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Abstract

We present a system for designing novel textures in the space of textures induced by an input
database. We capture the structure of the induced space by a simplicial complex where vertices of
the simplices represent input textures. A user can generate new textures by interpolating within
individual simplices. We propose a morphable interpolation for textures, which also defines a
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enforce histograms of high-frequency content using a novel method for histogram interpolation.
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a simple and efficient user interface. We demonstrate the usefulness of our system by integrating
it with a 3D texture painting application, where the user interactively designs desired textures.
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Figure 1: Continuous interpolation along a path connecting four samples in the space spanned by our database. Morphable textures with

sharpness preservation lead to an artifact free interpolation.

Abstract

We present a system for designing novel textures in the space of tex-
tures induced by an input database. We capture the structure of the
induced space by a simplicial complex where vertices of the sim-
plices represent input textures. A user can generate new textures
by interpolating within individual simplices. We propose a mor-
phable interpolation for textures, which also defines a metric used
to build the simplicial complex. To guarantee sharpness in inter-
polated textures, we enforce histograms of high-frequency content
using a novel method for histogram interpolation. We allow users
to continuously navigate in the simplicial complex and design new
textures using a simple and efficient user interface. We demonstrate
the usefulness of our system by integrating it with a 3D texture
painting application, where the user interactively designs desired
textures.

Keywords: Texture Synthesis, Data-driven Models, Image Warp-
ing, Morphable Models

1 Introduction

Textures play a fundamental role in enhancing the complexity and
realism of 3D models. They are usually defined using procedural
modeling or input photographs. Procedural textures, e.g., [Perlin
1985; Ebert et al. 1994], provide great flexibility and allow for fine
tuning of parameters to control the visual pattern. Unfortunately,
they require programming skills that are out of the reach of most
users. Furthermore, it is challenging to reproduce a realistic nat-
ural pattern. The use of photographs ensures realism but requires
finding exactly the desired texture in the real world or performing

tedious image retouching. The user might be able to find a num-
ber of textures that are similar to the wanted result but do not quite
match. It is then appropriate to combine these textures to produce
the desired output. In addition, textures often vary spatially due to
natural processes [Walter et al. 2001; Zhang et al. 2003] such as
weathering [Dorsey et al. 1996; Dorsey et al. 1999]. These effects
are hard to achieve with photo editing software and are not trivial
to implement as procedural textures.

We propose an alternative technique for modeling and design-
ing a wide variety of natural textures. Our approach is data-driven,
building upon a collection of photographic textures. We allow the
user to combine these textures and continuously explore the space
of textures induced by the dataset.

The structure of the space of all textures, however, is extremely
complex as shown by research in human vision, e.g., [Richards and
Koenderink 1995; Heaps and Handel 1999]. Quoting Heaps and
Handel [1999], “there is no fixed set of dimensions that character-
ize natural textures.” Traditional linear analysis and manifold em-
bedding cannot be used to achieve our goal. The space of textures
induced by our database is likely to be non-manifold; that is, vari-
ous neighborhoods have different dimensionality. Hence, we apply
a learning technique based on adaptive distance graphs [Giesen and
Wagner 2003] to construct a simplicial complex [Ngo et al. 2000]
of textures.

Our technique involves two main components. The first com-
ponent is a morphable model that facilitates the interpolation of
textures using a warp deformation. Our interpolation scheme also
includes a technique to preserve high frequency content, or sharp-
ness, in interpolated textures. The second component consists of
a simplicial complex that represents the space spanned by the tex-
tures in our database. For this, we define a texture distance metric
and construct the simplicial complex using a neighborhood graph
based on texture distances. We describe a simple and efficient user
interface to navigate in this space and produce new, natural textures
as illustrated in Figure 1. We have also integrated our system with a
3D texture painting application, allowing the user to design desired
textures interactively.

In summary, this paper makes the following contributions:

Data-driven texture model. We present a model for the space of
textures induced by an input database. New textures are generated
by the combination of input textures.

