-
invariant solution. Variable phase-shifter-based approxima-
tions, suitable for implementation using today’s technology,
are also proposed and evaluated.

For a system with Nr receive antennas and L ≤ Nr
demodulator chains, we propose and analyze two different but
related pre-processing architectures that maximize the ergodic
capacity of the system:

1) An L×Nr time-invariant matrix, MTI, that outputs only
L streams, thereby eliminating the need for subsequent
selection.

2) An Nr ×Nr time-invariant matrix, MTI-S, followed by
instantaneous CSI-based selection.

The output of the above set ups is down-converted and
processed in baseband.

We show that for correlated channels, using MTI performs
considerably better than conventional antenna selection algo-
rithms, despite not requiring any selection. It thus obviates the



need for fast antenna selection algorithms [5], [6]. However,
this is not so for channels with low spatial correlation. For
such cases, MTI-S is preferable as it outperforms both MTI and
conventional antenna selection; performance parity occurrs
only for completely spatially uncorrelated channels.

The rest of the paper is organized as follows. Section II de-
scribes the spatial multiplexing system and the channel model
used. In Section III, we derive the optimal time-invariant pre-
processing matrices, MTI and MTI-S. Section IV presents the
simulation results for the proposed solution and compares
them with the conventional solutions. The conclusions follow
in Section V.

II. SYSTEM MODEL

The following notation is used in the paper: (.)† denotes the
Hermitian of a matrix, |.| denotes the determinant of a matrix,
CN,M is the set of all N ×M matrices with complex entries,
UN,M is the set of all N ×M semi-unitary matrices, CN is
the set of all N × 1 vectors with complex entries, DN is the
set of all N ×N diagonal matrices with complex entries, and
EX{.} is the expectation with respect to X .

In spatial multiplexing, different data streams are transmit-
ted simultaneously as shown in Fig. 1. The transmitter and
the receiver have Nt and Nr antenna elements, respectively.
No CSI is available at the transmitter, while perfect CSI is
available at the receiver. The received vector, y, for Nr receive
antennas can be written as

y =

√
ρ

Nt
Hx + n, (1)

where ρ is the signal to noise ratio (SNR), Nt is the number
of transmit antennas, H is the Nr×Nt channel matrix, and x
is the Nt×1 transmitted vector. The vector n is additive white
Gaussian noise and follows the complex Gaussian distribution
Nc(0, INr ), 0 is the all zeros mean vector and INr is the Nr×
Nr identity matrix. For such a system, the channel capacity
of a full complexity receiver (that uses all receiver antennas)
is given by

CFC = log2

∣∣∣∣INt +
ρ

Nt
H†H

∣∣∣∣ .

We adopt the widely used Kronecker correlation channel
model for H [2]. As per this model, H is given by

H = R
1
2 HwT

1
2 , (2)

where the elements of Hw are independent identically
distributed complex Gaussians ∼ Nc(0, 1), R = EH

{
HH†

}

is the Nr ×Nr receiver correlation matrix, and
T = EH

{
H†H

}
is the Nt × Nt transmitter correlation

matrix.

III. OPTIMAL TIME-INVARIANT PRE-PROCESSING
RECEIVER

In this section, we address two cases of time-invariant pre-
processing. We first derive the optimal L×Nr time-invariant
pre-processing matrix, MTI, that maximizes the ergodic ca-
pacity. Since the pre-processor only outputs L streams, a
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Fig. 1. Block Diagram for Spatial Multiplexing

subsequent selection algorithm is not required. Next, we derive
a receiver architecture in which the time-invariant Nr × Nr
matrix MTI-S is followed by CSI-based selection.

A. Optimal L×Nr Time-Invariant (TI) Pre-Processing

Let ML be an L × Nr pre-processing matrix. The L × 1
vector, ỹ, at the output of ML is

ỹ =

√
ρ

Nt
MLHx + MLn.

For such a system, the ergodic capacity is

C̄ = max
ML

EH

{
log2

∣∣∣∣INt +
ρ

Nt
H†M†

L(MLM†
L)−1MLH

∣∣∣∣
}
.

(3)
The following lemmas, are required for finding the optimal
ML.

Lemma 1: Let A ∈ CNt,Nr , Λ1 ∈ DNr and Λ2 ∈ DNr be
given such that each element of Λ1 is less than corresponding
element of Λ2. Then,

∣∣INt + AΛ2A
†∣∣ ≥

∣∣INt + AΛ1A
†∣∣ .

