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Abstract

Due to extremely narrow pulses, an impulse radio signaling has a strong potential for high-
precision positioning. Highly dispersive nature of ultra-wideband (UWB) channels makes time
of arrival (TOA)estimation extremely challenging, where the leading-edge path is not necessarily
the strongest path. Since the bandwidth of a received UWB signal is very large, the Nyquist
rate sampling becomes impractical, hence motivating lower complexity and yet accurate ranging
techniques at feasible sampling rates. In this paper, we consider TOA estimation baased on
symbol rate samples that are obtained after a square-law device. Signal conditioning techniques
based on wavelets and a bank of cascaded multi-scale energy collection filters are introduced,
where correlations across multiple scales are exploited for edge and peak enhancements towards
a more accurate detection. An adaptive threshold selection approach based on the minimum and
maximum values of the energy samples is introduced, and optimal values of the thresholds for
different signal to noise ratios (SNRs) are investigated via simulations. Theoreticaal closed form
expressions are derived for mean absolute TOA estimation error, and compared with simulations.
The performances of the discussed algorithms are tested on IEEE 802.15.4a residential line-of-
sight (LOS) and non-LOS channels. Simulation results show that the introduced multi-scale
energy product technique supported with a search-back step to detect the leading edge performs
better than all the other techniques, excluding the pure threshold comparison algorithm at very
large SNR values.
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Abstract

Due to extremely narrow pulses, an impulse radio signalisg dstrong potential for high-precision
positioning. Highly dispersive nature of ultra-widebandWB) channels makes time of arrival (TOA)
estimation extremely challenging, where the leading-quigh is not necessarily the strongest path. Since
the bandwidth of a received UWB signal is very large, the Ngftite sampling becomes impractical,
hence motivating lower complexity and yet accurate ranggegniques at feasible sampling rates. In this
paper, we consider TOA estimation based on symbol rate ssmpht are obtained after a square-law
device. Signal conditioning techniques based on wavelets eabank of cascaded multi-scale energy
collection filters are introduced, where correlations asrmultiple scales are exploited for edge and
peak enhancements towards a more accurate detection. Astivadthreshold selection approach based
on the minimum and maximum values of the energy samples riedated, and optimal values of the
thresholds for different signal to noise ratios (SNRs) akestigated via simulations. Theoretical closed
form expressions are derived for mean absolute TOA estimagiror, and compared with simulations.
The performances of the discussed algorithms are testedEBE B02.15.4a residential line-of-sight
(LOS) and non-LOS channels. Simulation results show thatittroduced multi-scale energy product
technique supported with a search-back step to detect dldinkg edge performs better than all the other

techniques, excluding the pure threshold comparison idfgorat very large SNR values.



. INTRODUCTION

This decade will see a rise in location aware applicationsvarde fields from asset management and
home/building automation to environmental monitoring aishster management. This wide market need
recently urged emerging IEEE 802.15.4a standards workgMip) (to invite proposals for an alternative
PHY to the existing IEEE 802.15.4 standards, requiring a sutemm@ecision ranging capability. The
content of this article on multi-scale non-coherent TOAreation, has been one of the ranging proposals
under consideration in IEEE 802.15.4a.

High time resolution is one of the key benefits of ultra-wideth@UWB) signals for precision ranging.
Due to extremely short duration of transmitted UWB pulse8VRJ receivers, as opposed to typical
narrow-band wireless receivers, enjoy being able to olesemividual multipath components; and the
accuracy of TOA estimation is characterized by how finely thst farriving signal path is identified,
which may not be the strongest.

UWB receivers typically have to operate at very low sampiiggs. This makes it difficult to effectively
capture the energy at each individual multipath componsiniguRake receivers, as it is extremely difficult
to synchronize to each tap. A chip-spaced sampling of thardilacan be used to detect the chip-spaced
observationof the channel impulse response (CIR), which typically iearfa fraction of the available
energy of the actual CIR (such as %30 [1]). Note that hights samples (such as chip-rate or frame-
rate) can be achieved by using symbol-spaced sampling aftgpl@uraining symbols, and shifting the
signal by desired sampling period at each symbol. Anothactimal concern is the requirement to have
a-priori knowledge of the received pulse shape for matchr fittgplementation, which may change from
an environment to another and even between different nadittipomponents [2]. Therefore, it is difficult
to exactly match to the received pulse-shape, especialgnvaonsidering the analog implementations of
the template waveforms.

