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Abstract

We present a novel method, which we refer as an integral histogram, to compute the his-
tograms of all possible target regions in a Cartesian data space. Our method has three
distrince advantages: 1 - It is computationally superior to the conventional approach. The
integral histogram method makes it possible to employ even an exhaustive search process in
real-time, which was impractical before. 2 - It can be extended to higher data dimensions,
uniform and non-uniform bin formations, and multiple target scales with out sacrificing its
computational advantages. 3 - It enables the description of high level histogram features. We
exploit the spatial arrangement of data points, and recursively propagate an aggregated his-
togram by starting from the origin and traversing through the remaining points along either
a scan-line or a wave-front. At each step, we update a single bin using the values of integral
histogram at the previously visited neighboring data points. After the integral histogram is
propagated, histogram of any target region can be computed easily by using simple arithmetic
operations.
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Abstract Computational complexity is one major bottleneck of the
histogram extraction and comparison based search tasks. It
We present a novel method, which we refer as an integralis obvious that only an exhaustive search can provide the
histogram, to compute the histograms of all possible target global optimum. Although several sub-optimal techniques
regions in a Cartesian data space. Our method has threethat are powered by gradient descent methods and applica-
distinct advantages: 1- It is computationally superior to tion specific constraints have been developed to deliver ac-
the conventional approach. The integral histogram method celerated alternatives to the basic exhaustive search;, com
makes it possible to employ even an exhaustive search proputer vision problems that rely on the optimal solutions,
cess in real-time, which was impractical before. 2- It can such as detection and tracking, still demand a theoretical
be extended to higher data dimensions, uniform and non-breakthrough in histogram extraction as much as an power-
uniform bin formations, and multiple target scales with- ful computers to crunch the numbers.

out sacrificing its computational advantages. 3- It enables 1o address the computational requirements of detection
the description of hlgher level hiStOgram features. We ex- tasksy we deve|op a fast method to compute histograms of
ploit the spatial arrangement of data points, and recursive || possible target regions in a given data. We take advan-
propagate an aggregated histogram by starting from the ori- tage of the spatial positioning of data points in a Cartesian
gin and traversing through the remaining points along ei- coordinate system, and propagate an aggregated function,
ther a scan-line or a wave-front. At each step, we update awhich we refer as the integral histogram, starting from an
single bin using the values of integral histogram at the pre- origin point and traversing through the remaining points
viously visited neighboring data points. After the intdgra ajong a scan-line. We iterate the integral histogram at the
histogram is propagated, histogram of any target region can cyrrent point using the histograms of the previously pro-
be computed easily by using simple arithmetic operations. cessed neighboring data points. At each step, we increase

the value of the bin that the current point fits into the bin’s

range. After the integral histogram is obtained for each dat
1. Introduction point, histograms of target regions can be computed easily
by using the integral histogram values at the corner points
of those regions without reconstructing a separate hiatogr

A histogram is an array of numbers in which each ele- for everv single redion. In a 2D dat h . th
ment, bin, corresponds to the frequency of a range of values very sing glon.ina. ata, such as an image, the
ntegral histogram converts into the extraction of rectang

in the given data. For instance, each bin counts the numbet ) . . . X
of pixels having the same color values in case of an imageIar region h|stograms, which are computed b_y Intersection
histogram. Thus, a histogram is a mapping from the set ofOf the integral histogram at the four corner points.

data values to the set of non-negative real numbers. From The integral histogram method has several advantages:
a probabilistic point of view, the normalization of an his- First, it is computationally superior than the conventiona
togram results in a function that is most akin to the proba- @Pproach. It is possible to execute even an exhaustive his-
bility density function of the data. It is possible to emplpy ~ togram search process in the data space, which was infea-
histogram to answer the following questions: What kind of Sible with conventional approaches. It can be extended to
distribution do the data come from? What are the statistical Nigher dimensions, histogram bin structures, and multiple
properties of this distribution such as how spread out ae th scales without sacrificing its computational benefits. k en
data? Are there outliers in the data? Histograms are amongbles description of advanced histogram features as illus-
the most common features used in many computer visiontrated in Fig. 1.

