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Abstract

We propose a new construction for low-density source codes with multiple parameters that can
be tuned to optimize the performance of the code. In addition, we introduce a set of analysis
techniques for deriving upper bounds for the expected distortion of our construction, as well
as more general low-density contructions. We show that (with an optimal encoding algorithm)
our codes achieve the rate-distortion bound for a binary symmetric source and Hamming distor-
tion. Our methods also provide rigorous upper bounds on the minimum distortion achievable by
previously proposed low-density constructions.
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1 Introduction

While low-density parity check (LDPC) codes can provablpraach the channel
coding capacity [9] for point-to-point transmission, @mtly there are relatively
few theoretical results on low-density codes for lossy sewoding, channel cod-
ing with encoder side information, and source coding witbodier side informa-
tion. Note that the latter three scenarios all involve sosmeeat of quantization.
Even though quantization and error correction are closelgted, the standard
LDPC constructions used for channel coding generally il Dne viable option
is trellis-based quantization (TCQ) [6], which has beerdusath for lossy source
coding, as well as for distributed source coding [2,12, H&jwever, saturating fun-
damental bounds with TCQ requires taking the constrairgtieto infinity [10],
which incurs exponential complexity even for messageipgstecoders/encoders.
Consequently, it is of considerable interest to develop-d@nsity constructions
that are also capable of saturating the information-theobeunds.

Previous work [7] has shown that low-density generator métDGM) codes,
which are dual to LDPC codes, are provably optimal for binengsure quantiza-
tion (a special type of source coding). This motivates treeafd. DGM codes and
variants for more general compression problems. Indeedntevork [3,8,11] has
shown empirically that LDGM codes, in conjunction with \aris of sum-product
message-passing for encoding, can approach the ratetidistoound for a binary
symmetric source (BSS). In addition, non-rigorous repticaavity method calcu-
lations [3, 8] also suggest that the theoretical perforrmaid. DGM codes is close
to optimal.

This paper makes two primary contributions to this areastFiwe propose a
new low-density construction for lossy source coding witlitiple parameters that
can be tuned to optimize the performance of the code. Outtremti®on includes
as a special case the ordinary LDGM codes that have been mednm previous
work [3,7,8,11]. Second, we develop methods useful foryenirad) the expected
distortion of our constructions as well as more generalylessirce codes. Using
these methods, we show that (with optimal quantization) cmates saturate the
rate-distortion bound for a uniform binary source and Hangwiistortion. We also
derive rigorous upper bounds on the distortion achievapla Btandard LDGM
construction. Thus, provided that a low complexity iteratencoding algorithm
can be found, our results suggest that low density codes adp significant
improvements for a wide class of quantization problems.

The remainder of this paper is organized as follows. Aftémonucing some
notation, we describe our new low density generator mawinstruction in Sec-
tion 2 and bound its performance in Section 3. In particwer describe the tools
required to analyze low density source codes through assefiemmas, which
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we believe illustrate the main insights of the paper. Finalle close with some
concluding remarks in Section 4 and postpone all proofsdé@gpendix.

Notation: \ectors/sequences are denoted in bad(s), random variables in
sans serif fontd.g, s), and random vectors/sequences in bold sans segf §).
Similarly, matrixes are denoted using bold capital letigrg, G) and random
matrixes with bold sans serif capitals.g, G). We usel(-;-), H(-), andD (-||-)
to denote mutual information, entropy, and relative entrgfullback-Leibler dis-
tance), respectively. Finally, we ueerd {-} to denote the cardinality of a sét;||,,
to denote the-norm of a vector, and, (¢) to denote the entropy of a Bernout)i(
random variable.

2 The Compound Construction

The construction considered in the paper is illustratedign E the top section
consists of an LDGM cod€; of rate R, = “* with n source bits and» informa-
tion bits, whereas the bottom section consists of an LDPE€ ocbdateR, = 1 — %
with m bits constrained by checks. The compound code formed by joining the
top and bottom code can generafé™ = 2™~* possible source reconstructions
of lengthn, so that the overall cod€ has rateR = R; — (1 — R;). Note that a
check-regular LDGM code corresponds to the special casetiifig R, = 1.