Typical approaches for UWB ranging in the literature areedasn matched filtering (MF) of the
received signal. Corresponding the time index that maxmithe MF output to the TOA estimate is
probably the simplest ranging technique [3]-[8]. Howetbese approaches have limited TOA precision,
as the strongest path is not necessarily the first arriving. patorder to determine the leading edge of
a received signal, Lee and Scholtz proposed to use a gendratizeimum-likelihood (GML) approach
to search the paths prior to the strongest path [9]. The deldyatio statistics between the first arriving
path and strongest path are obtained from extensive IEEE 832 hannel measurements, and early

false-alarm and missed-direct path error probabilities @erived. However, very high sampling rates



and a large memory space is required to store sample valubms & search interval. Furthermore, the
information included in the paths after the strongest pathewneglected, which can be used to enhance
strongest path detection. In [10], the leading edge detegiroblem is taken as a break-point estimation
of the actual signal itself, where also very high samplirtg & the received signal is assumed. Temporal
correlation arising from the transmitted pulse is used wwueately partition the received signal into two
zero-mean Gaussian distributed time-series with diffecavariance matrices. In another approach, a
two-step ranging algorithm is used, where an energy detediep gives coarse information about the
signal’s whereabouts, and a correlation based approagbpiged into the detected energy block(s) for
refinement [11], [12]. Timing acquisition for UWB, which in #=nce have many analogies with TOA
estimation problem, has been extensively analyzed intiw@ture. Representative references include [13]-
[15] and the references therein, where dirty templates amemglized likelihood ratio testing approaches
were commonly used.

Due to above practical concerns and limitations, energgatiein based ranging becomes more feasible.
Even though it suffers more from noise due to a square-lawcdewnergy detection does not require
accurate timing or pulse shapes. Once collecting the ensagyples at the output of a square-law
device (which is also valid for the absolute values of the MRpats), the TOA estimation can be
considered as a problem of leading edge detection (or chanegd-point detection) in noise. In this
paper, we consider TOA estimation of the received signakdam symbol-rate samples, and compare
the performances of maximum energy selection and thresdiasddd approaches. New signal conditioning
methods to improve detection performance based on waveletsfiand a bank of cascaded energy
collection filters are introduced and analyzed via theoaktéxpressions and simulations. The leading
edge problem has analogies with various other areas inttratlire, including edge detection in image
processing [16], [17], voice activity detection in speedgessing [18]-[20], and spike-detection in
biomedical engineering [21]-[23]. Therefore, before étgrthe analysis and discussion of various TOA
estimation techniques, first, a brief overview of changedlite algorithms will be presented in the next

section.

II. ABRIEFREVIEW OF CHANGE DETECTIONALGORITHMS

Change detection problems have been investigated exédngivthe past. When the signal statistics are
known before and after the change-point, the optimal lee&ation can be achieved by tracking the log-
likelihood ratios of the signals from the two hypothesizastributions. Cumulative sum (CUMSUM)

algorithm is a popular online change detection approachictwhses a threshold on the sum of log-



likelihood ratios for the detection of the abrupt change][24 [25], an adaptive approach was proposed
as a modification to CUMSUM algorithm for the unknown hypoteesase, which estimates the signal
parameters using two sliding windows. The common case ofawmkrhypothesis testing problems (where
the probability distribution functions (PDFs) of both hypesis are not known) can be namedamposite
hypothesis teg6]. Two common approaches for the solution of compositeoliyesis testing problems
are 1) Bayesian approach, where the unknown parametersssuenad random variables with a prior
PDF, and 2) Generalized likelihood ratio test (GLRT), wherenawn parameters are estimated for use
in a likelihood ratio test. Marginalized likelihood ratiedt (MLRT) [27], [28] eliminates certain short-
comings of GLRT, dropping a requirement for a user-choseestiold, or the knowledge of the noise
statistics.

The change point detection approaches discussed above) alecbased on detecting the changes
in statistical distributions, typically require large nber of samples [26], [29]. In typical scenarios
considered under the scope of this paper, where we do not Kggeist rate sampling, and have few
samples for the detection of the leading edge, such algosittnay not be appropriate.

Considering more basic techniques, probably the simplg®ioach to detection of edges in a signal is
passing the signal through a gradient operator (such-a9 1]). However, this approach is not robust
against noise effects, and filtered derivative techniquescammonly used for smoothing purposes for
improved performance. Witkin in his pioneering work [30]vé®ped the idea of scale-space filtering,
where the signal is smoothed at various scales with Gaussiaiifferent variances. Local minima
and maxima of the derivative of the smoothed signal at varseales (which can also be obtained by
filtering the initial signal with derivatives of Gaussiansvarious scales) then corresponds to the edges
of the signal at different resolutions. Zero-crossings @& tonvolution of the signal with the second
derivatives of Gaussians at various scales can be also asddritify the edges [31]; however, this does
not give information about the direction (rising-edge \allimg-edge), or, the sharpness of the edge.
Witkin proposed a coarse-to-fine tracking of these edges énstiale-space imagéoy exploiting the
correlations across the scales) to identify and localizentiajor singularities in the signal. Mallat. al.
analyzed scale-space representation of the signal in theletgheory framework, and used the wavelet
transform modulus maxima (WTMM) for the identification of thejor edges in the signal [32], [33].
The non-orthogonal discrete wavelet transform (DWT) progdseMallat and Zhang (MZ) is commonly
referred to as MZ-DWT in the literature [29], [34]. They showthat by analyzing the evolution of the
wavelet transform exponent across scales, local Lipschitoreent (which is a measure of the local

regularity of the signal) can be estimated. Then, this allweffective denoising of the signal using the



