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Abstract

We propose a new construction for low-density source codes with multiple parameters that can
be tuned to optimize the performance of the code. In addition, we introduce a set of analysis
techniques for deriving upper bounds for the expected distortion of our construction, as well
as more general low-density contructions. We show that (with an optimal encoding algorithm)
our codes achieve the rate-distortion bound for a binary symmetric source and Hamming distor-
tion. Our methods also provide rigorous upper bounds on the minimum distortion achievable by
previously proposed low-density constructions.
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1 Introduction

While low-density parity check (LDPC) codes can provably approach the channel
coding capacity [9] for point-to-point transmission, currently there are relatively
few theoretical results on low-density codes for lossy source coding, channel cod-
ing with encoder side information, and source coding with decoder side informa-
tion. Note that the latter three scenarios all involve some aspect of quantization.
Even though quantization and error correction are closely related, the standard
LDPC constructions used for channel coding generally fail [7]. One viable option
is trellis-based quantization (TCQ) [6], which has been used both for lossy source
coding, as well as for distributed source coding [2,12,13].However, saturating fun-
damental bounds with TCQ requires taking the constraint length to infinity [10],
which incurs exponential complexity even for message-passing decoders/encoders.
Consequently, it is of considerable interest to develop low-density constructions
that are also capable of saturating the information-theoretic bounds.

Previous work [7] has shown that low-density generator matrix (LDGM) codes,
which are dual to LDPC codes, are provably optimal for binaryerasure quantiza-
tion (a special type of source coding). This motivates the use of LDGM codes and
variants for more general compression problems. Indeed, recent work [3,8,11] has
shown empirically that LDGM codes, in conjunction with variants of sum-product
message-passing for encoding, can approach the rate-distortion bound for a binary
symmetric source (BSS). In addition, non-rigorous replicaor cavity method calcu-
lations [3,8] also suggest that the theoretical performance of LDGM codes is close
to optimal.

This paper makes two primary contributions to this area. First, we propose a
new low-density construction for lossy source coding with multiple parameters that
can be tuned to optimize the performance of the code. Our construction includes
as a special case the ordinary LDGM codes that have been examined in previous
work [3, 7, 8, 11]. Second, we develop methods useful for analyzing the expected
distortion of our constructions as well as more general lossy source codes. Using
these methods, we show that (with optimal quantization) ourcodes saturate the
rate-distortion bound for a uniform binary source and Hamming distortion. We also
derive rigorous upper bounds on the distortion achievable by a standard LDGM
construction. Thus, provided that a low complexity iterative encoding algorithm
can be found, our results suggest that low density codes can provide significant
improvements for a wide class of quantization problems.

The remainder of this paper is organized as follows. After introducing some
notation, we describe our new low density generator matrix construction in Sec-
tion 2 and bound its performance in Section 3. In particular,we describe the tools
required to analyze low density source codes through a series of lemmas, which
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we believe illustrate the main insights of the paper. Finally, we close with some
concluding remarks in Section 4 and postpone all proofs to the appendix.

Notation: Vectors/sequences are denoted in bold (e.g., s), random variables in
sans serif font (e.g., s), and random vectors/sequences in bold sans serif (e.g., s).
Similarly, matrixes are denoted using bold capital letters(e.g., G) and random
matrixes with bold sans serif capitals (e.g., G). We useI(·; ·), H(·), andD (·||·)
to denote mutual information, entropy, and relative entropy (Kullback-Leibler dis-
tance), respectively. Finally, we usecard {·} to denote the cardinality of a set,||·||p
to denote thep-norm of a vector, andHb (t) to denote the entropy of a Bernoulli(t)
random variable.

2 The Compound Construction

The construction considered in the paper is illustrated in Fig. 1: the top section
consists of an LDGM codeCt of rateRt = m

n with n source bits andm informa-
tion bits, whereas the bottom section consists of an LDPC code of rateRb = 1− k

m
with m bits constrained byk checks. The compound code formed by joining the
top and bottom code can generate2Rbm = 2m−k possible source reconstructions
of lengthn, so that the overall codeC has rateR = Rt − (1 − Rb). Note that a
check-regular LDGM code corresponds to the special case of settingRb = 1.

To quantize a lengthn binary source vectors using the compound construc-
tion, an encoder finds an assignment for them bits in the middle layer that satisfy
the constraints of the bottom LDPC code. Formally, we can denote them-by-n
generator matrix for the top LDGM code asG and thek-by-m parity check ma-
trix for the bottom LDPC code asH. Thenq is a codeword of the overall code if
q = w · G andH · w′ = 0 for some assignment of the middle layer, which we
denote asw. Thus, an optimal encoder fors would find the codeword minimizing
the Hamming distance,dH(wG, s), such thatHw′ = 0. Since the vectorw has
lengthm, storing or transmittingw directly would achieve only compression rate
Rt. Instead, we can use the fact that there are only2m−k valid choices forw, to
storew using onlyk bits, resulting in compression rateR. For example, we could
store thek-bit information vector that when encoded with the bottom LDPC code
yieldsw.
Random LDPC Ensemble: For the bottom LDPC code, we use the standard
(γv , γc)-regular LDPC ensemble studied by Gallager. Specifically, each of them
variable nodes in the middle layer connects toγv check nodes in the bottom layer.
Similarly, each of thek check nodes in the bottom layer connects toγc variable
nodes in the middle layer. For convenience, we restrict ourselves to even check de-
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Figure 1. Illustration of the compound code construction, involvingan LDGM
(top section) withγt = 4 and an LDPC (bottom section) with(γv, γc) = (2, 4).

greesγc. Note that these degrees are linked to the rate via the relation γv

γc
= 1−Rb.