Proof: The proof is given in Appendix A-1.
Lemma 2: [13, Lemma 3.3.1] Let Q ∈ UL,Nr and

R ∈ CNr,Nr be given such that R is full rank. Let ei(X)
represent the ith largest eigenvalue of XX†. Then,

eNr−L+i(R) ≤ ei(QR) ≤ ei(R). (4)

Furthermore, ei(QR) = ei(R), (1 ≤ i ≤ L) if Q is the con-
jugate transpose of the L eigenvectors of RR† corresponding
to its L largest eigenvalues.

The following main theorem follows.
Theorem 1: Consider a general Nr × Nt channel of the

form H = R
1
2 HwT

1
2 . The optimal L×Nr time-invariant pre-

processing matrix, MTI, that maximizes the ergodic capacity
in (3), is of the form MTI = BQopt, where B is any L × L
full rank matrix, and Qopt is given by

Qopt = [r1, r2, · · · , rL]
†
.

Here rl is the singular vector of R corresponding to its lth

largest singular value. The maximum ergodic capacity is then
given by

CTI = EH

{
log2

∣∣∣∣INt +
ρ

Nt
H†Q†optQoptH

∣∣∣∣
}
. (5)



Proof: Any L×Nr matrix with row span L can be written
as ML = BQ, where B ∈ CL,L and Q ∈ UL,Nr .1 Since
QQ† = IL, (3) reduces to

CTI = max
Q∈UL,Nr

EH

{
log2

∣∣∣∣INt +
ρ

Nt
H†Q†QH

∣∣∣∣
}
. (6)

Recall that H = R
1
2 HwT

1
2 . Define XL = QR, and let its

singular value decomposition (SVD) be XL = UΣV†. Then

CTI = max
XL

EHw

{
log2

∣∣∣∣INt +
ρ

Nt
T

1
2 H†wX†LXLHwT

1
2

∣∣∣∣
}
,

= max
V,Σ

EHw

{
log2

∣∣∣∣INt+
ρ

Nt
T

1
2 H†wVΣ†ΣV†HwT

1
2

∣∣∣∣
}
,

= max
Σ∈DNr

EHw

{
log2

∣∣∣∣INt+
ρ

Nt
T

1
2 H†wΣ†ΣHwT

1
2

∣∣∣∣
}
.

(7)

Eqn. (7) follows because the statistical properties of Hw

are not changed by multiplication by a unitary matrix. From
Lemma 1, it follows that (7) is maximized when each non-zero
element of Σ is maximized. Since the non-zero elements of
Σ correspond to the eigenvalues of QRQ†, Lemma 2 implies
that (7) is maximized when the eigenvalues of QRQ† reach
the maximum possible value of ei(R). The optimal Q is then
the conjugate transpose of the eigenvectors corresponding to
the L largest eigenvalues of R.

We see from Theorem 1 that the optimal Q matrix is
obtained by performing a principal component analysis [11]
on the columns of H, and choosing the largest L principal
components. The variance of the columns of H along the
eigenvectors of R is equal to the corresponding eigenvalues
of the correlation matrix. Thus, statistically, the first L eigen-
vectors of R contribute the most to the variance.

B. Time-Invariant Nr × Nr Pre-Processing Followed by Se-
lection (TI-S)

In this section, we consider a system where the received
vector y is multiplied by an Nr ×Nr pre-processing matrix,
MN , and L out of the Nr outputs of the pre-processor are
selected for down-conversion. The vector, y̆, at the output of
the selection switch is

y̆ =

√
ρ

Nt
SMNHx + SMNn, (8)

where S is an L × Nr selection matrix that selects L out
of Nr signals. The selection matrix S adapts to the instanta-
neous channel state. The capacity maximization problem now
becomes

CTI-S = max
MN

EH

{
max

S
log2

∣∣∣∣INt +
ρ

Nt
H†M†

NS†

×(SMNM†
NS†)−1SMNH

∣∣∣
}
.

(9)

It is difficult to analytically find MN that maximizes (9)
because of the presence of S, which depends on the channel

1ML with row span less than L is sub-optimal, and is therefore not
considered.

realization H. By interchanging the order of EH and max, we
get the analytically tractable lower bound

CTI-S ≥ max
S

max
MN

EH

{
log2

∣∣∣∣INt +
ρ

Nt
H†M†

NS†

×(SMNM†
NS†)−1SMNH

∣∣∣
}
.