Lipschitz exponent and otharpriori information. In [35], it was proposed to use the sum of tbee of
influencefor the estimation of the regularity of the signal, which leakwer computational complexity.
Alternative time-frequency approaches based on the short Fourier transform (STFT) were considered
in [36]. Stationarity index in this work was defined to be theaise between the STFTs in consecutive
time windows (Kolmogorov distance was selected to be thé distance metric compared to Kullback
and Jensen-like distances), and timing index that maxsnilze distance was selected to be the change
point. Stationarity index idea was applied to abrupt changtealion of broadband signals in [37].

Before the wavelet theory gaining much popularity, the idéaising the cross-scale multiplication
of sub-band decomposition of an image was first developed ®eeld in [38], [39], which proved
to be very efficient for locating significant edges. ¥u al, instead of using the computationally more
complicated and slightly more accurate techniques of [[B2], [40] for tracking the edges in the scale-
space image (or the WTMM tree), proposed to use the directiptic#ttion of wavelet transform data
at various scales to enhance the edges and suppress theg4idis€he approach of using product of
multi-scale wavelet coefficients has been investigatednsktely in subsequent work in the literature for
detection of sharp edges in the signals [29], [34], [42]}{48

Detection of TOA of the UWB signal is equivalent to the deittof the leading-edge of the received
multipath components. Typically, power delay profiles (PDP)UMWB channels are modeled with a
double exponentially decaying model. On the other handyithgal multipath components are subject to
Nakagami fading. Depending on the environment, the leadilge that we are trying to detect may or
may not be a sharp edge. Also, considering an energy detepioroach, where blocks of some arbitrary
size are used to obtain energy-samples, the first arriviniy paly appear anywhere within a block (with
a uniform distribution), which may prevent sharp edges m e¢hergy sequence. Therefore, using solely
the multi-resolution edge detection approaches discussg@uevious sections may not yield as strong
results.

On the other hand, the multi-resolution approach can séllused to enhance the peak-detection
performance on the energy samples. In this paper, we prapasge multi-scale analysis of the received
energy samples as a conditioing tool for the purposes of hameing peaks closer to the leading edge
of the signal, and 2) Suppressing the noise samples. Upon acotgate estimation of samples closer to
the leading edge, a search-back algorithm with a threshetielction can be used to estimate the leading

edge of the signal.



Il. SYSTEM MODEL

Let the received UWB multipath signal be represented as

r(t) = Z djwmp(t - ij - Cch - 7_toa) + n(t) (l)

j=—o0
where frame index and frame duration are denoted bnd T}, N, represents the number of pulses per
symbol, T, is the chip duration{; is the symbol durations,, is the TOA of the received signal, and
N}, is the possible number of chip positions per frame, givem\hy= 7' /T.. Effective pulse after the
channel impulse response is given by, (t) = \/Ezle aqw(t — 1), wherew(t) is the received UWB
pulse with unit energyF is the pulse energyy; and 7; are the fading coefficients and delays of the
multipath components, respectively. Additive white Garssoise (AWGN) with zero-mean and double-
sided power spectral density /2 and variancer? is denoted byn (). No modulation is considered for
the ranging process.

In order to avoid catastrophic collisions, and smooth thevgrospectral density of the transmitted
signal, time-hopping code%k) € {0, 1,..., N, — 1} are assigned to different users. Moreover, random-
polarity codesd; € {£1} are used to introduce additional processing gain for theatien of desired

signal, and smooth the signal spectrum (see Fig. 1).

A. Sampling of the Received Signal After a Square-law Device

In the sequel, we assume that a coarse acquisition on the @fréf@ame-length is acquired in (1), such
Troa ~ U(0,Ty), wherel{(.) denotes the uniform distribution. As for the search regtbe, signal within
time frameT; plus half of the next frame is considered to factor-in irftame leakage due to multipath,
and the signal is then input to a bank of square-law deviceb wdth an integration interval df}, (see

Fig. 2).