To quantize a length. binary source vectog using the compound construc-
tion, an encoder finds an assignment for #hdits in the middle layer that satisfy
the constraints of the bottom LDPC code. Formally, we carotiethem-by-n
generator matrix for the top LDGM code &5 and thek-by-m parity check ma-
trix for the bottom LDPC code aH. Thenq is a codeword of the overall code if
q = w-G andH - w' = 0 for some assignment of the middle layer, which we
denote asv. Thus, an optimal encoder ferwould find the codeword minimizing
the Hamming distancel; (wG, s), such thaf{w’ = 0. Since the vectow has
lengthm, storing or transmittingv directly would achieve only compression rate
R;. Instead, we can use the fact that there are afly”* valid choices forw, to
storew using onlyk bits, resulting in compression rafe For example, we could
store thek-bit information vector that when encoded with the bottomR@Dcode
yieldsw.

Random LDPC Ensemble: For the bottom LDPC code, we use the standard
(7w, 7c)-regular LDPC ensemble studied by Gallager. Specificaligheof them
variable nodes in the middle layer connectgtacheck nodes in the bottom layer.
Similarly, each of thek check nodes in the bottom layer connectgytovariable
nodes in the middle layer. For convenience, we restrictedues to even check de-
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Figure 1. lllustration of the compound code construction, involvieng LDGM
(top section) withy, = 4 and an LDPC (bottom section) with,, v.) = (2,4).

greesy.. Note that these degrees are linked to the rate via theaelati= 1 — R,
A random LDPC cod&y, = Cy, (74, 7c) is generated by choosing uniformly from
this ensemble.

Random LDGM ensemble: For the top LDGM code, each of thechecks at the
top are randomly connected 4@ variable nodes in the middle layer chosen uni-
formly at random. This leads to a Poisson degree distributio the information
bits and makes the resulting distribution of a random coddwasy to character-
ize:

Lemma 1. Let G be a random generator matrix obtained by placing ones
in each column uniformly at random. Then for any vectore {0,1}" with
a fraction of v ones, the distribution of the corresponding codewerd G is
Bernoulli@g(v; v )) where

O(vimn) =5 - [1 = (1 —2v)"]. 1)

N |

3 Main Results

Although our methods apply to the compound constructioneng@nerally, we
state our main result in application to the special case Rjtk= 1 and R, = R.
For these choices, we can guarantee that our compound woimtr approaches
the optimal rate-distortion trade-off as the blocklengthiends to infinity using
finite choices of degrees in our LDGM/LDPC construction.

1Our methods also yield upper bounds on the achievable tisiaf the check-regular LDGM
construction R; = R and R, = 1). Subsequent work will describe the use of alternative paies
(R¢, Ry) for source and channel coding with side information.
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Theorem 1. Consider an arbitrary rate distortion paifD, R(D)). For anyA >
0. there exists a finite LDGM degreg(A, D) and an LDPC code with finite de-

greesv,(A, D) and~.(A, D) such that a randomly chosen code with rites
R(D) + A in the associated LDGM ensemble achieves distorfiowith proba-
bility 1 — exp(—cn) for some constant.

As a particular example of our results illustrated laterig. 2, the degree choices
m = 4, 7. = 8 for rateR(D) = 1/2, are sufficient to make the gap zero (within
the precision of our numerical calculations). The proof be®rem 1 consists of
several steps, which we motivate and describe in the fofigwéxt. Proofs of these
auxiliary results are provided in the appendix.

3.1 Expected Number of Good Codewords

For a lengthn codeC and a source vecter, we definez (C, s, D) to be the num-
ber of codewords that are within Hamming distarfee of s. Specifically, let
z;(C,s, D) be 1 if theith codeword in the compound cod&is within Hamming
distanceDn of the sources, and 0 otherwise. Then

2(C,5,D) 2 Y 2,(C,s,D). @)

Ideally, z (C, s, D) should be large and there should be many good codewords
provided that the rate exceeds the rate-distortion funcito> 1— H, (D). Specif-
ically, if we consider a random source vecsaand a randomly generated codg
then the probability that the code is successful is sifpiy[z(D) > 0].

Since analyzing this probability directly is generallyfifilt, most random
coding arguments [4] consider the expectatiojz(D)]. For essentially any code
(and in particular the compound construction), it is pdsstb show that the ex-
pected number of good codewords is large:

Lemma 2.