Simplicial complex. The structure of the induced space is captured
by a simplicial complex where vertices represent input textures. We



allow interpolating input textures inside each simplex.

Morphable textures and distance metric. We propose a mor-
phable interpolation for textures, which also defines a metric used
to build the simplicial complex.

Sharpness preservation. We present a general method that guaran-
tees sharpness in image morphing by enforcing histograms of high-
frequency content. Appropriate histogram interpolation is achieved
by interpolating the inverse cumulative histograms rather than the
histograms themselves.

Navigation. We allow users to continuously navigate in the simpli-
cial complex. Navigation relies on barycentric coordinates inside
simplices. The user can move from simplex to simplex by remov-
ing and adding textures from a set of neighbors.

1.1 Previous Work

Our work draws from two research areas: texture synthesis and
data-driven models.

Texture synthesis Texture synthesis seeks to generate textures
of arbitrary size given a small texture sample. Several algorithms
characterize textures according to distributions of multi-scale image
properties [Heeger and Bergen 1995; Bonet 1997; Zhu et al. 1997;
Zhu et al. 1998; Bar-Joseph et al. 2001; Portilla and Simoncelli
2000]. In non-parametric texture synthesis [Efros and Leung 1999;
Hertzmann et al. 2001; Efros and Freeman 2001; Wei and Levoy
2000; Zelinka and Garland 2002], texture is synthesized one pixel
(or one patch) at a time by finding pixels in the source sample sim-
ilar to the already synthesized pixels. Brooks and Dodgson [2002]
presented a related technique that uses similarity between texture
pixels to facilitate editing. Wu and Yu [2004] improved patch-based
texture synthesis using feature matching and patch deformation to
reduce artifacts at patch boundaries. Their feature matching and
texture deformation approach is similar to our warp computation.
Epitomic representations [Jojic et al. 2003] encode images using a
set of representative patches and mappings of those patches to the
original image. Hence, patch based texture synthesis can be seen as
the inverse process of constructing an epitome.

A number of authors have tackled the challenge of combining
and mixing textures. Heeger and Bergen [1995] and Bar-Joseph et
al. [2001] create novel textures that combine the multi-scale proper-
ties of different input textures. Wei [2001], Hertzman et al. [2001],
Efros and Freeman [2001], and Kwatra et al. [2003] synthesize a
non-uniform texture composed of homogeneous patches. Similar
to our algorithm, the texture metamorphosis approach by Liu et
al. [2002] is based on warp functions, but it requires the user to
specify feature correspondences manually. Zhang et al. [2003] gen-
erate spatially-varying textures from two input textures. However,
these approaches rely on a user to choose suitable textures that can
be combined in a meaningful way. In contrast, we automatically
construct a texture space that spans the range of textures induced
by a database of natural images.

Liu et al. [2004] describe a system to analyze and manipulate
photographic textures that allows a user to design novel textures.
However, they focus on near-regular textures, whereas we strive to
build a comprehensive texture model. Although they enable the
user to modify structure and color of individual textures, they do
not provide ways to compute sets of similar textures and interpolate
their properties as we do.

Data-Driven Models Data-driven approaches offer powerful
means to generalize the information present in input datasets. Lin-
ear approaches such as Principal Component Analysis are most
popular, but they cannot account for more complex phenomena.

Two main strategies have been proposed to introduce non-linearities
in the analysis.

Morphable models were developed for face analysis and synthe-
sis [Jones and Poggio 1998; Blanz and Vetter 1999]. A non-linear
warp registers face images or 3D models to a reference face. Lin-
ear analysis is then performed on the shape described by the warp
vector field and the registered images. Interpolation is carried out
both on the shape and texture components.