37Ty

The number of samples (or blocks) is denoted My = ST andn € {1, 2,...,N,} denotes the

sample index with respect to the starting point of the umdety region. With a sampling interval @f
(which is equal to block lengtfi), the sample values at the output of the square-law devieaiaen
by

Ne  p(G=1)Ts+(c;+n)Ts

=Y /( ()Pt | )

j=1 J—1)Ts+(c;+n—1)T,
and the performance can be further improved by using theggrierN; symbols. The bit energy when
using N, pulses becomeg;, = N,FE. Note that there exists a trade-off between using largeckslo

and smaller blocks in energy detection. As the block size gatrower individual peaks due to noise



increases the likelihood of leading-energy block misdétac Besides, there is a trade-off between using
multiple pulses per symbol and a single pulse with an egemtaénergy. It is well known that means and
variances of non-energy and energy bearing blocks out ofiaregaw device are given hy, = Mo?,

02 = 2Mo*, jie = Mo? + E,, 02 = 2Mo* + 402E,, respectively, wheré/ is the degree of freedom
given byM = 2BT,+1, E, is the total signal energy within theh block, andB is the signal bandwidth.
Let us consider two scenarios to see how these statistics/aviyi the first one using a processing gain
(Vs pulses per symbol) and the second one using a single pulbethdtaggregate energy of al
pulses.

1) Single pulse per symbolThe means and variances of the non-energy and energy bedoicks b
are given byug = Mo?, 0 = 2Mo*, u. = Mo? + NsE,,, 0 = 2Mo* + 4N,0*E,, respectively. Note
that the distance between the means of noise-only blockeaedyy blocks iSVsE,,.

2) Multiple pulses per symbolThe means and variances of the non-energy and energy bedotig b
are given byuy = N;Mo?, o} = 2N,Mo*, p. = Ny(Mo? + E,), 02 = Ny(2Mo* + 40%E,,),
respectively. When transmitting multiple pulses, everuttothe means of both blocks are increased due
to collection of noise terms at various branches, the digtdretween the means of noise-only blocks
and energy blocks is stilN;E,,. On the other hand, the variances of both noise-only blockksemergy
blocks are increased. This implies that the performance wkarg multiple pulses per bit will be worse,
and it will be better to use fewer pulses with larger power|aag as complying with local regulatory

masks.

IV. TOA ESTIMATION ALGORITHMS

Let z[n] denote then!” element of lengthV, energy vector after the square-law device. If multiple
frames are used\(; > 1), energies from same integrator positions in each framew@perposed together
to obtain a single energy vector corresponding to a singlendy, assuming that statistics of the channel
would remain the same. In this section, various algorithinad bperate onx[n] values for leading edge
detection are presented and formulated. Some of the basicithlgs to be discussed are depicted in

Fig. 3.

A. Maximum Energy Selection (MES)

Choosing the maximum energy output to be the leading eddeisimplistic way of achieving a TOA
estimation. Using MES, the TOA estimate with respect to thanmigg of the time frame is evaluated

astyps = [argmax{z[n]}}Tb = nmaz1p. HOwever, the strongest energy block in many cases may not
1<n<N,



be the leading energy block (Fig. 3), and the MES therefore dt®rror-floor even in high signal to
noise ratio (SNR) region. Also, the performance of it degsadéh /V,, since it becomes more likely to

identify a noise only block as the maximum energy block.

B. Threshold Comparison (TC)

Received samples can be compared to an appropriate thdeahdlthe first threshold-exceeding sample
index can be corresponded as the TOA estimatet i@ .= [min{n\z[n] > f}}Tb, where¢ is a threshold
that must be set based on the received signal statisticen@ie minimum and maximum energy sample

values, the following normalized adaptive threshold carubed (see Fig. 4)

§ — min{z([n]}

max{z[n|} — min{z[n]}

3)

gnorm =

Optimal value of¢,,.-» changes depending on the SNR as discussed later in the paper.

C. Maximum Energy Selection with Search-Back (MES-SB)

In order to improve the performance of the TC in low SNRs, thegnsamples prior to the maximum
should be searched. The TOA estimate with a thresholding aw#ward search is then given by
tMES—SB = {min{n|2[n] < &} + Nnaz — Wsp — 1} Ty, wherezin| = [z[nmaw — W] z[nmaz — Wep +
1] .. z[nmax]}. Search-back window is denoted b¥,,, which is set based on the statistics of the
channel, and i$15ns/7;] in our simulations. Note that the accuracy of this approachlso limited by

the accuracy of the MES.

D. Weighted Multiscale Product (WMP) of MZ-DWT

Derivative of Gaussian (dG) approaches are commonly usedeiditerature for detecting the edges
by analyzing the signal at multiple scales, where in ordeprieserve the correlation (and regularities)
across various scales, non-orthogonal MZ-DWT [33] is emgioyThe MZ-DWT ofz[n] € L?(R) at

scales, wherel < n < N, is given by

Was2[n] = 2[n] * ¢o[n] =Y _ do:[m]z[n —m] , (4)
which is equivalent to
Wasz[n] = <z * (23d2’lij>> [n] = 28%(2 * 9 )[n] | (5)

where[n] and ¢[n| are discrete-time approximations to the Gaussian funciiuh its derivative using

cubic and quadratic splines, respectivelydenotes convolution] < s < S — 1, and S = logy Np.