1 n(r-l1—
Blz(D)) 2 — 2% (=), 3)

3.2 Typical Number of Good Codewords

Unfortunately, the fact that the expected number of coddwig large is insuf-
ficient to show that the code achieves the rate-distortiamto Rather, in order
to show that the code is good, we must show that the typicalbeurof good

2When the source and/or code are random, then we drop theifigdeikrandom quantities and
write z;(C,s, D) andz (C, s, D) as random variableg (D) andz(D).
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codewords is not too far from the expected number of goodwortks (or at least
non-zero). For high density codes, this can be done by udirdpgshev’s inequal-
ity, which depends on the variance ofD). For most low density constructions
(including our own), the variance is too large for Cheby&hamequality to yield a
useful bound. Consequently, we instead use Shepp’s secongnt method:, as
summarized in the following propositich:

Proposition 1. For any positive integer valued random variabiePr[z > 0] >
E[z]?

E[Zz?]"
To show that there is typically at least one good codeword,must upper

boundE[z(D)?], which can be cast in a more useful form using the following
lemma:

Lemma 3.

E[z(D)?] = E[z(D)] + E[z(D)] - {ZPr[Xj(D) =1]x(D) = 1]} 4)
70
Lemma 3 illustrates one of the main differences between lemsity and high
density constructions. Specifically, in a high density ¢artdion, each codeword
can be chosen independently yieldiRgx; (D) =1 | xo(D) = 1] = Pr[x;(D) =
1] and implyingE[z(D)?] < E[z(D)] + E[z(D)]*>. In contrast, for low den-
sity codes, there will usually be some dependence betweeondtiewords. For
example, in the usual LDGM construction, when the inforoabitsw have low
weight, then the resulting codewowd G will also have low weight. Consequently,
if the all-zero codeword is within Hamming distanfe: of the source, then these
low weight codewords probably are as well andBsgx;(D) = 1 | xp(D) = 1]
can be much larger thdpr[x;(D) = 1]. In particular, we can bounBr[x;(D) =
1 | xo(D) = 1] by considering the weight of the information sequemceused to
generate thgth codeword:

Lemma 4. Letw; - G be thejth codeword obtained by multiplying a weight
vectorw; by a random matrix from the LDGM ensemble anddgtD) denote the
event that codeworgis within Hamming distanc®n of a random Bernoulli(/2)
source. Then for any even degrge letting vy = 0 yields

B B 1 if 0 <w; <v*(D;m)
PrigD) =11 x(D) =1} < {2—nKL<D||6<vm>> otherwise

3Proposition 1 can be established by defining an indicatataanvariable (D), for the event
{z(D) > 0} and applying the Cauchy-Schwartz inequality to obfain(D)]* = E[z(D)r(D)]? <
E[z(D)?] - E[r(D)], which is equivalent to the desired result.

®)
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where

v (Di) = [1 (- 2D)%]. 6)

N =

Lemma 4 shows thatr[x;(D) = 1 | xo(D) = 1] is small whenever the weight
of the information sequence for a codeword is large. So toadhberize the sum
over this probability we must consider how many vectors oivargweight in the
middle layer satisfy the constraints of the bottom LDPC c@iie Specifically,
we denote the average (log domain) weight enumeratdtpfi.e., the rate of
codewords ofC}, with a given weight) as

1
Ac, (@) £ ~card{q € Cy | [l = w - n}. @)

Intuitively, by combining (7) with Lemma 4, we can bound tleem in braces of

(4):

7’\“
> " Prlx;(D) =1 x(D Z 9Acy, (t/m) | Z on[Ac,, (t/n)=KL(D || ()]
70 t=v* (D)
®)

Formally, we can use this idea to obtain the following result

Theorem 2. Consider a sequence of raRecompound codes of increasing block-
lengthn. Suppose that the following inequality holds for all suffittly large block-
lengths:

77t n
R—[1-H; (D) log{ Z 9Acy, () 4 Z on[Acy, () —KL(D | 5(5; m))]}

t=v*(Dit) ©)

Then the probability that a code in the sequence fails to tjgara source with
distortion at mostDn goes to zero ag — oc.

3.3 Reducing Dependency Between Codewords

The bracketed term on the RHS of (9) corresponds toetteess rateequired
beyond the minimum — H, (D) and is plotted in Fig. 2 for the compound code
in Fig. 1. The first term represents the number of low weightepeords of the
bottom code. Since the bound from Lemma 4 does not become artiil weight
v*(D; ), making the first term negligible requires choosing the LO#Gemble
so that the minimum distance is greater than the weighD; ~;) resulting from
the choice of the degreg in the LDGM ensemble. The exponent of the second
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term in (9) is the sum of the weight enumerator and the bourmd fremma 4. For
this term to be negligible, the bottom LDPC code must have ight@numerator
that grows less quickly than the error exponent in (5).