tasks from object based retrieval [1], [2], to segmentation  In the next section, we summarize the previous work. In
[3], [5] to detection [4], [6] to tracking [7]. section 3, we introduce the integral histogram formulation
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Figure 1. Advanced features, e.g. spatial arrangemeneoaohi-
cal fusion of the component histograms, can be easily cosaput
using integral histogram for various tasks.

in detail. In section 4, we give a computational complexity ) )
analysis by considering different scenarios. In sectiones, S Integral Histogram Formulation

present simulation results and discuss various aspedig of t _ . _ _
proposed method. Integral histogram is a recursive propagation method

works in Cartesian spaces and it can be extended into any
dimensional data space and any tensor representatioss. Iti
a superset of the cumulative image formulation mentioned
in the previous section. To perform histogram comparison,
we first generate an integral histogram by propagation, and

rectangular regions in linear time without repeating the then compute the histograms of target regions by intersec-
summation operator for each possible region [6]. A constant; -

number of operation for eaph_rectangular sum is ne_eded to Suppose our functioff is a defined in al-dimensional
compute such sums over distinct rectangles many times. A
cumulative image functionis defined such that each elemen
of this function holds the sum of all values to the left and 1, . »_gimensional tensor, i.ef ([z1,...,2q])) = [Y1,-s Y&)-
above of the_ p|>_(el including the value of the p|>§el |tsel_f. Let assume thel-dimensional data space to be bounded
The cu.mulatllve image can be cpmputed f_or all pixels with within the rangeV,, ..., Ny, i.e.0 < z; < N;.
four arithmetic operations per pixel. Starting from the top
left corner and traversing first to the right and then to the
down, the value of the cumulative image at the current pixel
equal is obtained by the addition of the left and the up pixel ~ We define an integral histografi(x?, b) at a data point
and subtraction of the upper left pixel's cumulative values at the p** order along a sequence of point8, x', .., x?
After the cumulative image is computed, the sum of image such as )
function in a rectangle can be computed with another four 4
arithmetic operations with appropriate modifications &t th H(x",b) = U QU ") ()
border. Thus with a linear amount of computation, the sum J=0
of image function over any rectangle can be computed inWhereQ(.) is the corresponding bin of the current point,
linear time. andU is the union operator that is defined as follows: the
A conventional approach of measuring distances be-value of the binb of H(x”,b) is equal to the sum of the
tween a given histogram and histograms of all possible tar-Previously visited points’s histogram bin values, thatis t
get regions is an exhaustive search. This process require§um of allQ(f(x?)) while j < p. In other wordsH (x*, b)
generation of histograms for the regions centered at everyis the histogram of the region between the origin and current
possible points. In case the search should be done at difPoint; 0 < =7 < 27, 0 < 23 < 7, ..., etc. Note that,

ferent scales, i.e. different target region sizes, the whol H(x",0) is equal to the histogram of all data points since
process should be repeated as many times as the numbéf" = [N1, .., Na] is the last point in the space. Therefore,
of scales. We give a pseudo-code of the conventional his-the integral histogram can be written recursively as
togram in algorithm 2.1. To our knowledge, the conven- Jopy — j—1 j

tional approach is the only solution (other than the pre- A, b) = H(x' b)) UQ(f(x)) @
sented integral histogram method) that guarantees to findusing the initial conditiorff (0, b) = 0, which means all the
the global optimum in histogram based search. bins are empty at the origin.