Equation (5) implies that MZ-DWT is analogous to smoothing fignal with Gaussian splines at
multiple scales and then estimating the gradients.

As analyzed by Sadlest. al. in [29], [34], multiscale product (MP) of MZ-DWT given by

P Dln) = T Waezln] . (6)

can be effectively used for improving the accuracy of edgea®n, whereS,,; is the optimal scale that
enhances the regularities. However, it is not guaranteetiserve sharp edges in the UWB energy vector,
and since the energy samples do not have a smooth varidimegdges can be mixed with noise samples
when the MP-MZ-DWT is used. Poor edge detection performancéisfapproach in our simulations
(which is not surprising due to the discussed issues) ntetivais to introduce a weighting function

to suppress the edges caused by noise while promoting thes edghe vicinity of the energy-bearing

blocks. g
PN ) = (vocln] = minfuine ]} ) x [] Wzl @
s=1

Weighting Function = G(()
where( is an arbitrary scale so that the energy in the multipathydptafile is effectively captured in
the smoothed signal. The value ¢fis set to3 in our simulations. The TOA estimate is then given as

tpwr = [argmax{ﬁéimﬂ [n]}} T, for n even, and pyr = [?igril]ivn{PéZKT) [n}}} Ty, for n odd (with

. lsnsN, T -
the distinction arising in order to calculate the rising edg

V. IMPROVING THE ACCURACY OFMES

In this section two filtering techniques that enhance the raoyuof maximum energy block selection
are presented. The first uses the average energy distributandaithe maximum energy block, while the
second a bank of scaling filters designed in a dyadic treetatejcwhich improves the maxima closer

to the leading edge of the signal.

A. Filtered Maximum Energy Selection (F-MES)

By knowing the average energy distribution around the marirenergy block, one can filter the
energy vector to enhance the peaks (and suppress noise gentgpby collecting the energies present
in the neighboring blocks. In Fig. 6 the mean energy distiiputaround the maximum energy block
is shown forT, = 1ns andT, = 4ns, after averaging over 1000 channel realizations for Clitie
mean block energy values are not significantly different fdi2C and therefore those figures are not

included here. In order to capture the energy effectively emaracterize the peaks better, one can filter



the received energy vector with a time-reversed form of tiserdte data in Fig. 6, and then apply the

MES-SB or another algorithm to determine the leading edge.

B. Multiscale Energy Products (MEP)

Signal energies from coarse to finer time scales can be exgpltmtémprove leading edge detection
performance. Since the energy values at different scalesdwis®i correlated, their product is expected
to enhance the peaks due to signal existence.

Let ho:[n] denote the rectangular filter at scalegiven by
ha:[n] = u[n +2°] — uln] , (8)

wheres = 1,2,...,S is the scale number ranging from finer scales to coatser, |log, Ny |, andu[n]
is the step function. The convolution éf-[n] with the energy vector produces energy concentration
of our signal at various scales, given by

ysln] =Y 2[klha:[n — k). 9)

k
Sinceys[n| are correlated across different scales, we can use theictdinultiplication to enhance the

peaks closer to the leading edge of the signal, and supposs components, i.e.

s
PP ) = T waln), (10)
s=1
WherePéMEP) [n] denotes the product of convolution outputs from sdafehich is the energy vector it-

self) through scal&. Then, the location of the strongest path is estimatedas = [argmaX{PS [n]}] Ty.
1<n< N,
Note that once the strongest energy block is estimated,ratsback algorithm can be run to detect the

leading edge of the signal more accurately.

VI. ERRORANALYSIS FORTC BASED TOA ESTIMATION

In this section, mean absolute error (MAE) of the TC based TG#nasion is analyzed, and closed
form error expressions are presented. First, the probalfitdetection of a certain block is derived,
which leads us to the derivation of MAE of the TOA estimatetfue case of uniformly distributed TOA.
Assume initially that the delay of the leading-edge eneigglbis fixed. Letn,,, denote the first arriving

energy block indexy, denote the estimated block index, amd=1,2,--- , Ng denote the block indices
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where the energy block is being searched. Then, fixing the \a&flteresholdg, probability of detecting

an arbitrary blockn,, to be the energy block is calculated'as

PD(”hyp) =P = ”hyp)

nhyp—l
| II Pebl<9)] Pl > 9 a
n=1
where z[n] has a centralized Chi-square distribution foe= 1,2, - -, n4, — 1 (corresponding to noise-

only blocks), and non-centralized Chi-square distributior n = ny,,. The cumulative distribution

functions (CDFs) of these centralized and non-centralizedsGuare random variables are given by

Pepia(€) = P(z[n] <€)
M/2—1

=1—exp <—2§2) ; l,ll <2§2>2 (12)