Growth rates for bounds and weight enumerator

0.6 T T T T T
Relative Entropy Bound
LDPC Weight Enumerator
04} Overall Bound - - -
—~ 02
N
o0
L0 = s =
—le ‘\\_» -7
-0.2
-0.4
\_\\\7
-0.6

0 005 01 015 02 025 03 035 04 045 05
Weight

Figure 2. Log of bounds and weight enumerator for= 1/2, v = 4, 7. = 8, at
distortionD = 0.11 normalized by the blocklength. The relative entropy bound
from (5) is zero for weights below* (D; +;) and then quickly goes t~"/2. The
(log domain) weight enumerator for a regular rag LDPC code is negative
for weights below the minimum distance and then rise8tG. As long as the
relative entropy bound is stronger than the weight enurogrtite excess rate in
(9) of Theorem 2 will be negligible.

Using the exact formula for the asymptotic weight enumerattoegular LDPC
codes developed by Litsyn and Shevelev [5], it is possiblertwe the following
result?

Proposition 2. There exist choices foy;, v, and~, such that the term in braces
in (9) becomes negligible.

4 Concluding Remarks

In this paper, we proposed a new construction for low derssityce codes and in-
troduced tools to analyze low density generator matrix soés stated in Lemma 4
and illustrated in Fig. 2, our main insight was that the sewading performance

4The proof essentially requires showing that the sum of thighteenumerator and the bound
from Lemma 4 is negative for all weights " (D;~:),1/2. This can be done by checking the
appropriate derivatives of the sum and is omitted for byevit
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of a low density code can be bounded by considering the weighe codewords.
Thus, by using a compound code to control the weight specivambtained codes
that approach the rate-distortion function. A future papéirdescribe and analyze
these types of compound constructions in application tocgoand channel coding
with side information.

A Proofs

Proof of Lemma 1:By construction of the LDGM ensemble f@, each bit of the
codewordw - G is independent of the others and is the modulo-2 sum, oan-
domly and independently selected bitswf So the resulting codeword has a
Bernoulli distribution and all that remains is to determihe probability that a
given bit is one, which we denote &&; ;).

For any output bit, let the random variakdedenote whether théh one in a
column of G occurs in a position wheres has a oneife, ¢; is the value of the
variable node connected to thth link of a given check node at the top of Fig. 1).
Thend(v; ;) is exactly the probability thaf" ", e; is even. LettingA,(z) denote
the generating functiori.¢., the z-transform) ofy_/* | e; yields

Tt
d(v;m)—(1 = d(v;1)) = Ay(z=—1) = H (Prle; = 0] + 27! Pr[e; = 1])

i=1 z=-1

(10)

=(1—v+uv- 27"

= (1—20)". (11)

z=—1

Equating the leftmost term of (10) and the rightmost termidf) (and solving for
d(v; ) yields the desired result. O

Proof of Lemma 2:

Blz(D)] = E ZxxD)] = Eb(D)] = > Prldu(ais) < Dn]  (12)
o—nKL(D [ 1/2) o—n[l-Hy(D)]  on{R—[1-Hy(D)]}
D ey D e} CE ST S

The first line follows by repeatedly expanding the definitafrthe random vari-
ablesz(D) and x;(D). For the next line, we lower bound the probability that
a given codewordy; is within distortion Dn using standard large deviations re-
sults [4][Theorem 12.1.4]. Note that nothing in this argmtreepends on the actual
code construction itself (except for the number of codew)prd O
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Proof of Lemma 3:

Elz(D)?] = B {Z > 5D (D)| = Blz(D)] + 3 3 B (D) (D)

- (14)
= Ez(D)] +> > "> Prldu(q;,s) < Dn,dp(qi,s) < Dn] Prfs =5
S (15)
=Elz(D)]+)_ Z Z Prldg(q; © qi,s © q;) < Dn,
ST (0,8 & q;) < Dn] Prs = s (16)
= E[z(D)]+ Y>> > Prldu(q;,0) < Dn,dy(0,s') < Dn]Pr(s = ]
s (17)
= E[z(D)] + Z %:(]Pr[xj/(D) = 1,x(D) = 0] (18)
Py
= E[z(D)] + {Z Prlxo(D) = 1]} : {Z Prlxj (D) = 1|x(D) = 1]}
Z o (19)