2. Previous Work

It is possible to calculate the sum of the values within

real valued Cartesian spa@’ such ax — f(x) where
% = [z1,..,z4] IS @ point in this space. This function maps

3.1. Propagation
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_ _ _ _ This assigns the histogram bins of the current point by using
Figure 3. Propagation of integral histogram by wavefromnsc  the intersection of the bins of the three previous histogram
Yellow indicates already traversed points. At each step,cilr- In case of anV; x N, gray level image, our parameters

rent integral hlstogr_am is obtained from the integral hgsamn val- ared — 2, k = 1, and a wavefront scan from upper left
ues of the three neighbors, and the bin that correspondsitentu . . .
point the propagation can be written as

point’s value is increased by one.

on. Then, the histogram is simply obtained as

H(ﬁ],wg,b) = H(CL’]—l,CL'Q,b)+H(£L'],£L'2—1,b) (4)
—H(CL’] —1,£L’2—1,b) + Q(f(w]l’g))

The are different scanning and propagation approaches; . . T
here we present two of them. One is a string scan metho nd the intersection becomé¢T’b) = H(py',py,b) —

that covers the data space along each dimension e.g. fronﬁ (pr.p3,b) — H(p,py ,b) +.H(p1 ' P2 ,b). .
left to right and top to bottom for an image data. The inte- As opposed to the conventional histogram computation,

gral histogram at the current point is obtained by copying the inte_gral histogram m(_athod d‘?es not rgpea_t the histogram
the previous values and increasing the corresponding binEXtraction for each possible region as given in the pseudo-
with respect to the current value of the point. The string c0de below:

scan requires only update at each step of propagation. How-
ever,d string scans at different dimensions should be per- Algorithm 3.1: INTEGRAL HISTOGRAM(N, S, B)
formed to obtain the histogram of a polytope region in a

d-dimensional data as illustrated in Fig. 2. for each possible point € N
It is also possible to scan points using an active sets of (for eachbin € B
points, i.e. a wavefront. The wavefront scan requires up- do {Propagate integral histogram
dating the integral histogram for such data points that thei do Get current value
left, upper, and upper-left neighbors are already scarmed i Find bin
case of an image data. The integral histogram at a point is Get bin value
obtained by three arithmetic operations for each bin of us- [ Increase bin value
ing the integral histogram values of the three neighbors as for each possible scale € S
shown in Fig. 3. The integral histogram values of the previ- (for each possible point € N
ous point is copied to the current point before the propaga- foreachbin € B
tion. Either the updated bin is copied to all of the remaining  do do do {Compute intersection
points’ bins (a total 0f).5(N? — V') copy operations), or all Normalize
the previous bins are copied to the current biBs\( oper- L Compute histogram distance

ations), which can be done by fast hardware-level memory
copy functions or by pointer tables.



Al B| C D E e Find bin: k integer divisions (or floating point multi-
Integer addition 1| 1 1 1 1 plication and float-to-integer conversion),
Integer multiply 4| 4|12 24 4 ) ) ) ) )
Integer divide 6136144 T 75 e Get bin valuek-dimensional array indexing,
Floating-pointaddition| 20 | 3| 1] 42| 4 « Increase bin value: 1 integer addition,
Floating-point multiply| 20| 5| 1.2 | 113 4
Floating-pointdivide | 20| 38 | 1.2 - | 100 e Normalize: B* floating point multiplication.
Type conversion 20| - - - | 105 . . . .
Bit-wise Shift 1 - - - > Note that, for different region sizes, the above computatio

should be repeated. In terms of the relative cost, the conven
Table 1. Column-A is the relative cost of the basic procesger  tional algorithm requiresd—3-+k operations for getting the
erators as given in [8]. Column-B is the cost of the operagars  current values in thé-dimensional input tensof 5k opera-
ecuted on a P4 processor that uses streaming SIMD and Rrescotions to compute the corresponding bin indices, 1 operation
arithmetic operations [10]. Column-C is the correspondingts (for 1 addition) to increase the bin value. Computing bin in-
on a P3 MMX processor [11]. Column-D is the relative costs on dices can be done by a floating-point multiplication and then
a P4 working running C++ compiler [9]. We also did our own  flpat-to-integer conversion, however the cost of this aptio

experiments to determine the relative costs (column-E). (109k) is higher than the division itself’6k). After all the
M, x .. x My points in the target region are processed, the
4. Complexity Analysis histogram bins are normalized with the number of points,

which requiresB* floating point multiplications, thugB*

Wi f d tational lexit vsis i operations in terms of the relative cost. Note that the previ
¢ periormed a computational complexity analysis n computations are repeated for each ofthex .. x Ny

terms of the relative cc_>st of processor operatlons, Wh'Ch IS‘histograms matches. Then, the total number of operations
usually measured against the cost of an integer addition op-