In contrast to linear techniques, non-linear dimensionality reduc-
tion [Tenenbaum et al. 2000; Roweis and Saul 2000] permits the
capture of spaces that are curved. However, it is usually assumed
that the local dimensionality is constant (manifold assumption) and
the topology is equivalent to a disk. Gomes and Mojsilovic [2002]
alleviate these restrictions, but their variational approach is lim-
ited to low-dimensional data by high computational costs. Ngo et
al. [2000] define non-manifold configuration spaces for animation
using simplicial complexes. However, the topology of the space
needs to be defined by the user. We use a similar representation but
propose an automatic construction technique for arbitrary datasets.

Similarly to our work, some methods combine morphable and
non-linear approaches. In Schaodl et al.’s video textures [2000], op-
tical flow permits a morph between pairs of data-samples (video
frames). The graph connecting the frames can be seen as a sim-
plicial complex with simplices of dimension one. Peters [2003]
constructs morphable models for specific image domains (e.g., fish,
dogs) using non-linear dimensionality reduction. His image corre-
spondences are, however, defined manually. In our work, we build
on these techniques to deal with non-manifold data sets and arbi-
trary dimensionality.

1.2 Paper Overview

In Section 2, we discuss the structure of texture space and point out
the difficulties involved in building a data-driven model. In Sec-
tion 3, we explain how textures can be interpolated using morph-
ing and present our method for sharpness preservation. We also
introduce a new distance metric which is used to define similarity
between pairs of textures. In Section 4, we present our simplicial
complex based on the pairwise texture distances and describe our
navigation method. Section 5 presents results obtained using our
model. Finally, we summarize the paper and describe possible di-
rections for future work in Section 6.

2 Data-Driven Texture Model

To make textures amenable to mathematical analysis, we interpret
discrete texture images as high-dimensional vectors. We unroll the
pixels of each texture and concatenate red, green, and blue color
channels to form a vector. However, vectors corresponding to nat-
ural textures occupy only a small portion of this high-dimensional
space. It is our goal to model the subspace of natural textures such
that a user can easily explore it and generate novel, valid textures.

Unfortunately, the space of natural textures does not form a lin-
ear subspace of the original high-dimensional space: Linear blend-
ing between two textures might result in an image that is blurry,
which prevents the use of standard linear analysis such as PCA. In
addition, the topology of the neighborhood of a texture varies from
texture to texture. Some textures can be naturally blended with a
large number of textures, while others have only a small number of
natural neighbors. We must emphasize that the notion of perceptual
texture similarity and the structure of texture space is challenging at
best [Richards and Koenderink 1995; Heaps and Handel 1999]; it
is highly dependent on the task or context. Perceptual studies have
shown mixed results when it comes to parameterizing this space,
and Heaps and Handel [1999] argue that “a dimensional model is
inappropriate” for natural textures.



We propose to model the space of natural textures as a union
of low dimensional convex sets (linear spaces) of different dimen-
sions. This construction allows us to capture the topological and
non-linear complexity of texture space and accurately represent the
range of valid textures. Our work should be taken in the context of
computer graphics: It is designed for the task of texture generation.
The navigation and texture adjacencies we define allow a user to
interpolate smoothly between textures and create the texture they
need. While our data-driven model captures important aspects of
the structure of texture space and texture similarity, we realize that
perception and machine vision might involve additional concerns.

Our data-driven texture model is built from a database of about
1500 natural textures acquired from photographs. The textures in
our database include a wide variety of phenomena such as building
materials (e.g., bricks, stone), organic materials (e.g., wood, grass),
and others. Furthermore, the textures were manually rotated and
scaled to have approximately the same orientation and feature size.
In our prototype, we represent each texture by a texture sample de-
fined as a 128 x 128 texture patch. We make the patches tileable
by using dynamic programming to find two pairs of optimal, non-
straight patch boundaries in a vertical and horizontal overlap area
around the patch [Efros and Freeman 2001]. Then we solve a Pois-
son equation with periodic boundary conditions to eliminate color
seams [Pérez et al. 2003].

