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Abstract

A simple and novel method is presented to approximate the distribution of the sum of indepen-
dent, but not necessarily identical, lognormal random variables, by the lognormal distribution.
It is shown that matching a short GaussHermite approximation of the moment generating func-
tion of the lognormal sum with that of the lognormal distribution leads to an accurate lognormal
sum approximation. The advantage of the proposed method over the ones in the literature, such
as the Fenton-Wilkinson method, Schwartz-Yeh method, and the recently proposed Beaulieu-
Xie method, is that it provides the parametric flexibility to handle the inevitable trade-off that
needs to be made in approximating different regions of the probability distribution function. The
accuracy is verified using extensive simulations based on a cellular layout.
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A Flexible Lognormal Sum Approximation Method

Jingxian Wud*, Member, IEEE, Neelesh B. Mehta Member, IEEE,  Jin Zhang, Senior Member, |IEEE

Abstract— A simple and novel method is presented to ap- that can be quite loose for certain typical parameters. The
proximate the distribution of the sum of independent, but methods also differ considerably in their complexity. Otilg
not necessarily identical, lognormal random variables, bythe Fenton-Wilkinson method offers closed-form solution foe t

lognormal distribution. It is shown that matching a short Gauss- derlvi t f th imating | | pdf
Hermite approximation of the moment generating function of unaerlying parameters ot the approximating lognormal pat.

the lognormal sum with that of the lognormal distribution leads Motivated by the interpretation of the moment generating
to an accurate lognormal sum approximation. The advantage o function (MGF) as a weighted integral of the pdf, we present
the proposed method over the ones in the literature, such as 3 flexible lognormal sum approximation method that matches
the Fenton-Wilkinson method, Schwartz-Yeh method, and the ¢ 4n5roximation of the MGF of the lognormal sum with that
recently proposed Beaulieu-Xie method, is that it provideshe ) . \
parametric flexibility to handle the inevitable trade-off that needs ©Of @ single lognormal RV to derive the latter's parameters.
to be made in approximating different regions of the probablity ~As elaborated later, the weight function can be adjusted to
distribution function. The accuracy is verified using extersive emphasize the accuracy in approximating different postion
simulations based on a cellular layout. of the lognormal sum pdf. Moreover, the MGF of the sum
of independent RVs can be easily calculated from the MGFs
of the individual RVs. The proposed method uses an ap-

The lognormal distribution arises in several wirelessesyst proximate Gauss-Hermite expansion of the lognormal MGF,
such as cellular mobile communication systems [1, Chp. 8] aand circumvents the requirement for very precise numerical
ultra wide band transmission [2]. For example, it models th®mputations. It is not recursive; it is numerically stahted
attenuation due to shadowing in wireless channels. Thexefoaccurate; and it offers considerable flexibility compared t
one often encounters the sum of lognormal random variab@®vious approaches.
(RV) in analyzing wireless system performance. Given the As mentioned, the MGF and the characteristic function
importance of the lognormal sum distribution, considezab(CF) possess the desirable property that the MGF (CF) of a
efforts have been devoted to analyze its statistical ptgger sum of independent RVs is the product of the MGFs (CFs)
While exact closed-form expressions for the lognormal suaf the individual RVs [11} This property of the CF has
probability density function (pdf) are unknown, severahan also been exploited by Barakat [5] and Beaulieu-Xie [6] to
lytical approximation methods exist in the literature [[B= numerically evaluate the lognormal sum pdf. However, their