(10)

Theorem 2: Given a selection matrix, S0, any Nr × Nr
matrix MTI-S of the form

MTI-S = P [r1, r2, · · · , rL,v1, · · · ,vNr−L]
† (11)

maximizes the lower bound in (10), where P is an Nr ×Nr
permutation matrix and vk, k = 1, · · · , Nr − L, are any
orthonormal vectors in N(UL). Here, UL is the vector space
spanned by r1, r2, · · · , rL and N(UL) is the null space of
UL. The vectors ri are as definedxz in Theorem 1.

Proof: We restrict MTI-S to be unitary.2 Then, for a given
selection matrix S0, the problem in (10) is similar to the one
we solved in Section III-A (with B = I). It can be seen that
the MN that maximizes (10) has the following property: the
rows of MN that are selected by S0 are the eigenvectors cor-
responding to the L largest eigenvalues of R. For example, if
S0 = [IL 0], then M

(0)
N = [r1, r2, · · · , rL,v1, · · · ,vNr−L]†.

Given that MTI-S is unitary, v1, . . . ,vNr−L are orthonormal
vectors in the null space of UL. Any other selection matrix is
a permutation of S0. Thus, in general, MTI-S is a permutation
of M

(0)
N .

In order to completely characterize MTI-S, we need to find
the orthonormal vectors vk, k = 1, · · · , Nr − L. Clearly, if
the selection matrix selects the first L rows of MTI-S, i. e.,
S = S0, then M

(0)
N maximizes the lower bound in (10). (S0

and M
(0)
N are defined in the proof above.) We fix the first L

rows of MTI-S to be ri as this ensures that any subsequent
choice for vi does not affect the performance for S0. This
necessarily improves the lower bound in (10). If the selection
matrix selects the 2nd row to the (L+ 1)th row of MTI-S, then
Theorem 1 implies that the ergodic capacity is maximized
when v1 = rL+1. Note that rL+1 ∈ N(UL). Following a
similar procedure, we get v2 = rL+2, . . . ,vNr−L = rNr .

Thus the time-invariant matrix MTI-S is given by

MTI-S = PΥ†, (12)

where Υ is the eigenspace of R. Note that this is not a rigorous
proof of optimality of MTI-S, but we conjecture that the MTI-S
thus obtained is indeed optimal.

C. Phase-Only Approximation

While the elements of M, derived above, can have an arbi-
trary amplitude, hardware considerations make the implemen-
tation of the RF pre-processing matrix using variable-phase
shifters an attractive option [12]. A phase-only approximation
to MTI can be obtained using the algorithm proposed in [9].
We study its performance in Section IV.

2MTI-S can be written as product of a full-rank matrix and a unitary matrix.
The full-rank matrix does not affect the capacity, and can therefore be chosen
to be the identity matrix.



TABLE I
ERGODIC CAPACITY (IN BITS/S/HZ) FOR DIFFERENT RECEIVERS.

Parameters
FC TV TI-S TI TI-Ph FFT

Ant.
θr σr L Sel.

45◦ 6◦ 1 5.99 4.96 4.87 4.86 4.75 4.26 3.50

45◦ 6◦ 2 5.99 5.99 5.96 5.96 5.88 5.77 4.96

60◦ 15◦ 2 7.25 7.25 6.82 6.70 6.62 6.58 6.05

IV. SIMULATION RESULTS

For the purpose of subsequent illustrations and simulations,
we assume that the transmitter and receiver are uniform linear
arrays (ULA) with antenna element spacing d = 0.5λ, where
λ is the wavelength. The AoA and AoD at the receiver
and transmitter have Gaussian distributions N (θr, σ

2
r) and

N (θt, σ
2
t ), respectively. Here, θr (θt) is the mean AoA (AoD)

and σr (σt) is the root mean square (RMS) angle spread at
the receiver (transmitter). For such a configuration, R and T
are determined using [10].

We study and compare the performance of channel statistics-
based pre-processing – L ×Nr time-invariant pre-processing
(TI), L×Nr time-invariant phase-approximated pre-processing
(TI-Ph), and Nr ×Nr time-invariant pre-processing followed
by selection (TI-S) – with several receiver structures studied
in the literature such as full complexity (FC), conventional
antenna selection, FFT pre-processing with selection [7], and
time-variant pre-processing [8]. The number of antenna ele-
ments is chosen to be Nt = 2 and Nr = 4 and the SNR is
ρ = 10 dB. We assume that T = I for the sake of simplicity.
Each receiver architecture has L demodulator chains available
(L ≤ Nr), except for the FC receiver, which requires Nr
demodulator chains.

