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Abstract

A method for capturing geometric features of real-world scenes relies on a simple capture setup
modification. The system might conceivably be packed into a portable, self-contained device.
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Harnessing Real-
World Depth Edges
with Multiflash

Imaging

A method for capturing
geometric features of real-
world scenes relies on a
simple capture setup
modification. The system
might conceivably be
packaged into a portable,

self-contained device.

1 Car engine
(a) imaged
under diffused
lighting,

(b) stylized
using depth
edges comput-
ed with our
technique,

(c) with
increased
brightness,
(d) and with
histogram
equalized.
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harp discontinuities in a depth map, or

depth edges, are extremely useful 2.5D
entities. The ability to localize and highlight depth dis-
continuities makes it possible to produce stylized pho-
tography and videos, which are
useful in technical applications such
as medical imaging’ and nonphoto-
realistic rendering (NPR).2 In addi-
tion, depth edges are important
low-level features for many com-
puter vision tasks, such as visual
recognition.’

Figure 1 shows an example of
automatic depth-edge-based styl-
ization, where a car engine is
imaged under diffused lighting and
shown in a stylized form, accentu-
ating the shape-conveying depth
edges even when they are low-con-
trast edges, while deemphasizing
visual clutter, like those introduced
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by rust. The resulting image resembles drawings from
car repair manuals with an added degree of realism and
authenticity as it was captured from a real engine.

When a rich 3D model of a scene is available, identi-
fying and localizing depth discontinuities is a relatively
well-understood task. Extending this approach to real
scenes by first capturing 3D models, however, remains
difficult. Our multiflash imaging method bypasses 3D
geometry acquisition and directly acquires depth edges
from images. In the place of expensive, elaborate equip-
ment for geometry acquisition,* we use a camera with
multiple strategically positioned flashes. Instead of hav-
ing to estimate the full 3D coordinates of points in the
scene (using, for example, 3D cameras) and then look
for depth discontinuities, our technique reduces the gen-
eral 3D problem of depth edge recovery to one of 2D
intensity edge detection. Our method could, in fact, help
improve current 3D cameras, which tend to produce
incorrect results near depth discontinuities.

Exploiting the imaging geometry for rendering pro-
vides a simple and inexpensive solution for creating styl-
ized images from real scenes. We believe that our
camera will be a useful tool for professional artists and
photographers, and we expect that it will also let the
average user easily create stylized imagery.

Creating stylized imagery from photographs, rather
than 3D geometric models, has recently received a great
deal of attention. The majority of the available techniques
for image stylization involves processing a single image as
the input, using image processing and computer vision
techniques like morphological operations, image seg-
mentation, and edge detection. Some methods aim for
stylized depiction, while others enhance legibility. Ani-
mators have used interactive techniques for stylized ren-
dering—such as rotoscoping with real video footage—to
create animation like the groundbreaking Waking Life
(http://www.wakinglifemovie.com/) and Avenue Amy
(http://www.curiouspictures.com/shows/clips/ave_am
y.html. Multiflash imaging has the potential to automate
tasks where meticulous manual operation was previous-
ly required and to make it easier for filmmakers to blur
the line between photographic and stylized material.

0272-1716/05/$20.00 © 2005 IEEE



Basics

Our multiflash imaging method
is motivated by the observation
that when a flashbulb (close to the
center of projection of the camera)
illuminates a scene during image
capture, thin slivers of cast shadow
are created at depth discontinu-
ities. Moreover, the shadows’ posi-
tions are determined by the relative
position of the camera and the
flashbulb: When the flashbulb is on
the right, shadows are created on
the left, and so on. Thus, if we can (@
shoot a sequence of images in
which different light sources illu-
minate the subject from various
positions, we can use the shadows
in each image to assemble a depth
edge map.

Camera
hot shoe

Imaging geometry
To capture the intuitive notion of
how the positions of the cast shad-
ows are dependent on the relative ()
position of the camera and light

€3

Camera (O Image

Multiplexing Flashes
microcontroller

€2

source, we examine the imaging 2 Building a multiflash camera. (a) Imaging geometry. (b) Hardware schematic. (c) Prototype
geometry, illustrated in Figure 2. based on a Canon G2 camera.