The methods proposed in the literature can be classified im@thods require very accurate numerical computation of the
two broad categories. The methods by Fenton-Wilkinson [3haracteristic function because of the oscillatory propef
Schwartz-Yeh [4], and Beaulieu-Xie [6] approximate the-loghe Fourier integrand as well as the slow decay rate of the
normal sum by a single lognormal RV, and provide differeibgnormal pdf tail [6].
recipes for determining the parameters of the lognormal pdf Barakat numerically computed the CF of the lognormal
The proven permanence of the lognormal pdf when the numlaistribution using Taylor series expansion, and then aphe
of summands approaches infinity lends credence to these métlerse Fourier transform to the product of lognormal CFs to
ods [5], [9]. The methods by Farley [1], [4], Ben Slimane [7]determine the lognormal sum pdf. Also, no effort was made to
and Schleher [8] instead compute a compound distribution find the analytical expressions of the approximate distidiou
specify it implicitly. For example, the first two methods ifer A similar approach was also suggested by Anderson [12].
strict lower bounds of the cumulative distribution functio Beaulieu-Xie's elegant and conceptually simple method firs
(CDF), while the last one partitions the lognormal RV’s rangnumerically evaluates the lognormal sum CDF, to a high de-
into three segments, with each segment being approximatgde of accuracy, at several points, using a modified Clemsha
by a different lognormal RV. Curtis method. The composite CDF is obtained by numeri-

Beaulieuet al. [6], [10] have studied in detail the accu-cally calculating the inverse Fourier transform, and isttelt
racy of several of the above methods, and shown that eawh ‘lognormal paper’. The parameters of the approximating
method has its own advantages and disadvantages; nongsnormal distribution, which is a straight line on lognhaim
unquestionably better than the others. Farley’'s method apdper, are determined by minimizing the maximum error in a
more generally, the formulae derived in [7] are strict baundjiven interval.

The paper is organized as follows: Section Il reviews

The authors are with théDept. of Engineering Science, Sonoma Stat?he |ognorma| sum approx|mat|on methods |n the ||terature
University, Rohnert Park, CA 94928, USA, and th#litsubishi Electric
Research Labs (MERL), 201 Broadway, Cambridge, MA 02139 (BBnail:
jingxi an. w@onoma. edu, {mehta, jzhang}@rerl.con). 1While the CF can be considered a special case of the MGF, weseho
*This work was done when the author was at MERL. treat the two as separate to keep the discussion clear.

I. INTRODUCTION



and investigates the reasons behind their observed bebavidbhe S-Y method is more involved than the F-W method
Section Ill motivates and defines the method proposed in thiscause the expectation of the logarithm sum cannot be
paper. Numerical examples based on a cellular layout ai uskrectly written in terms of the expectations of the indivéd
in Section IV to validate the proposed method and to compaR¥'s. It is inaccurate near the tail portion of the pdf and can
it with other methods. The conclusions follow in Section V.significantly underestimate small values of the CDF [10].
Il COMPARISON OFVARIOUS LOGNORMAL SUM Interpreting the moments as weighted integrals of the pdf,
' both the F-W method and the S-Y method can be generalized
APPROXIMATION METHODS : : ;
by the following system of equations for = 1 and 2:
Let X;,..., Xk be K independent, but not necessarily o o
identical, lognormal RVs with pdfs, (x), for1 <i < K. / W (2)p () :/ W (2)P, e
Then eachX; can be written asl0%!Y: such thatY; is a 0 0 (=i %)
Gaussian random variable with mean, dB, and standard The F-W method uses the weight functions(z) = = and
deviation,s, dB,i.e, Y; ~ N (. ,07 ). wa(x) = (x — p,)?, both of which monotonically increase
General closed-form expressions for the pdf or CDF afith z. Thus, errors in the tail portion of the sum pdf are
the lognormal surrgfil X; are not available. However, thepenalized more. This explains why the F-W method tracks
lognormal sum can be well approximated by a new lognormidle tail portion well. On the other hand, the S-Y method
RV X = 10%'Y, whereY is a Gaussian RV with meanemploys the weight functions, (z) = log,, = andwsy(z) =
1, and variances?. Thus, the problem is now equivalent(log;, = — uy)z. Due to the singularity ofog;,«z atz = 0,
to determining the lognormal moments. and 03 given the mismatches near the origin are severely penalized by both
statistics of the lognormal RVX;, fori =1,... K. these weight functions. Compared to the F-W method, the S-Y
The Fenton-Wilkinson (F-W) method computes andai method gives less weight to the pdf tail. For these reasons, i
by exactly matching the first and second central moments d@des a better job tracking the head portion of the pdf. Howeve