3 Morphable Textures

Our morphable texture model is designed to facilitate seamless in-
terpolation of similar textures. In particular, we want to avoid
ghosting artifacts that occur when strong features of the interpolated
textures are misaligned. To address this, we use a warp function that
optimizes feature alignment. The residual feature misalignment er-
ror after warping indicates the amount of artifacts during interpo-
lation. We use this error as a texture similarity metric, which is
central to the construction of our simplicial complex of textures.

In the following, we explain this approach in more detail: We
describe feature extraction in Section 3.1 and computation of the
warp function in Section 3.2. We show how to perform morphable
interpolation between multiple textures in Section 3.3. Then, we
explain how we use the warp functions and the morphing procedure
to compute a pairwise symmetric similarity metric in Section 3.4.
Finally, we introduce our technique for sharpness preservation in
Section 3.5.

3.1 Feature Extraction

From a wealth of feature detectors, we chose the compass operator
introduced by Ruzon and Tomasi [2001] to extract oriented edge
features from the texture samples. The compass operator extends
the notion of edges from discontinuities in color value to disconti-
nuities in color distribution (texture edges). It is based on a circular
filter window split into two half-windows along a line. This window
is rotated, and for each orientation, the filter response is the differ-
ence in color distribution between the half-windows. The compass
operator reports the orientation and strength of the maximum re-
sponse at each pixel.

The compass operator has three parameters: the standard devi-
ation o of a Gaussian that is used to weight pixels in the circular
window, the number of discrete orientations k at which the operator
is evaluated at each pixel, and the maximum number of clusters ¢
that are used to represent color distributions. For optimal results,
the value of ¢ should be adapted to the noise level of the input im-
age. Hence, we manually choose a value of either 1, 1.5, or 2 for
each texture. The other parameters are fixed at k =30 and ¢ = 10 for
all textures. In our approach, we use the strength of the maximum
response for each pixel as a scalar feature map.
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Figure 2: Visualization of the dense warp field Wy, between two
feature maps Fy and Fj.

3.2 Warp Computation

Based on the per-pixel feature maps obtained with the compass op-
erator, we determine warp functions that minimize the feature mis-
alignment error between pairs of textures. Our approach to compute
the warp functions is based on a coarse-to-fine search, with a regu-
larization to ensure smoothness.

Let us denote the feature maps of a pair of textures (i, j) by F;, F;.
For each point (x,y) in F;, the warp function W;; defines a corre-
sponding point (x,y) + W;;(x,y) in F;. To find W;;, we perform a
coarse to fine search as follows:

Starting at the coarsest scale, we overlay both feature maps F;
and Fj with a regular triangulation based on a square grid of vertices
(each vertex has six neighbors). At the coarsest scale, the feature
maps are subsampled to a resolution of 16 x 16 pixels and we use
a triangulation of 8 x 8 vertices. Now, we exhaustively search for
the optimal position of each vertex in the triangulation of F; while
keeping the vertices in F; fixed. The cost of a vertex position is
determined by warping each triangle of its one-ring neighborhood
from F; to F; and computing the L;-error of the per-pixel scalar
feature strength. To ensure smoothness of the warp field, we also
compute the 2 x 2 Jacobian of the affine mapping that relates a tri-
angle in F; to its corresponding triangle in F;. As a measure of
the induced space deformation, we compute the L, difference be-
tween the elements of this Jacobian and the identity matrix (i.e., the
Frobenius norm). The deformation penalty for a vertex is given by
the sum of these values for all triangles in its one-ring neighbor-
hood. Finally, we use a weighted average of the L, feature error
and the deformation measure as the cost for the vertex position. We
have determined heuristically a suitable weighting factor that was
used for all textures in the database.

At each scale, we iterate once over all vertices of feature map F;
and apply the above procedure to find their optimal positions. Then,
we increase the resolution of the feature maps by a factor of two and
subdivide the mesh by splitting each triangle into four. We repeat
the search procedure and continue until the original resolution is
reached.

Note that, because we work with tileable patches, we construct
tileable warp fields by using modulo arithmetic at the patch bound-
aries. A visualization of the dense warp field between two brick
textures is shown in Figure 2. Furthermore, it is straightforward to
obtain the inverse mapping Wj; = Wi;l, which we will need in the
next section.