; . . : needed for all candidates becomes

eration. Relative costs of several operations reporteldéan t
literature as well as our own observations are presented in [ d " d d
the Table 1. (7d+ 76k — 2) [[ M; +4B* | [[N: [[Ss  (B)

Since the cost of the array indexing becomes comparable [ j J i s
especially for the higher dimensional data, we also make
an assessment of the indexing operators. In [8], it is ex- On the other hand, the integral histogram method needs
plained that an ordinary indexing for drdimensional array
requiresi additionsd-1 multiplications, and! logical oper-
ators, which has a total relative cosihaft(d—1)+1 = 6d—4.

By using a look-up table of pointers, the multiplicationsca o Get current values: #-dimensional array indexing

e Propagate integral: 2-dimensional array indexing
and2k integer additions,

be replaced by—1 pointer referencing. However, we found andk additions,

that the cost of ad-dimensional array indexing is approxi-

mately4d+3(d—1) = 7d— 3 in our experiments. e Find bin: & integer divisions (or floating point multi-
We assume the input data isiadimensional array with plication and float-to-integer conversion),

k-dimensional tensors. The histograms ardimensional
with B identical size bins assigned for each dimension, and
the bin size is also an integer number. The target region size
is M; x .. x My. Most problems also require extraction
of histograms at different scalés wheres = 1,..,d. The e Compute intersection: A-dimensional array indexing
type of the input data, i.e. whether it is integer or floating and3k integer additions,

point, changes the computational load. The below analysis
can be extended to fixed point operations as well.

e Get bin valuek-dimensional array indexing,

e Increase bin value: 1 integer addition,

e Normalize: B* floating point multiplications.

Thus, the propagation tak@$7k — 3) + 2k = 23k — 9
4.1. Integer Data operations in addition to the cost of getting the currentgal

Suppose the input data has integer valued tensors. Thé)f the tenso_r vaIl_Je§(i ~3+h), f|nd|ng_ the |nd|ces_ of the_
conventional histogram matching algorithm requires thesecorrespondlng b.'n7(5k)' and accumulz?\tlng_ the obtained bin
main tasks before comparing histograms: value (1), w_h|ch is repeated for all po:ints in the dgta space.
Then, we find that7d + 99k — 11) [; IV; operations are
e Get current values: 1i-dimensional array indexing required to construct the integral histogram. We compute

andk additions, the histogram intersection usidgrk —3) + 3k = 31k — 12



operations, and normalize the result usiBfloating point ~ 4.4. Matching Without Normalization
divisions @ B* operations) for each histogram. Then, the

cost of extraction of all histograms at all possible scades i In certain applications, the target object is searched in

its original size without a scaling, or with scaling factofs
d d half sizes that correspond to downsampling by powers of 2,
7d + 99k — 11+ (31k — 12 + 4B") H Ss H Ni (6) i.e. half size, quarter size, etc. In such cases, furthepeem
s i tational reduction is possible in both methods since no his-
Of course, both methods compute histogram distances usingogram normalization is needed for the same size matches.
the given metric in addition to the above costs. For a scaling factor o27%, wheres = 0 stand for no
We define a ratio of the computational load of the con- scaling,s > 1 for downsizing, the necessary computations
ventional approach versus the integral histogram method; of the conventional approach with integer data becomes

[(7d + 76k — 2) T} M; + 4B*] T[4 S,

d d
= 7 ﬂ
" Td4 99k — 11+ 31k — 12+ 4B []'S, 7) (7d+ 35k +4) [[ M; +5(1 —6(s)B* | [[ Vi (12)
J i

4.2. Floating Point Data

Use of floating point data increases the cost of the divi- p p

sions in the computation of the bin indices. The cost in- k
. . 7d + 26k — 11+ (31k — 12+ 4B IISS IIN
creases fron¥5k for each point tol00k. The bin value ( ) !