(D)dr. (3

X with that of Efil X;: both the F-W and the S-Y methods use fixed weight functions
- K oo and offer no way of overcoming their respective shortcoraing
/ ap(z)dv = Z/ apy, (z)dr, (1a) Similarly, Schlt_aher’_s cumu_lants matching method [8] ac-
0 /o cords a polynomially increasing penalty to the approxiorati

0o K 00 error in the tail portion of the pdf. This is because the first

/ (z—p ) ’py(x)de = Z/ (z — pix,)’py, (x)de, (1b) three cumulants are, in effect, the first three central masnen
0 i=1"0 of an RV. By plotting the x-axis in dB scale on lognormal

wherep, andy,  are the means ok and X;, respectively. Paper, the Bea_lulieu-xie method also accords a higher priori

If the K lognormal RVs are identically distributed, then thd® the tail portion.

approximating lognormal momenjs, ando, can even be I1l. L OGNORMAL SUM APPROXIMATION USING

expressed in closgd—form. While the F-W method accurately GAUSS-HERMITE EXPANSION OF MGF

models thetail portion (large values ofX) of the lognormal

sum pdf, it is quite inaccurate near thead portion (small

values of X) of the sum pdf, especially for large values of The moment generating function (MGF) of an RY is

o,, [10]. The mean square error jn, ando, increases with defined as

a decrease in the spread of the mean values or an increase in e

the spread of the standard deviations of the summands [13]. Uy (s) :/0 exp(—sz)py (v)dv, (Re(s) 2 0). (4)

Also, in modeling the behavior of0log;, (Z¢:1 Xi) the  The simplicity of the F-W method arises from the fact that
method breaks down when, > 4 dB [1]. the mean and variance of a sum of independent RVs can be
The Schwartz-Yeh (S-Y) method instead matches the Mgyritien directly as the sum of the mean and variance of the
ments in the log-domairie,, it equates the first and secondngiyidual RVs. The MGF of the sum of independent RVs also

central moments ofog,, X with those oflog;¢(3_;—1 Xi):  possesses this desirable property that it can be writtetjir

0 o in terms of the MGFs of the individual RVs as follows:
[ tosioa)pc@tr = [ (omoa)py @0, (22)

A. Motivation

K
o VUok o) 8) =11V (s), (Re(s)=>0). (5)
/(1010g10$—/1,y)2px(l‘)d£= G ) Z];E
0
o 9 From (3) and (4), the MGF can also be interpreted as a
/0(1010&095_%) Pisrc x,)(@)de, (20)  weighted integral of the pdfp, (x), with the weight func-

tion being a monotonically decreasing exponential fumgtio

A exp(—sz), in z. Varying s adjusts, as required, the weights
andY = 10logq (Zfil Xi>, respectively. While the match allocated to the head and tail portions of the sum pdf. Figure

is exact forK = 2, an iterative technique needs to be used famompares, in log scale, the absolute values of the various
K > 2. The parameterg, ando, are evaluated numerically. weight functions discussed above.

where i, and p, are the mean values df = 10log;, X



Based on the discussion above, we can see that the MGF :
posses two desirable properties. First, the MGF is a weighte
integral of the pdf with a weight function that is adjustable
Second, the MGF of the sum pdf can be easily expressed
as the product of the MGFs of the individual RVs. These
two properties make the MGF a preferable candidate for the
lognormal sum approximation problem. We therefore propose
the following method based on matching the MGF of the

lognormal distribution. 107 FoW (mean: ) : N
. . == Fw (variance: ><2) - 3 N
B. MGF-based Lognormal Sum Approximation | S-Y llog, (0] “x
While no general closed-form expression for the lognormal ' :i:mg:iggzgy) ¥
MGEF is available, it can be readily expressed by a series ex- 10° ‘ ‘ ‘
. . . . . 0 05 1 15 2
pansion based on Gauss-Hermite integrafiéie restrict the x

development to real values efas it still provides considerable
flexibility in adjusting the weighted integrals. The MGF of aig. 1. Weight functions employed by F-W, S-Y, and the pragb$IGF-