3.3 Morphable Interpolation

Our morphable texture interpolation is based on a barycentric for-
mulation of the morphing algorithm described by Jones and Pog-
gio [1998]. In contrast to their approach, we do not work with a
single reference texture. Warps are defined between pairs of im-
ages rather than with respect to a global reference image.

Each texture in the morphable model is represented by a color
and a shape component. Color is given by the map I : R> — R3
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Figure 3: Interpolating between two textures /; (bottom left) and /;
(top right) with independent weights for shape and texture.

that assigns a color value to each point. Shape is represented by the
warp vector fields W : R — R? establishing dense correspondences
between the pixels of pairs of textures. Barycentric morphing be-
tween n textures [;, 0 < i < n, involves two steps: First, we linearly
interpolate the warp vectors to produce intermediate warped ver-
sions of the input textures. Then, we linearly blend between these
intermediate textures to get the output texture /. This can be com-
bined into a single expression

n—1
i(xyy) = Z cili ((X,y)‘l— é (ijVlj(x7y))1) ) (1)
i=0 J#I

where ¢; and w; are separate weights for color and shape interpo-
lation, respectively. We need to obey the constraint 3 ;w; =1 to
guarantee that all the textures are aligned. Morphable interpolation
between two textures is illustrated in Figure 3. The textures in the
bottom left and top right corners are samples from the database,
while the others are generated using different weights to interpolate
shape and color. Results of interpolation between multiple textures
are given in Section 5.

3.4 Warp-Based Texture Similarity Metric

Our texture similarity metric is based on the dense correspondences
given by the warp field; it measures the residual error in the feature
registration achieved by the warp. This metric is a good indicator
for the amount of artifacts due to feature misalignment occurring in
morphable interpolation (Section 3.3).

To define a symmetric distance, we warp the feature maps of a
pair of textures (i, j) half-way. That is, we compute a pair of warped
feature maps F; and F 7 by using the feature maps F;, F; instead of
the corresponding texture images /;,/; in Equation 1. We choose
interpolation coefficients ¢; = 1, ¢; =0, w; =w; = 0.5, and ¢; =0,
cj=1,w;=wj=0.5, respectively. We then compute the similarity
between textures i and j as the sum of squared differences between
the warped feature maps F; and F' j. As in Section 3.2, we only
take into account the difference between scalar feature strength and
ignore feature orientation.

— po) 12 — CDFy(x)
25 — P - — CDF ()
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Figure 4: (Left) Interpolation of density functions pg(x) and pj (x)
for different weights ¢y and c¢;. (Right) We interpolate the inverse
CDF's (i.e., we interpolate CDF values horizontally as indicated
by the horizontal arrow); the interpolated density is obtained by
differentiation.

3.5 Sharpness Preservation by Histogram Inter-
polation and Matching

The above warp succeeds in aligning major features, but blending
still has an averaging effect that leads to a small amount of blurri-
ness. In order to match the sharpness level of the input textures, we
extract their high frequency statistics and enforce these statistics on
the interpolated textures.

We capture high-frequency content using histograms of steer-
able pyramid coefficients [Simoncelli and Freeman 1995], and we
achieve proper histogram interpolation using a novel technique
based on interpolating inverse cumulative histograms. We pre-
serve high frequency content in interpolated textures by enforc-
ing interpolated histograms following the approach of Heeger and
Bergen [1995]. Below, we focus on our novel technique for his-
togram interpolation. Please refer to the original work by Simon-
celli and Freeman [1995] and Heeger and Bergen [1995] for more
details on steerable pyramids and histogram matching,.

Histogram matching is based on the cumulative distribution
functions (CDF) of the histograms. A desired histogram can be
enforced by substituting all pyramid coefficients with value v with
new coefficients v/ given by

V' = CDF 0, (CDF 514(v)), @

where CDF;,,,, is the CDF of the desired histogram, and CDF;; is
the original CDF, which is obtained from the interpolated texture.