To obtain (14) we consider the diagonal terms separateiy fitee off-diagonal
terms, and note thdt[x; (D)?] = E[x;(D)] since thex;(D) are indicator variables.
Next, we apply the definition of; (D) to get (15) and then adg to each side of the
dg(-,-) terms to obtain (16). Since the code is linear, adding thewoddsq; and
q; yields another codeword which we dengte. This observation combined with
writing s’ = s®q; yields (17). To go from (17) to (18), we note that for a uniféym
random sourcePr[s = s] = Pr[s = §/]. Finally, to obtain the desired result from
(19), we note thak;(D) is independent of and hence?[x;(D)] = E[xo(D)]. O

Proof of Lemma 4:We focus on the case whéiv;;~;) > D. Solving this rela-
tion for v; yields the formula for*(D; ~¢) in (6) and s (v;; v¢) < D corresponds
to the trivial bound in the top case of (5). Thus, &¢p;;~;) > D we have

Prx;(D) = 1| (D) = 1] < Prldu(ay,s) < Dn| du(s,0) < Dn]  (20)
)

(a) b ©)
< max Pr |dg(q;,190"7") < Dn} < Pr [dH(qj,o") < Dn| < 2 KL 10(viim)) |

(21)

—~

t<Dn
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We obtain (20) from the definition of the random variakl¢D). For (a), since
q; is a Bernoulli sequence, without loss of generality we caagme that all the
ones ins occur at the start of the sequence. To obtain an upper bousnguivn
as many such ones as required to maximize the desired plibbdhi(b), we note
that 6(v;; ;) < 1/2 implies that it is more likely that a given position qf is
zero than one s = 0 gives the largest value for the maximization. Finally, to
obtain (c), we apply Sanov’s Theorem [4][Theorem 12.1.4dte\that the reason
we requiredd(v;; ;) > D originally is that this condition is required by Sanov’s
Theorem in (c). O

Before proving Theorem 2, we require the following lemma:

Lemma 5. For a compound code that satisfies (B)[z(D) > 0] > (1/2) - (n +
1)72.

Proof. First, assume thak ., Pr[x;(D) | x(D)] > 1 because if this is not
the case then (4) immediately implies tiat[z(D) > 0] > 1/2 and the proof
is complete. Therefore continuing from the assumption gt Pr[x;(D) |
xo(D)] > 1yields

s @ Elz(D)]* @) E[z(D)]?
PrizD) >0 2 §L0)] ~ BRI+ S0 Pl (D) 0D 2D

© Blz(D))? _ BlD)?

~ 2-E[z(D)] - {30 Prix (D)xo(D)]} 22540 Prlxi (D) xo(D)]
(23)

@  E[z(D)]/2 © on{R—[1-H,(D)]} 1

= on{R—[1-H,(D)]} =z 20n +1)2 - on{R—[1-Hy(D)} - 2(n+1)2
(24)

where (a) follows from Proposition 1, (b) comes from Lemm#c3 follows from
the assumption in the first sentence, (d) comes from (9), aha¢dmes from
Lemma 2. O

Proof of Theorem 2.Lemma 5 tells us that the probability that at least codeword
is found within distortionD is at at leas(1/2)/(n + 1)2, i.e, there is at least a
small chance that a good codeword exists. The key insightefémainder of
the proof is that whilg1/2)/(n + 1)? may be small, it is noéxponentiallysmall.
Hence if we can show that the distortion for a compound codensentrated near
its typical value except with somexponentiallysmall probability, then Lemma 5
immediately implies that the evekt(D) > 0} must correspond to the typical
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distortion. To prove exponential concentration, we shaat the actual error prob-
ability, Pr[z(D) = 0] is smaller than==“"* for some constant using martingale
arguments [1, 9].

Specifically, we define a Doob martingatg(C;,) that is the expected value of
the distortion between the best codeword and the sourcdi@mred on the bottom
codeCy,) when the first columns of the generator matr& (i.e., the connections
from the firsti checks to their respective variables) of the top code in Figave
been revealed. Since the check degre6 of bounded, going from stepto ¢ + 1
and revealing check+ 1 can only change the value of the martingedg Cy,) by at
most 1. Hence, by the Azuma-Hoeffding inequality, the ploliig that a sample
path c2>f the martingale differs from its expected value by enthiane is less than
2e7 ",

Since Lemma 5 shows that the probability tfafz(D) > 0] is at least an
inverse polynomial (and hena®t exponentially small), the evedtz(D) > 0}
must determine the expected value of the martingale. Therefther events that
result in a distortion larger thab (e.g, {z(D) = 0}) must be exponentially small.

O
Proof of Theorem 1:.Combining Theorem 2 with Proposition 2 establishes this re-
sult. O
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