Figure 2 plots the beam-patterns for a ULA (as a function
of the azimuth angle) formed by the FFT and MTI-S pre-
processing matrices. We can clearly see from Fig. 2(a) that
FFT pre-processing gives high gains for rays with AoAs 0◦,
60◦, 90◦, 270◦, and 300◦; however, the gains are lower for
other directions. Figures 2(b) and 2(c) plot the beam-patterns
of MTI-S for AoAs 45◦ and 60◦, respectively. We see that,
unlike FFT, the beam-pattern of MTI-S adapts to the mean
AoA at the receiver and ensures good gains in both cases.

Table 1 compares the ergodic capacity of different re-
ceiver architectures. We see that the receivers employing pre-
processing outperform conventional antenna selection. Also
note that the phase approximation to TI is very accurate –
TI-Ph comes within 0.1 bits/s/Hz of TI. We also plot the
cumulative distribution function (CDF) of the capacity. The
CDF provides a complete characterization of the capacity, as
opposed to the expected value, which provides information on
the first moment only.

Figure 3 plots the CDF of capacity for σr = 6◦ and
θr = 45◦. We observe that for L = 1, TI, TI-S and TV
achieve a 1.0 bits/s/Hz gain over pure antenna selection. Since
the mean AoA falls on the minima of FFT beam-pattern, it
performs 0.5 bits/s/Hz worse than TI. With L = 2, while con-

ventional antenna selection capacity is 1.0 bits/s/Hz less than
FC, the receivers with pre-processing achieve performance
parity with FC. Note that while FFT performs worse than TI
for L = 1, it achieves the same performance as TI for L = 2.3

The effect of different angle spreads is studied in Fig. 4.
As σr increases, the performance of pure antenna selection
improves, while that of TI, TI-S and FFT degrades. In the
extreme case of an uncorrelated channel, antenna selection,
FFT and TI-S will have the same performance, while TI will be
slightly worse. This is a consequence of the fact that efficacy of
the statistics-based solutions reduces as the channel correlation
reduces. However, the time-variant receiver (not shown in the
figure) will perform better than pure antenna selection because
it can adapt to the instantaneous channel state.

V. CONCLUSIONS

In this paper, a novel RF pre-processing solution was
proposed to recover the beamforming gain lost by conventional
antenna selection. This architecture introduces a RF pre-
processing matrix, followed by selection, if required. The
optimal time-invariant L×Nr RF pre-processing matrix, MTI,
projects the received vector along the L largest eigenvectors of
the receiver correlation matrix. By its very design, the L×Nr

matrix eliminates the need for subsequent antenna selection
and its associated computational complexity. For a correlated
channel, such pre-processing significantly outperformed an-
tenna selection, despite using the same number of demodulator
chains as antenna selection. A more sophisticated receiver ar-
chitecture that uses an Nr×Nr RF matrix followed by antenna
selection was also investigated. At the expense of additional
computations, this architecture outperformed the L×Nr matrix
discussed above and performed significantly better than pure
antenna selection. Simulation results showed that in some
cases, RF pre-processing achieved performance gains close
to that of an FC receiver. We showed that implementing the
pre-processor using low complexity RF phase-shifters incurs a
negligible loss in performance. A beam-pattern-based intuition
was also developed. We saw that the statistics-based solutions
can adapt the beam-pattern to mean AoA direction.

While only receiver design was considered in this paper,
antenna selection at the transmitter can be implemented in an
analogous manner.

APPENDIX A-1: PROOF OF LEMMA 1

Let Λ1 = diag(λ11, · · · , λ1Nr ) and Λα = diag(λ11 +
α, λ12, · · · , λ1Nr ), where α is a positive constant. We first
show that |INt + AΛαA†| increases monotonically with α.
Define Σ1 = diag(1, 0, · · · , 0), and B1(α) = INt + AΛαA†.
Then,

|B1(α)| =
∣∣INt + AΛ1A

† + αAΣ1A
†∣∣ . (13)

3This is because the gain from the two FFT beams add up and yield
performance close to the full gains.
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Fig. 2. Beam-patterns as a function of azimuth angles
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Applying the formula for the derivatives of determinants on
(13), we get

d|B1(α)|
dα

= |B1(α)|Trace
(

B−1
1 (α)

dB1(α)

dα

)
,

= |B1(α)|Trace
(
B−1

1 (α)AΣ1A
†) ,

= |B1(α)|
(
a†1B

−1
1 (α)a1

)
, (14)

where a1 is the first column of A. Since B1(α) is positive-
definite, d|B1(α)|

dα > 0. Thus |B(α)| increases with α. Simi-
larly, we can show that

∣∣INt + AΛA†
∣∣ increases as each non-

zero element of the diagonal matrix Λ increases.
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