To preserve sharpness in the interpolated texture, we generalize
this approach by setting the desired histogram to be an interpolation
of the histograms of the input textures. This is achieved by linearly
interpolating the inverse input CDF's:

CDFygy, = Y w;CDF; !, 3)
j

where w; are the shape interpolation weights and CDF; are the
CDF's of the input textures. This procedure is illustrated for a syn-
thetic example in Figure 4. It leads to a more natural interpolation
than directly averaging the histograms, smoothly morphing one his-
togram into the other.

Because we are interested in enhancing high frequencies in the
interpolated texture, we only match the residual high-pass and the
highest-frequency pass-band histograms of the pyramid decompo-
sition. The enhanced interpolated texture is then reconstructed by
collapsing the pyramid with the modified high-frequency bands.
This is in contrast to Heeger and Bergen’s texture synthesis algo-
rithm, where histogram matching and image reconstruction is per-
formed iteratively over all pyramid subbands and, in addition, the
pixel color histograms.

Figure 5 illustrates our technique with a result obtained by en-
hancing the interpolation of two textures. In Figure 6, we point



Figure 5: Morphable interpolation with sharpness preservation:
(a), (b) input textures Iy, 11, (c) morphable interpolation without

sharpness preservation, (d) with sharpnes

S preservation.
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Figure 6: Comparison of our technique to linear blending: (a), (b)

input textures Iy, I1, (c) linear blending, (d) our technique. Interpo-
lation weights are w; = 0.5, ¢; = 0.5, i € {0,1}.

out the improvements achieved over linear blending without morph-
ing and sharpness preservation. Note that the procedure described
above is general and can be used with any image morphing appli-
cation.

4 Simplicial Complex Modeling

The goal of our technique is to facilitate the exploration of the space
induced by the input database and the design of novel textures.
Since only similar textures can be combined in a compelling way,
we use the distance metric described above to capture the topolog-
ical structure of this space and guide morphable interpolation. As
discussed in Section 1.1, we expect natural textures to have a com-
plex structure in a high dimensional space as illustrated in Figure 7.
However, standard linear and non-linear dimensionality reduction
algorithms are not flexible enough to describe such datasets with
non-manifold structure (Figures 7a and 7b). Therefore, we apply
an alternative method for constructing a non-linear representation,
which handles closed manifolds, manifolds with holes, and non-
manifolds (see Figure 7c). The method we propose is general and
can be applied to a wide range of data.

We model the space spanned by our dataset using an adaptive
neighborhood graph, where each texture corresponds to a vertex
in the graph. Two vertices are linked by an edge only if the dis-
tance between them obeys an adaptive distance criterion [Giesen
and Wagner 2003]. Finally, we define the space that represents valid
textures as the space inside all cliques of the graph. Our representa-
tion is a union of convex sets, or a simplicial complex of the graph.

To construct the graph, we start by computing a pairwise distance
matrix between all texture samples. For each texture i, we introduce
undirected edges to other nodes j if the distance d; j obeys the local
threshold d; ; < ¢ d; in, where ¢ > 1 is a global constant and d; yin
is the distance from node i to its closest neighbor. The advantage of
this graph construction over other neighborhood graphs is that the
connectivity parameter c is independent of the local dimensionality
of the data points and adapts to variations in sample density [Giesen
and Wagner 2003].

Our model for generating new textures is based on two assump-
tions: First, if there is an edge between two nodes in the graph, then
morphable interpolation leads to a valid texture. Second, if n nodes
in the graph form a clique (each of these nodes has an edge to all
other nodes), then all convex combinations of these nodes produce
valid model points. That is, we interpret an n-clique as an (n — 1)-
dimensional simplex. Each point in the interior of the simplex can

(b) Non-linear
model linear model

(a) Linear model (c) Piecewise

Figure 7: Comparison between data-driven models. In this exam-
ple linear models fit a line or the whole 2D to the 2D data points
(left). Non-linear manifold learning methods approximate these
data points with locally linear spaces of a fixed dimension (center).
Our method constructs a piece-wise linear model with variable di-
mensionality (right).

be specified using barycentric coordinates of the n vertices. A sub-
set of m nodes that are shared by two cliques can be interpreted as
an m-dimensional boundary face between the two simplices.