lognormal RV X can be written as based method
€ exp(—sz) [ (Elog, = — uy)2]
V. (s)= exp|— < de, (6a
x(3) 0 xo,V2m P 202 (62) 1
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wherep, ando, are the mean and standard deviation of the
Gaussian RW = 10log;, X. Eqn. (6b) is the Gauss-Hermite
series expansion of the MGF functioN is the Hermite
integration order{ = 10/log, 10 is a scaling constant, and
Ry is a remainder term. The weights;, and the abscissas,
a;, are tabulated in [14, Thl. 25.10] fa¥ < 20. From (6b),

we can define the Gauss-Hermite representation of the MGF,
Vv, by removingR, as follows:
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o N
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Gauss—Hermite approximation to MGF Y(s)
o
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Figure 2 shows the impact oV on the accuracy of the
Gauss-Hermite representation of the MGF. We have found that
the lognormal MGFV . (), can be accurately approximated
by its Gauss-Hermite eépansidnx(s;u,a) with N_: 12. using N — 12. We have found that evetN — 6 is

The lognormal Suniizollf,(i can now be approxm;ated byoften sufficient. This is because the form of (8) makes the
a lognormal RVX' = 10°'", whereY ~ N(u,,07), by desired parameters insensitive to MGF approximation grror

. . K
matching the MGF ofX' with the MGF of >.i—y Xi at WO The number of terms is small compared to the 20 to 40
different values ofs: s, ands,. This sets up a system of tWoerms required to achieve numerical accuracy in the S-Y

Fig. 2. @X(s;u, o) as a function ofs for different Hermite integration
orders,N (u = 0 dB ando = 8 dB)

The values ofu, and o, can be accurately determined

independent equations to calculate andoy, as follows:  method [16]. Furthermore, unlike the S-Y method, no iterati
N in K is required — the right hand side of (8) only needs to be
Z Yn exp [_Sm exp <M>] computed twice (ak; ands,) for any K.
1 Ve £ Most importantly, as highlighted before, the penalty for

R pdf mismatch can be adjusted by choosingppropriately.
Vo (Sm; by, 0y.), form=1and2. (8) Increasings penalizes more the errors in approximating the
i=1 head portion of the sum pdf, while reducing penalizes

Note that the right hand side of the above two equations ise&ors in the tail portion. For example, when the lognormal

constant number. These non-linear equationsiands,, can sum arises because various signal components add up and

be readily solved numerically using standard functionhisag the main performance metric is the signal outage probgjilit

fsolve in Matlab andNSolve in Mathematica. the tail of the CDF needs to be computed accurately. On
) _ o _ _ the other hand, the head portion of the sum pdf needs to be
A formula for the MGF, in the form of an infinite series, was ided by

Naus [15] for the special case of the sum of two independedtigentically ~Calculated accurately in outage prObabi”ty calculatiarren
distributed lognormal RVs. the lognormal sum appears in the denominator term only, for

o



example, as the sum of the powers of co-channel interferers.
The proposed method can handle both of these applications by

using different pairgs, s2). Guidelines for choosingsi, s2)
are developed in the following section.
IV. NUMERICAL EXAMPLES '
Given the importance of co-channel interference (CCI) in
cellular systems, we consider the downlink of a represizetat
hexagonal cellular layout with one and two rings of interfgr
base stations (BS) to compare the performance of the prdpose —
method with other methods. Due to pathloss, the mean values
of the CCI from the second-tier interferers differ consatsdy
from those of the first-tier interferers.
Figure 3 shows the cell layout with 6 first-tier interferers
and 12 second-tier interferers and the location of the reobil
station (MS) under consideration. BS 0 is the serving BS.
The i lognormal RV, X;, observed by the MS is given by
Xi = (%)_’7 10%-1Y: where~, is the signal to noise ratio
(SNR) at the corner of the center ceklt, is the cell radiusy
is the pathloss exponent; is the distance between ti€ BS
and the MS, and; is a zero-mean Gaussian RV with variance 10°
o. The examples that follow usg, = 10 dB, n = 3.7, and
assume that the MS is at a distance®)f2 from the serving 107}
(central) BS®
In the examples, we plot the CDF and complementary |
CDF (CCDF) and use these results to provide guidelines on
choosing robust values for; and so that work for a wide 5
range of system parameters. As mentioned, small values of 1% ¢
the CDF reveal the accuracy in tracking the head portion of
the pdf, while small values of the CCDF reveal the accuracy 107