Adopting a pinhole camera model,

the projection of the point light

source at Py is at pixel ex on the imaging sensor. We call
this image of the light source the light epipole. The
images of (the infinite set of) light rays originating at P
are in turn called the epipolar rays originating at ex. We
then define the term depth edges as the 2D images of
depth discontinuities.

Removing and detecting shadows

Our approach to reliably remove and detect shadows
in the images is to strategically position lights so that
every point in the scene that is shadowed in some image
is also imaged without being shadowed in at least one
other image. We can achieve this by placing lights so
that for every light there is another light on the camera’s
opposite side so that all depth edges are illuminated
from two sides. Also, by placing the lights close to the
camera, we minimize changes across images due to
effects other than shadows.

To detect shadows in each image, we first compute
a shadow-free image, which can be approximated with
the maximum composite image (MAX image), which
is an image assembled by choosing at each pixel the
maximum intensity value from among the image set.
We then compare the shadow-free image with the
individual shadowed images. In particular, for each
shadowed image we compute the ratio image by per-
forming a pixel-wise division of the intensity by that of
the MAX image. The ratio image is close to 1 at pixels
that are not shadowed, and close to 0 at pixels that are
shadowed. This accentuates the shadows and also
removes intensity transitions due to surface material
changes.

Algorithm

Codifying these ideas, we arrive at the following
algorithm:

Given n light sources positioned at P;, Pz ... Py,

W Capture n pictures I, k=1...n with alight source at P«

W For all pixels x, Imax(x) = maxc(lr(x)), k=1...n

B For each image k, create ratio image Ry, where R (x)
=11:(0)/Imax(x)

B For each image Ry, traverse each epipolar ray from
epipole e, find pixelsy with step edges with negative
transition, and mark pixels y as a depth edge

Building multiflash cameras

We built a multiflash camera using a 4-megapixel
Canon Powershot G2, as shown in Figure 2. A micro-
controller board triggers sequentially the four flashes
mounted around the camera. The board synchronizes
the flashes to the image capture process by sensing the
flash trigger signal from the camera hot shoe.

We have published elsewhere descriptions of more
advanced prototypes and discussions on the finer points
of multiflash imaging.? In this article we shall illustrate
the usefulness of multiflash imaging in a number of dif-
ferent applications: NPR, medical imaging, biological
illustrations, and visual recognition.

NPR with depth edges

Multiflash imaging can address two important issues
in NPR: detecting shape contours that should be
enhanced and identifying features that should be sup-
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4 Change
detection
(counterclock-
wise from top
left): reference
image, changed
image, detected
changed region,
and stylized
scene change
depiction.
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3 NPR with depth edges. (a) Bone scene, rendered
with signed contour style. (b) Flower scene, rendered
by removing textures and overlaying depth edges,
(bottom right) with contour colors assigned with fore-
ground object colors, (bottom left) with signed edges
highlighted by modulating image intensity around
depth edges.

pressed.>” Depth edges correspond to physical object
shape contours and silhouettes. In addition to provid-
ing the 2D location of such contours, depth edges are
also signed in the sense that at a depth edge we know
which side is the foreground (positive sign) and back-
ground (negative sign), since we know where the shad-
ow appeared. This 2.5D nature of depth edges allows
the design of rendering styles not possible or difficult in
the absence of high-quality 3D models. Figure 3 shows
examples of rendering styles.

Some static illustrations demonstrate action—for
example, changing oil in a car—by making moving parts
in the foreground brighter. Foreground detection via
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intensity-based schemes, however, is difficult when the
colors are similar and texture is lacking—for example,
detecting hand gesture in front of other skin-colored
parts (see Figure 4). We take two separate sets of mul-
tiflash shots, without and with the hand in front of the
face, to capture the reference and changed scene. We
note that any change in a scene is bounded by new depth
edges introduced. Without explicitly detecting fore-
ground, we highlight interiors of regions that contribute
to new depth edges. We create a gradient field where
pixels marked as depth edges in the changed scene, but
not in reference, are assigned a unit magnitude gradi-
ent. The orientation matches the image space normal
to the depth edge. The gradient at other pixels is zero.
The reconstructed image from 2D integration is a pseu-
do depth map. We threshold this map at 1.0 to get the
foreground mask, which is brightened.