Preea(Ens ) = Pl < ) =1 Quya (2, (13

whereo? = % is the noise variance,(.) denotes the Marcum-Q function with parameterand E,,
is the signal energy within theth block, whose PDF varies with, block size, and channel model. Note
thatny,, = nt. corresponds to correct detection, and the probability Isefg detecting the first energy
block is simply calculated a®rp(nia) = P (7 # ntoa) = 1 — Pp(ns0q). FiXing the value of¢, three

cases can be considered foy,,. If nyy, < noa,

Pp(yp) = [Peniz(€)]™ 71 (1 — Papia(€)) (14)

while on the other hand ify,, = 704,
Pp(nyp) = [Penia(€)]™ ! x

/E (1 -k "w(Emoa,f))p(Enm)dEnm ; (15)

Mtoa

If 4y, > 1404, We can further consider two conditions. L&t, denote the number of noise plus energy

blocks where there exists a significant amount of energyJf, — 7100 < Nep

TL;Lyp—l
PD(nhyp) = [PchiQ (5)]7”0&71 ( H /;‘ PncCIZQ(ETw g)p(En)dEn>
X / (1 - P7L61'2(Enh,7/1)7g))p(Enh,yp)dEnh,yp ) (16)
E

"hyp

'Note that this is valid fom,, > 2. For ny,, = 1, the terms corresponding to noise blocks become unity.
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while, if npyp — ngoa > Nep

Pp(nnyp) = [Peniz(€)]™rvrNev ™1 (1 - Pchiz(f)>

Ntoa+Nep—1

X HP / ncx2 Ena€ ( ) (17)

N=MNtoa

In order to carry out the evaluation of the detection prolitéds, the energy PDFs(E,,) are obtained via
simulations (see Fig. 11) with considering the uniformiytiilisited delay offsets of the individual paths
within the blocks. Note that in order to calculate closedrf@xpressions for the detection probabilities in
the case of normalized thresholds presented in (3) ratlaer fiked thresholds, the PDFs &f,.., can be
used. However, our simulations show that especially fayddr, /Ny values,&,,.., is highly correlated
with the energies in the first couple of energy blocks, withrelation coefficients being on the order of
0.6 at E,/Ny = 26dB for the first four energy plus noise blocks. This implies tha BDFs 0f¢,,0m
also has to be conditioned dti,, which makes closed form error analysis cumbersome angtaadly
intractable for variablée.

Now let n,, ~ U(1, Np). After averaging over different block offsets, the proliébiof correct

detection of first energy block becomes

Np

PL()avg) (ntoa) = Z Pp (ntoa)p(ntoa)

Ntoa=1
€L Z P (0s) 8)

whereby the average false detection probability becoR8” (n;n,) = 1 — P9 (n40,).
Given ny,, to be fixed, the MAE can be calculated by averaging over theghitity of detection of

different TOA estimations

n—nﬂ ZPD n—ntoa‘ . (29)

Cabs|[Ntoa) = [

In other words, the absolute error corresponding to eaatkbioe weighted by the probability of detecting

that particular block. Fon,, ~ U(1, Ng), we can average,,s[n:.,| to obtain the average error as
Nb 1 NIJ
e = N eqps[necalp(nion) = A > eabslnica) - (20)
Nioa=1 Nioa=1

It is worth to mention that given the means and variances @fcdntralized and non-centralized Chi-
square distributions ago[n] = Mo?, o2[n] = 2Mo*, pe[n] = Mo? + E,, 02[n] = 2Mo* + 402 E,,

we can use Gaussian approximation (for appropriately laedees of M) to model the received signal
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statistics. Then, the approximated CDF will be given By,»(¢) = Q <5’”7°[”]> for the noise only

oo[n|

blocks, andﬁncxz(En,g) =Q (f;“i[n[]"}) for the energy plus noise blocks.

VII. IEEE 802.15.4A CHANNEL MODELS

In all the simulations that are presented in the next sectimchannel models CML1 (residential LOS)
and CM2 (residential NLOS) of IEEE802.15.4a [49] are employed. igThe channel realizations are
sampled a8BGHz, 1000 different realizations are generated, and each realizatis a TOA uniformly dis-
tributed within (0, 7). In IEEE 802.15.4a residential environment channel measemtsntap-amplitude
statistics are reported to be Rayleigh distributed as agpds log-normal in IEEE 802.15.3a. Mean
number of clusters in CM1 is 3 and while in CM2 it is 3.5.

A raised cosine pulse @f. = 1ns is considered for all scenarios, and it is convolved withrealizations
of both CM1 and CM2 channels to obtain the received signaterAihtroducing uniformly distributed
delays, energies are collected within non-overlappingdaivs to obtain decision statistics. Two critical
statistics for the accuracy of the TOA estimation at thip stee the PDF of the energy of the maximum
energy block (Fig. 9), and the PDF of the delay between the maxiranergy block and the leading
edge block (Fig. 10). Since CM2 is a non-LOS channel, its delagaspis expectedly longer than that
of CM1. Therefore, as typically observed, it would be morellkfor the highest energy blocks in CM2
to have less energy compared to the highest energy blockdib, @/hen the total received energy is
normalized. Also in Fig. 11, PDFs of the energies within the fimirfblocks including and after the
leading edge block are presented. These PDFs are used to evhi@dheoretical expressions derived in
previous section, as will be compared with simulations i tiext section.