And the integral histogram performsin

increment cost becomes 4, which was 1 before. The total ° ‘ (13)
cost for the conventional approach becomes Note that, in addition to above costs, the conventional
d d approach has another important disadvantage. After each

d
(7d + 101k + 1) H M. + 4B* H N; H S, (8) computation, it needs the histogram array values to be de-
1 ; stroyed, which creates additional overhead.

Vi S

For the integral histogram method, the complexity of
the step for finding bin indices increasesit@k. In the
propagation stage, the cost of additions rises ffimo . .
8k. In the intersection computation, the cost becomesS'l' 1D Case: Time Series
4(7k — 3) + 12k = 40k — 12. The total cost becomes For an ordinary 1D data such as time series with a given

d d length M and a histogram with a total bin numbé&, a
7d + 130k — 11(40k — 12 + 4B’“) H S, H N; (9 target size range up 9 points, the parameters of the above
s i analysis becomé = 1 andk = 1. We obtain the ratio as

5. Examples

4.3. Power-of-2 Bin Sizes _ (81M +4B)S (14)

"= -—-——-/-"—:
N . 95+ (19+4B)S
Note that further optimizations on the both methods is ( )

possible by using a bin size that is a power of 2. Using We present the computational ratio results for 1-D data in
bit-wise shift operator, a division operator can be actdeve Fig. 4 (1*' row). The different graphs in the first column
with a fraction of the cost. For instance, instead of divid- represents the different target sizes plotted againstithe d
ing by 64, we can shift the number 6 bits to the right. The ferent number of bins in the histogram. The vertical axis
computation of the bin indices drops frofik to 2k (on av- shows the amount of computational savings. As visible, the
erage) depending on the amount of the shift. Then the totalintegral histogram improves the processing time up to the
number of operations for integer data using the conventiona 3.5 x 10* times over the conventional method. For instance,
approach becomes a common task that requires searching a pattern which con-
.‘ tains10* points using 82-bins histogram can be employed

d d d . .
{(M + 3k —2) H M; + 4B’“J H N, H s, (10) 3,347 times faster than the conventional method.
J i s

5.2. 2D Case: Gray Level Images
The integral histogram also gains using the bin sizes that

are values of 2. The total cost drops to For aM; x M, gray level image and a search region size

rangeS, S», the parameters of the above analysis become
T d d = 2andk = 1, and the ratio is
31k +7d+ 1+ (43k + 1+ 100B*) [ 8. | [[ ™V
P [88 M1 My + 4B]S1 .S,

(11) "7 102+ (50 + 4B)S1 S,

(15)



2-D data is very common in most vision problems from
gray-level surveillance video to mono-chrome aerial im-
agery. For instance, our problem may involve finding a
64 x 64 target pattern in 3 different resolutions using
bins histogram. The integral histogram method hunts for
these patterng, 435 times faster. In Fig. 4X*¢ row), we
give the comparison results, which show the integral his-
togram performs up t6 x 10* times faster computations.

input target similarity

Figure 5. Object detection using2&’-bins color histogram. The
5.3. 2D Case with 3D Tensors: Color Images computed similarity map is same as the conventional approac
however the integral histogram method runs in 63msecsaitino
For a color image with a 3D histogram (assuming each the conventional exhaustive search takes approximatelin@tes
point has 3 color values in a tensor form), the parametersfor 100 scales on a 3.2Ghz P4.
becomel = 2 andk = 3. Assuming we are searching for a
template atS;, S, scales, the ratio becomes
[240M; My + 4B3]S1 S5

_ 16
"7 7300 + (31 + 4B%) 5, S, (16)

In Fig. 4 3" row), we present the computational savings
for a color image (2-D data, 3-D histograms) search. Even
for a regular model matching task that search&$ax 100
object model in20 scales using histograms for each color
channel coded id-bits (16-bins), the process is accelerated
146 times. As shown in the graphs, the savings can go up to
7 x 10° depending on the number of bins and target size.