Medical applications

In many medical applications like minimally invasive
surgery with endoscopes, it’s often difficult to capture
images that convey the 3D shape of the organs and tis-
sues under examination. Perhaps for the same reason,
medical textbooks and articles frequently resort to hand-
drawn illustrations when depicting organs and tissues.
In the sections that follow we show the use of multiflash
imaging to address this problem.

A multiflash imaging system captures additional shape
information compared to traditional cameras and there-
fore has the potential to enhance visualization and doc-
umentation in surgery and pathology. The raw shadowed
images can be processed to create finely detailed images
comparable to medical illustrations or to enhance edge
features for quantitative measurement. Alternatively, the
shadowed images can be combined to generate shadow-
free images, which are often desirable for documentation
of specimens in the field of pathology.

Surgery

Most endoscopic procedures are now performed with
the surgeon observing monitor displays rather than the
actual tissue. This affords the possibility of interposing
image manipulation steps, which, if they can run close
toreal time, can enhance the surgeon’s understanding.
Depth perception is an obvious deficit when using
monocular endoscopes. Researchers have explored 3D
imaging using stereoscopic methods explored with
mixed results. A 1999 study found that stereoendoscopic
viewing was actually more taxing on the surgeons than
monocular viewing.® Structured lighting is also under
investigation as a means for calibrating endoscopic
images, but this technique does not enhance 3D struc-
tures in real time.”

Application of enhanced shadow information to aug-
ment surgical perception has not been exploited previ-
ously. Shadows normally provide clues about shape, but
the circumferential (ring light) illumination provided by
most laparoscopes diminishes this information. Simi-
larly, the intense multisource lighting used for open pro-
cedures tends to reduce strong shadow effects. Loss of
shadow information might make it difficult to appreciate
the shapes and boundaries of structures and thus more



difficult to estimate their extent and size. It could also
make it more difficult to spot a small protrusion, such as
an intestinal polyp, if no clear color differences exist. The
ability to enhance the borders of lesions so that they can
be measured will become more useful as endoscopes
begin to incorporate calibrated sizing features.

Multiflash imaging with endoscopes

The simplest way to implement multiflash imaging in
endoscopes is to use multiple instruments, where instead
of inserting one endoscope, three are inserted. The mid-
dle instrument acts as the camera while the two on the
side act as light sources. By synchronizing the light
sources with the image-capture process for the middle
endoscope, the entire setup would act as a multiflash
camera. While this approach might involve inserting
more imaging instruments, it’s a way to systematically
illuminate the subject and potentially reduce the amount
of adjustments required during an operation to produce
images that convey the required 3D information.

In many scenarios, it’s more useful to have a single
instrument capable of multiflash imaging. For example,
in situations that require flexible endoscopes, it could
be difficult or impossible to insert and align multiple
flexible light sources with the endoscope. Fortunately,
it’s possible to implement multiflash imaging on a single
instrument with our method because the light sources
can be placed near the camera.! This allows for compact
designs suited for use in tightly constrained spaces,
unlike many traditional 3D shape recovery methods
where the imaging apparatuses must be placed at large
distances apart.

For proof-of-concept endoscopic imaging, we took
advantage of the illumination system in the Wolf Lumi-
na, a standard rod lens laryngeal endoscope. The illu-
mination bundle in this endoscope bifurcates at the
distal tip into two illumination ports, which are located
on each side of the imaging lens. Because the illumina-
tion fibers travel largely in separate bundles, we
achieved independent illumination of the two ports by
selectively illuminating different halves of the bundle
at their proximal end. Thus, we converted the endo-
scope to a multiflash system consisting of two flash
sources 180 degrees apart.

We bench-tested the multiflash endoscope with bio-
logical specimens that simulated the examination of the
human larynx. We were particularly interested to see how
well the system performed in detecting small surface
lesions, which commonly have depth discontinuities. The
processed images demonstrated the system’s capability
to find edges of some simulated lesions (see Figure 5).
We also found that the rounded shapes and the translu-
cency of internal surfaces can make it difficult to cast use-
ful shadows, problems that we will address in the future
by experimenting with illumination parameters.

Pathology

Pathology departments document surgical and autop-
sy specimens. Systems for photographing such speci-
mens involve special methods for eliminating unwanted
shadows, usually by placing the specimens on glass
plates suspended over black cavities. Using the multi-

5 (a) Enhanced endoscope. (b) Input image and image with depth edges

superimposed.

flash system and processing to obtain the MAX com-
posite image produces a view in which almost all shad-
ows are eliminated.