Fig. 3. Cellular layout with up to two rings of downlink co-atnel interferers

— - —Proposed ||
| —e—F-w

in tracking the tail portion of the pdf. ——S-Y
Figure 4 plots the CDF of the CCl from the first-tier ‘ ‘ — Simulation
interferers, which corresponds to the sum &f = 6 non- 107 107" 10° 10" 10°

identical lognormal RVs, for = 8 dB. The CDFs of the

lognormal approximations from the proposed method, F-Wqy 4. CDF of co-channel interference from first-tier ifiéeers ¢< = 6)
method, and the S-Y method are compared with that fromf@ o = 8 dB

Monte Carlo simulation, which generated® samples. It can

be seen that the proposed method matches the head portion of

the distribution function very well whefsy, s3) = (0.2,1.0), Hgad portion of the pdf. Similarlys:, s2) = (0.001,0.005) is

and is more accurate than both the F-W and the S-Y metho . ; !
The CCDF for the same parameters is plotted in Figure %q|table for approximating the tail of the pdf. These valags
and sy were found to be suitable for several other system

While the S-Y method diverges from the actual CCDF iRt
this scenario, the proposed method matches the simulatﬁﬁ{ameters’ as well.
results well for(sy,s2) = (0.001,0.005), and is as accurate Figure 7 shows an application of this method to the problem
as the F-W method. The inevitable trade-off that needs to b&computing the outage probability of an interferencetad
made in approximating both the head and tail portions of tieellular system with 6 first-tier co-channel interfererseT
pdf implies that the samés;, s3) values cannot be used tosignal component and the interferers all undergo lognormal
accurately match the head and the tail portions. shadow fading with a variance efdB. An outage is declared
The effect of increasing the number of interferers is showhthe SIR falls below 12 dB. The outage probabilities ob-
in Figure 6, which plots the CDF of the CCI from both firsttained analytically by employing the proposed method, with
tier and second-tier interfererse., K = 18. It can be seen (s1,s2) = (0.2,1.0), are compared with results from the F-
from these two figures thats;,s2) = (0.2,1.0) provides a W and S-Y methods, and from Monte Carlos simulations, for
good fit for various values of and K for approximating the variouss. The simulation results were averaged over 100,000
independent trials. Excellent agreements are observed:bat
3The pathloss facto,(% )*” affects only the mean of, but not its the the approximated analytical results and the simulation
variance. results.



V. CONCLUSIONS

10° f f We proposed a simple and novel method to approximate
: , the sum of several independent, but not necessarily idgntic
107 : , L | lognormal random variables with a single lognormal random
i ' cinm variable. Motivated by an interpretation of MGF as a weighte
| , , : integral of the pdf, the method computes the approximating
: ' XN\ distribution parameters by matching the MGF of lognormal
i L Lo N ‘ sum with that of the approximating RV at two real and positive
107 , R 1 points,s; ands,. Matching ats; = 0.2 ands, = 1 accurately
D approximates the head portion of the lognormal sum pdf,
107} ‘_;_‘“F"V‘jF i Eii “X while matching ats; = 0.001 and s, = 0.005 accurately
——SY e B » approximates the tail portion of the pdf. This choice was
— Simulation ‘ ‘ N shown to be appropriate for a wide range of system parameters
10° 10* 10° 10° 10* The weighted integral interpretation also explained the
observed shortcomings of some of the methods currently
Fig. 5. CCDF of co-channel interference from first-tier ifeeers ¢ = 6) available in the literature. The proposed method provides
for o = 8 dB the flexibility to handle the inevitable trade-off that neetd
be made in approximating different regions of the pdf. Its
computational complexity is similar to that of the Schwartz
Yeh method.

Complementary CDF (CCDF)
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