The other simulation parameters are (unless otherwised$taje= 200ns, B = 4GHz, Ny = 1, and
N; = 1. Both 1ns and4ns are considered fdf,. The MAE is used to compare the performances of
different algorithms. However, although the large framirval chosen in our simulations considerably
increases the MAE (such as due to choosing the noise onlkdlocMES based algorithms), the fact
that there exists consecutive energy plus noise blockds/ilusterings of the delay errors at and after the
nioath block (see Fig. 15). This implies that small TOA estimatesatgr thart,,, have larger confidence
values. Note that eacims timing error corresponds 83cm of ranging error as can be calculated from

the speed of light.
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VIIl. RESULTS ANDDISCUSSION
A. Normalized Threshold Characteristics of CM1 and CM2

TOA estimation errors in number of blocks with respect to émeployed normalized threshold for
various £, /Ny are given in Fig. 12 for CM1 and in Fig. 13 for CM2. It is observedttselecting,, o,
to be on the order 0.8 will yield near optimal performance at almost evety/N, under CM2, while
for CM1 it must be closer to 0.2 at highi,/Ny. Regardless of the threshold selectionFgt Ny < 20dB
the MAE becomes intolerably high for sub-meter resolutianging. The optimal threshold levels for
CM1 and CM2 with respect td, /N, are depicted in Fig 14 for better visualization, fBiy = 1ns and
T, = 4ns.

B. Signal Peak Enhancement with MEP

The performance of the MEP method can be measured by analyzénthé decrease in the delay
(compared with MES) between the strongest energy block andefiestgy block. LetA be the distance
in terms of the number of blocks between first-arriving endstpck and maximum energy block. Using
the MEP, the peaks away from the leading edge are effectivghpressed, decreasiny. In Fig. 15,
CDFs of A before and after the bank of multiscale filters are showrilfoe 4ns at variousFy /Ny. It is
observed that especially when the noise variance is highMBP lowersA, and consequently the error
in the TOA estimate. LowE, /Ny also yields erroneous selection of the maximum energy bjoick to

the leading edge.

C. Comparison of Performances of Various TOA Estimation Allgors

In Figs. 16-19, the performances of different energy detactiased TOA estimation algorithms are
tested in IEEE 802.15.4a CM1 and CM2 (which can also be implémdewith absolute values of
correlator outputs). Thé,,, is set to0.5(min{z[n]} + max{z[n]}) with the assumption that there is no
SNR estimate available, and analysis of adaptive selecfitirecoptimal threshold is left to a subsequent
discussion in the next sections. It is observed that the T@pas well at highE} /Ny, while the MES
is better at higher noise variance. The reason for TC perf@mivorly in general at low SNR region
is frequent threshold exceedings caused by noise. On ther bnd, when the SNR is large, the TC
does not face an early error floor as opposed to the MES. The WMP-MZ-P@forms better than
the MES for CM1 at highE, /Ny, however, not as well as the MES-SB. Under CM2, performance of
the WMP-MZ-DWT is not acceptable. The performance improventesit comes with F-MES is better
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at higher noise variance, and at larger block sizes. On therdiand, MEP and especially MEP-SB
performs well at allE}, /Ny, and does not require estimation of the filter function as enFRMES case.
The performance difference under CM1 and CM2 is os@B in favor of CM1 for low to moderate
SNR ranges. This can be explained by Fig. 9, where the prolyabflitarge energy values is shown to
be much larger for CM1 compared to CM2. On the other hand, tmeefOA estimation errors hit the
error floor, algorithms perform slightly better under CM2riHaM1. The explanation for this phenomena
comes with Fig. 10, where it is indicated that even though thergy values are small, they are more

frequently closer to the leading edge for CM2.

D. Effect of Number of Blocks on the Performance of MES

If a larger number of blocks are used in the MES, it becomes nike#ylthat noise samples can be
erroneously selected as the maximum energy block. In FigM&E performance of MES was analyzed
for various frame durations whil&, = 1ns. Even though there is not much variation in the performance
at large E, /Ny, higher N, may degrade the performance at lowgy/N,. Also note that the selection
of Ny, x Ty, that isTy, limits the maximum measurable distance. For instancestante that it would
take (N, + 1) = T}, seconds for the radio frequency (RF) signal to traverse wbal@rroneously treated

as a signal arriving within the first block in the energy anilys

E. Comparison of Performances Using a Single Pulse, Multiplisday or Multiple Symbols

In Sections 1ll-A.1 and IlI-A.2, it was noted that using mplé pulses degrades the performance of
TOA estimation with energy detection. In order to suppors tha simulations, in Fig. 21, performance
of MEP-SB was studied wheiN, = 1 and N, = 5, with identical symbol energies in both cases. It
is observed that using multiple pulses per symbol in essdegeades the performance with an energy
detection approach. It can also be seen that multiple sysri#oi be used to obtain a gain at Ié&y/Ny;

however, at high SNR in all the cases, similar error floors apeganced.