Medical and biological illustration

Often, it’s desirable to generate black-and-white illus-
trations of medical and natural history specimens in
which salient details are emphasized and unnecessary
clutter is omitted.’® The most important details to
emphasize are those that convey the object’s shape. Typ-
ically shape is conveyed by emphasizing edges and using
stippling for shading. This type of illustration is seen less
frequently nowadays because of the expense involved
in having artists create these graphics.

In our experiments with multiflash imaging, we have
observed that the depth edge confidence maps frequent-
ly resemble hand-drawn sketches. At the same time, since
they are created from photographs, the maps retain a high
degree of realism. We felt that multiflash photography
could make it faster, easier, and less expensive for artists
and researchers to create medical illustrations.

Figure 6 shows some results generated with this cam-
era. We showed the results to medical professionals at
the Massachusetts General Hospital and received posi-
tive feedback on the usefulness of these images. In addi-
tion, they also found the MAX composite image to be
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6 Biological
illustrations
with multiflash
imaging.

(a) Sphenoid
bone. (b) Raw
output from
depth edge
detection.
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(a)
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7 (a) Letter “R” in ASL alphabet. (b) Canny edges. (c) Depth edges
obtained with our multiflash technique.

-
)

N

8 From left to right: input image, Canny edges, and depth edges.
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more useful, as it’s difficult to take shadow-free images
with ordinary cameras. Anatomists and medical illus-
trators who have seen our system are mostly interested
in the depth-edge confidence image, which can be eas-
ily converted into a detailed black-and-white drawing.

Visual object recognition

The accurate detection of depth edges is also useful
in many object recognition tasks and human—computer
interaction applications. In this section, we show that
our method can be reliably applied in automatic sign
language analysis, particularly considering the finger
spelling recognition problem.

Sign language is the primary communication mode
used by most deaf people. It consists of two major com-
ponents: word level sign vocabulary, where gestures
communicate the most common words, and finger
spelling, where the fingers on a single hand spell out
more obscure words and proper nouns, letter by letter.
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We address the finger spelling recognition component,
showing the usefulness of depth edges in this task.

Although researchers have spent great effort in the
past decade to develop automatic finger spelling recog-
nition systems, most successful approaches are based
on instrumented gloves, which are considered cumber-
some for the user and are often expensive. In general,
nonintrusive vision-based methods, while useful for rec-
ognizing a small subset of convenient hand configura-
tions, are limited to discriminate configurations with
high amounts of finger occlusions—a common scenario
in most finger spelling alphabets. In such cases, tradi-
tional edge detectors or segmentation algorithms fail to
detect important internal edges along the hand shape
(due to the low intensity variation in skin color), while
keeping edges due to nails and wrinkles, which may con-
found scene structure and the recognition process. Also,
some signs might look similar to each other, with small
differences on finger positions, thus posing a problem
for appearance-based approaches.

Finger spelling recognition

We show that depth edges could be used as a signa-
ture to reliably discriminate among complex hand con-
figurations in the American Sign Language (ASL)
alphabet, which would not be possible with current
glove-free vision methods.

Figure 7 shows a comparison of the Canny method,
which is a standard-intensity edge detector, and depth
edges extracted with our method for the letter “R” of the
ASL alphabet. Important internal edges are missing in
the Canny method, while unwanted edges due to wrin-
kles and nails are present.

We realized that depth edges are good features to dis-
criminate among signs of finger spelling alphabets. Even
when the signs look similar (for example, letters “E”,
“S,” and “O” in ASL alphabet), the depth edge signature
is quite discriminative (see Figure 8). This poses an
advantage over vision methods that rely on appearance
or edge-based representations. However, our method
does not detect edges in finger boundaries with no depth
discontinuity. It turns out that this is helpful to provide
more unique signatures for each letter.

To quantitatively evaluate the advantages of using
depth edges as features for finger spelling recognition,
we considered an experiment with the complete ASL
alphabet—except for letters “J” and “Z,” which require
motion analysis to be discriminated. We collected a
small set of 72 images using our multiflash camera
(three 640 x 480-resolution images per letter, taken at
different times). The images showed variations in scale,
translation, and rotation. The background was plain,
with no clutter, since we wanted to show the importance
of obtaining clean edges in the interior of the hand. Tex-
tured but flat and smooth backgrounds did not affect
our method, but did make an edge detection approach
(used for comparison) much more difficult.