5.4. 3D Case: Volumetric Data

A volumetric data on the other hand hase= 3 and Figure 6. Texture detection using24-bins gradient orientation
k = 1. Searching in higher dimensional spaces is essentialhistogram. The integral histogram takes 88msecs, the cenve
in feature selection and classification problems. The eorre tional method requires more than 5 minutes to get the sarné.res
sponding ratio is obtained as

[95M, My M + 4B]S; 555
109 + (81 + 4B)S, 5,55

Ty = (17) that takes 88 msecs, the conventional method requires more

than 5 minutes of processing time. Note that, even such
Integral histogram method becomes more advantageous ira simple histogram provides sufficient information for tex-
higher dimensions as shown in Fig.4{row). The savings  ture segmentation, and it is possible to combine histogram
canreach up td5x 107. For al0?x10° x10° targetvolume  to define higher level features such as Haar wavelets, etc.
being searched in its original siz8 & 1) using al00-bins Note that, the integral histogram based search can be ac-
histogram, we can achievet x 10® times improvement. celerated further by using application specific constszist

it is often employed for the conventional approach.

5.5. Object Detection Results

Figures 5-6 show detection results of given patterns us-5'6' Tracking Examples

ing histogram features. In the traffic sign detection exampl We simulated the integral histogram method to track ob-
we search for the target object usin@'&-bins color his-  jects between the consecutive video frames. After intigli
togram. Although the conventional approach and integral tion of an object, we compute the color histogram similarity
histogram give the very same similarity map, the integral scores between the original histogram and the histograms of
histogram method runs in 63msecs, however, the conventhe object windows centered around every pixels. Note that,
tional approach requires 2 minutes on a 3.2Ghz P4. Thesuch a similarity computation would be very slow using the
integral histogram method is not limited to color and in- conventional approach. We compare our simple tracking
tensity histograms. In texture detection example, as givenadaptation with a gradient descent based method known as
in Fig. 6, we use &*-bins histogram of gradient orienta- mean-shift [7]. Mean-shift evaluates the histogram simila
tion. To get the same results with the integral histogram ity (in most cases using Bhattacharya distance) only within
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Mean-shift tracking results

Similarity scores using integral histogram
; | B

Histogram match tracking results

Figure 7. Object moves fast and there is no overlap between th
consecutive frames. Although mean-shift needs only 15ssec
average, it may fail if the relocation of the object is largel ghere

is no overlap of boxes. Integral histogram method can find the
correct position irb5msecs regardless of the overlap.

its original kernel, that is the window of the object. There-
fore, it is computationally feasible for real-time applica
tions. For an object size shown in Fig. 7, the mean-shift
iterations usingl6-bins histograms for each color channel
takes only 15 msecs on average depending the number o
iterations (on 3.2Ghz P4). However, mean-shift owns its
speed to the fact that it only evaluates the similarity withi
a limited search region. As a result, for the cases in which
object relocation is large and there is no overlap between
the object windows in the consecutive frames, it is bounded
to fail as shown in the figures.

The integral histogram enables us to compute similar-
ities all over the image plane in a relatively constant small

amount of time (55msecs), thus we can track accurately fast

objects even in high frame sampling rates that cause signif-
icant relocation of the objects.

6. Discussion

sian space. The integral histogram provides not a sub-
optimal or a partial solution, but an optimum and complete
solution for the histogram based search problems.

Our experiments with different number of bins, data di-
mensions, and data structures confirm that the integral his-
togram method drastically decreases the amount of compu-
tations needed to obtain a multitude of histograms, thus, it
significantly improves the speed of search algorithms based
on histogram comparison.

In addition, the integral histogram enables construction
of advanced histogram features for further feature selacti
and classification purposes. It can be extended easily to
higher dimensional data spaces and other tensor represen-
tations.

Several computer vision tasks such as video object de-
tection and tracking where the real-time requirement was
a bottleneck up to now will benefit from the integral his-
togram method.
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