F. Comparison of TC Based TOA Estimation Using Theory and Siionat

The theoretical and simulated performances of thresholédb@©A estimators when using a fixed
threshold of0.1 x E; at all E,/Ny are given in Fig. 22 for CM171;, = 4ns). The PDFs obtained via
simulations in Fig. 11 are used to average the performancastbg energy distributions. The PDFs of
the first8 blocks including and aften,,, are included only, considering the rest of the blocks to be

noise-only blocks. Even though the error expression in (BOvs a good match with simulation at low
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Ey/Ny (where the ranging error is unacceptably bad), it yieldénaigtic results compared to simulations
at large £, /Ny.

The performance of the threshold based TOA estimation campeied using an adaptive threshold, as
discussed in previous sections. Givaax{z[n|} andmin{z[n]}, optimum adaptive normalized threshold
values that corresponds to the operated Ny can be used to have a superior performance compared
to a fixed threshold (excluding very high SNRs). However, tleiguires estimation of the SNR, which
is hot an easy task in UWB due to extremely low power operatioaracteristics. Instead, an adaptive
normalized threshold,,,», can be used at all SNR values. As an examfylg,,, = 0.5 is used in Fig. 22,
which shows to match with the optimum threshold result&gtN, = 22dB, and performs suboptimal
otherwise.

As a final remark, att, /Ny = 26dB, it is observed that a fixed threshold performs better then t
optimal adaptive threshold. This is due to the fact that ogkithreshold values obtained via simulations
are optimalgiventhe knowledge of onlynax{z[n]} andmin{z[n]}. The fixed threshold values used for
demonstrating theoretical and simulation results in Figagmes the knowledge of the received energy

value, which is not exploited in the adaptive thresholdnestion.

IX. CONCLUSION

Various TOA estimation algorithms for low sampling rate UVEBstems based on energy detection
are analyzed. Maximum energy selection based TOA estimasicshown to be not accurate enough,
particularly when the number of blocks is large. Two filteritechniques are introduced to improve
the accuracy of the maximum energy selection. The first apprea&ploits the mean energy around the
maximum energy samples in order to enhance the peaks; howigerequires a-priori knowledge of the
filter shape. On the other hand, the second approach anahaes¢rgy at multiple time resolutions with
hierarchically designed filters, so that the peaks closdrdddading edge are enhanced. Simulations show
that the introduced multi-scale energy product approagiieémented with a search-back step outperforms
all the other algorithms in all test cases except TC algorittinaery high SNR. A comparison of using
single pulse versus multiple pulses is discussed, and itppated via simulations that using larger
number of pulses actually degrades the TOA accuracy whemgmetection is used.

An adaptive threshold selection approach that makes use ahinimum and maximum energy samples
is introduced, and optimum threshold values are demoasttraa simulations for CM1 and CM2 channels.
Closed form expressions for MAE for the fixed threshold casedarived and compared with simulations,

yielding good match at low to moderate, /N, ranges.
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It may be interesting to further evaluate some of the tealesgdiscussed in the Section II, such as

composite hypothesis testing and stationary index basgarigdms, as they can be applied to UWB

TOA estimation. Even though multi-scale products of MZ-DWTtloé energy vectors did not yield as

satisfactory performance in our simulations, leading edgiction techniques upon estimation of the

Lipschitz exponent of the energy samples and using the WTMMoednoked into. Also, how transmitted

reference schemes can be exploited for TOA estimation habe®n addressed in the literature, and can

be an attractive research topic.
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Fig. 1. Transmitted UWB-IR pulses in a symbol, whe(&,,N,) = (5,4), T, = 3T, and ({¢;},{d;}) =
({072737170}7{+17_13_17+17_1})'
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Fig. 2. Sampling of the received signal after energy detection.
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Fig. 3. lllustration of basic TOA estimation techniques based on energplesam
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Fig. 17. Absolute error plots for different algorithms with respec#igy Ny (CM1, T, = 4ns).
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Fig. 18. Absolute error plots for different algorithms with respecfig' Ny (CM2, T, = 1ns).
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Fig. 19. Absolute error plots for different algorithms with respectigy Ny (CM2, T, = 4ns).
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Fig. 20. Effect of number of blocks on the performance of MES (C¥gL= 1ns).
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Fig. 22. Comparison of theoretical and simulation results with respeg} fdV, for fixed and adaptive threshold based TOA
estimation algorithms (CM1T, = 4ns).
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