For object classification, we used a depth edge shape
descriptor similar to shape context matching, which is
invariant to object translation and scaling.*! For com-
parison, we also considered shape descriptors based on
Canny edges. We obtained the recognition rate using a



leave-one-out scheme in the col-
lected data set. Our approach
achieved 96 percent correct match-
es, compared with 88 percent when
using Canny edges.

Rebollar mentioned in his work
that letters “R,” “U,” and “V” repre-
sented the worst cases, as their class
distributions overlap significantly.'?
Figure 9 shows these letters and
their corresponding depth edge sig-
natures. They are easily discrimi-

nated with our technique. In the
experiment described previously,
the method based on Canny edges
fails to discriminate them.

We collected all the images in our
experiment from the same person.
We plan to build a more complete
database with different signers. We
believe that our method will better
scale in this case, due to the fact that
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N

texture edges (for example, wrin-
Kles, freckles, and veins) vary from

I‘j Loz /‘f(s N e
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Vb £ /1
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person to person but are eliminated 10 Cluttered scene using (a) Canny edges and (b) depth edges.

in our approach. Also, shape context
descriptors have proven useful for
handling hand shape variation from different people.!

For cluttered scenes, our method also eliminates all
texture edges, thus considerably reducing clutter (see
Figure 10).

For segmented hand images with resolution 96 x 180,
the computational time required to detect depth edges
is 4 ms on a 3-GHz Pentium IV. The shape descriptor
computation requires on average 16 ms. Thus, our
method is suitable for real-time processing. For improv-
ing hand segmentation, depth edges could be comput-
ed in the entire image. In this case, the processing time
for 640 x 480 images is 77 ms.

We are currently exploiting a frequency division mul-
tiplexing scheme, where flashes with different colors
(wavelength) are triggered simultaneously. We hope
this will allow for efficient online tracking of depth edges
in sign language analysis.

Additional finger-spelling issues

What if there are no cast shadows due to lack of back-
ground? In these cases only the outermost depth edge,
the edge shared by the foreground and distant back-
ground, is missed in our method. This could be detected
with a foreground and background estimation technique.
Let Ip be the image of the scene taken just with ambient
illumination. Then the ratio Ip/Imax (image acquired with
no flash over MAX composite of flash images), isnear 1in
the background and close to zero in the foreground inte-
rior. This is because the faraway background is not affect-
ed by the flash, but the object will be brighter.

Another solution is to use our method to detect inter-
nal edges in the hand, while using traditional techniques
(such as skin color segmentation or background sub-
traction) to obtain the external hand silhouette.

We noticed that depth edges might appear or disap-

pear with small changes in viewpoint (rotations in
depth). We believe this might be a valuable cue for hand
pose estimation.

A common thread in recent research on pose estima-
tion involves using a 3D model to create a large set of
exemplars undergoing variation in pose, as training
data. Pose estimation is an image retrieval problem in
this data set. We could use a similar approach to handle
out-of-plane hand rotations. In this case, a 3D hand
model would store a large set of depth edge signatures
of hand configurations under different views.

We have not seen any previous technique that can pre-
cisely acquire depth discontinuities in complex hand
configurations. In fact, stereo methods for 3D recon-
struction would fail in such scenarios, due to the tex-
tureless skin color regions as well as low intensity
variation along occluding edges.

Word level sign language recognition could also ben-
efit from our technique, due to the high amounts of
occlusions involved. Flashes in our setup could be
replaced by infrared lighting for user-interactive appli-
cations. We are currently evaluating our method in a
large database with different signers. We also plan to
address the problem of continuous signing in dynamic
scenes, using colored flashes.

Future work

Many hardware improvements are possible. The depth-
edge extraction scheme could be used for spectrums other
than visible light that create shadows, for example, in
infrared, sonar, x-ray, and radar imaging. We described
avideo-rate camera for detecting depth edges in dynam-
ic scenes described elsewhere, and we plan to build pro-
totypes with infrared light sources invisible to humans so
the resulting flashes are not distracting.>We could use a
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frequency division multiplexing scheme to create a sin-
gle shot multiflash photograph. |
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