More formally, our simplicial complex model can be described
as follows: In the case of textures represented by our morphable
model from Section 3, a data point is defined by a shape weight
vector w and a color weight vector ¢. Both these vectors are in RN,
where N is the number of samples in the dataset. The necessary
condition for a data point to be in the simplicial complex model is
therefore

N
zwi:L leo ) zci: ) Ci207 (4)
i=1 i

and the set of indices {i | w; >0 or c¢; >0} must form a clique.

41 Navigation

Given the above construction, we now describe how a user navi-
gates in this space to design novel textures. To make our interface
intuitive, we abstract from the underlying topological representa-
tion and facilitate smooth navigation in the space spanned by the
model.

Our interface is centered around a set of active textures and a
set of neighbor textures that are presented to the user visually. The
active set always corresponds to a clique in the neighborhood graph.
A texture belongs to the set of neighbor textures if it can be added
to the active set without breaking the clique constraint.

To design new textures, the user interactively changes the shape
and color weights of the active textures. The weights are normal-
ized to obey the barycentric constraints of Equation (4) at any time.
To move towards one specific sample in the active set, the user grad-
ually increases both its color and shape weight. When the weights
reach one, the sample is reproduced exactly.

The user can modify the active set to include desired source tex-
tures by adding and removing individual textures. To add a texture,
one selects any texture from the neighbors of the active set. Tex-
tures are added one at a time, as the set of neighbor textures is
affected by this operation and needs to be updated before the next
texture can be selected. The user can continuously move from the
currently interpolated texture towards the newly added texture by
increasing its weights. On the other hand, one can remove active
textures with zero shape and color weights, as these do not con-
tribute to the currently interpolated texture. This will enlarge the
set of neighbor textures and offer new textures to be added to the
active set (Figure 8, left).

In the process of adding and removing textures from the active
set, the user effectively hops from one clique in the neighborhood
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Figure 8: Given a current interpolation point, the user can move
into a neighboring clique A or B by adding a texture from the neigh-
bor set to the active set (left). Piecewise linear interpolation along
the shortest path between two points (right).

graph to the next. If the active set is a subset with m nodes of a
maximal clique with n nodes, then the user has moved to a (m — 1)-
dimensional boundary of the (n — 1)-dimensional simplex spanned
by the maximal clique. Transparently to the user, adding another
node moves the active set into any of the neighboring maximal
cliques.

We can also generate new textures by continuously interpolating
along a path between two arbitrary points in the model. In this sce-
nario, the user picks a start and an end point, specified by their color
and shape weights. We first determine the closest sample in the
cliques containing each of the points and then compute the short-
est path in the neighborhood graph that connects these samples, as
shown in Figure 8 on the right. Textures along the path are then
generated using Equation 1.

5 Results

We constructed a simplicial complex of morphable textures from
roughly 1500 images. We first extracted texture samples (i.e., 128 X
128 pixel patches) from these images and added them one-by-one
to the database. We manually picked one representative subwindow
in each original photograph such that the orientation, scale, and
translation matched with perceptually similar input samples already
processed. This manual process took about one man-day for the
whole database.

We then processed the samples as described in the previous sec-
tions, computing pairwise warps and the corresponding distance
matrix. For each pair of textures, the warp computation (Sec-
tion 3.2) and the evaluation of the similarity metric (Section 3.4)
together take about five seconds. Computing the full 15002 dis-
tance matrix is not practical. Therefore, we adopted a two-stage
procedure. In the first stage, we computed an approximation of the
similarity metric for all 15007 pairs of textures, which is obtained
by finding only the coarsest scale warps (Section 3.2) and evaluat-
ing the distance metric based on these. This took about eight hours
on a single PC. In a neighborhood graph with reasonable connec-
tivity, it is safe to assume that the number of neighbors for each
texture is limited. We found that with our database it is not useful
to connect each texture to more than 200 neighbors (see below). In
the second stage, for each texture we calculated the high resolution
warps only for the 200 most similar textures (according to the ap-
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Figure 9: Histograms of clique sizes illustrating the connectivity
of the simplicial complex.

Figure 10: Examples of maximal cliques in the simplicial complex
model with ¢ = 1.08 and k = 10.

proximate similarity). We then updated the similarities based on
the high resolution warps and constructed a sparse distance matrix
with 200 entries for each texture. This stage took several days to
compute on a single PC.

Figure 9 illustrates the connectivity of the simplicial complex
model through histograms of the size of maximal cliques. We doc-
ument results with an adaptive distance threshold of ¢ = 1.08 and
¢ = 1.09. In both cases, the model consists of a single connected
component, and the maximum number of neighbors for any texture
is below 200. We can also add edges to the k nearest neighbors
of each texture to ensure that the user has a minimum number of
neighbors to choose from. The disadvantage of increasing the graph
connectivity is that the navigation interface becomes cluttered with
textures that lead to artifacts when combined with morphable inter-
polation. We found that values ¢ = 1.08 and k = 10 work best with
our database. A number of representative maximal cliques for these
parameters is shown in Figure 10.

Although our database consists of texture patches with 128 x 128
resolution, this does not limit the size and quality of images that we
can produce with our system. We apply the following two tech-
niques to alleviate this seeming limitation. First, we use tileable
patches for the texture samples. Second, if the original input tex-
ture was of higher resolution than the database patch size, we retain
the original image. During texture interpolation, we can use the
original data and simply upsample the warp fields to the original
resolution to obtain high quality results. Alternatively, any of the
texture synthesis algorithms discussed in Section 1.1 could be ap-
plied to the interpolated sample.

We have implemented an interactive 3D texture painting proto-
type and integrated it with our user interface. Figure 11 shows a
screen-shot of a painting session. We can create realistic effects
such as wear and tear of cloth using the wide variety of textures in
the database.

Figure 1 shows an example of a continuous interpolation along
a path in texture space. Four samples are pairwise connected and
piecewise linear interpolation is performed in each pair. A similar
example with a set of 26 different textures connected to a path is
given in Figure 12. This example highlights how a wide variety of
textures can be connected and smoothly interpolated using simpli-
cial complex modeling (Section 4). For all the results presented in
this paper, we used tileable texture patches that were constructed as
described in Section 2. We achieve spatially varying interpolation



Figure 11: Interactive texture design using a prototype 3D painting
application.

using manually specified weight maps as illustrated in Figure 13.
Here, we set the color weights to be equal to the warp weights. The
source texture samples are shown at the bottom.

6 Conclusions and Future Work

We have presented a novel approach for designing realistic textures
based on a database of input textures. The main advantage of our
model is a high degree of realism since the synthesized textures
are combinations of natural textures acquired from photographs.
Our system allows for both easy navigation in the space of tex-
tures spanned by the database and continuous interpolation between
multiple textures. This is achieved by combining simplicial com-
plex modeling, morphable models, and sharpness enhancement for
interpolated textures. We also believe that our sharpness preserva-
tion technique and simplicial complex modeling could be used for
generating models in other domains.

Our morphable texture interpolation is based on a single one-
to-one warp deformation between pairs of texture samples, which
might be too restrictive for textures with highly irregular structures.
In the future, we will investigate epitomic image representations,
which are based on collections of small patches and discontinuous
mappings of these patches to the original image. However, to deal
with these discontinuous mappings in the context of image interpo-
lation seems challenging. Finally, it would be desirable to extend
the texture model to incorporate reflectance as well (e.g., using bidi-
rectional texture functions [Dana et al. 1999; Tong et al. 2002]).
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