A random LDPC codeCb ≡ Cb(γv, γc) is generated by choosing uniformly from
this ensemble.

Random LDGM ensemble:For the top LDGM code, each of then checks at the
top are randomly connected toγt variable nodes in the middle layer chosen uni-
formly at random. This leads to a Poisson degree distribution on the information
bits and makes the resulting distribution of a random codeword easy to character-
ize:

Lemma 1. Let G be a random generator matrix obtained by placingγt ones
in each column uniformly at random. Then for any vectorw ∈ {0, 1}m with
a fraction of v ones, the distribution of the corresponding codewordw · G is
Bernoulli(δ(v; γt)) where

δ(v; γt) =
1

2
· [1 − (1 − 2v)γt ] . (1)

3 Main Results

Although our methods apply to the compound construction more generally, we
state our main result in application to the special case withRt = 1 andRb = R.
For these choices, we can guarantee that our compound construction approaches
the optimal rate-distortion trade-off as the blocklengthn tends to infinity using
finite choices of degrees in our LDGM/LDPC construction.1

1Our methods also yield upper bounds on the achievable distortion of the check-regular LDGM
construction (Rt = R andRb = 1). Subsequent work will describe the use of alternative ratepairs
(Rt, Rt) for source and channel coding with side information.
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Theorem 1. Consider an arbitrary rate distortion pair(D,R(D)). For any∆ >
0. there exists a finite LDGM degreeγt(∆,D) and an LDPC code with finite de-

greesγv(∆,D) and γc(∆,D) such that a randomly chosen code with rateR
∆
=

R(D) + ∆ in the associated LDGM ensemble achieves distortionD with proba-
bility 1 − exp(−cn) for some constantc.

As a particular example of our results illustrated later in Fig. 2, the degree choices
γt = 4, γc = 8 for rateR(D) = 1/2, are sufficient to make the gap∆ zero (within
the precision of our numerical calculations). The proof of Theorem 1 consists of
several steps, which we motivate and describe in the following text. Proofs of these
auxiliary results are provided in the appendix.

3.1 Expected Number of Good Codewords

For a lengthn codeC and a source vectors, we definez (C, s,D) to be the num-
ber of codewords that are within Hamming distanceDn of s. Specifically, let
xi(C, s,D) be 1 if theith codeword in the compound codeC is within Hamming
distanceDn of the sources, and 0 otherwise. Then

z (C, s,D)
∆
=

∑

i

xi(C, s,D). (2)

Ideally,z (C, s,D) should be large and there should be many good codewords
provided that the rate exceeds the rate-distortion function: R > 1−Hb (D). Specif-
ically, if we consider a random source vectors and a randomly generated codeC,
then the probability that the code is successful is simply2 Pr[z(D) > 0].

Since analyzing this probability directly is generally difficult, most random
coding arguments [4] consider the expectationE[z(D)]. For essentially any code
(and in particular the compound construction), it is possible to show that the ex-
pected number of good codewords is large:

Lemma 2.
E[z(D)] ≥

1

n + 1
2n

(

R−
[

1−H(D)
])

. (3)

3.2 Typical Number of Good Codewords

Unfortunately, the fact that the expected number of codewords is large is insuf-
ficient to show that the code achieves the rate-distortion bound. Rather, in order
to show that the code is good, we must show that the typical number of good

2When the source and/or code are random, then we drop the indexing of random quantities and
write xi(C, s, D) andz (C, s, D) as random variablesxi(D) andz(D).
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codewords is not too far from the expected number of good codewords (or at least
non-zero). For high density codes, this can be done by using Chebyshev’s inequal-
ity, which depends on the variance ofz(D). For most low density constructions
(including our own), the variance is too large for Chebyshev’s inequality to yield a
useful bound. Consequently, we instead use Shepp’s second moment method:, as
summarized in the following proposition:3

Proposition 1. For any positive integer valued random variablez , Pr[z > 0] ≥
E[z ]2

E[z2]
.

To show that there is typically at least one good codeword, wemust upper
boundE[z(D)2], which can be cast in a more useful form using the following
lemma:

Lemma 3.

E[z(D)2] = E[z(D)] + E[z(D)] ·







∑

j 6=0

Pr[xj(D) = 1 | x0(D) = 1]







(4)

Lemma 3 illustrates one of the main differences between low density and high
density constructions. Specifically, in a high density construction, each codeword
can be chosen independently yieldingPr[xj(D) = 1 | x0(D) = 1] = Pr[xj(D) =
1] and implyingE[z(D)2] ≤ E[z(D)] + E[z(D)]2. In contrast, for low den-
sity codes, there will usually be some dependence between the codewords. For
example, in the usual LDGM construction, when the information bitsw have low
weight, then the resulting codewordw·G will also have low weight. Consequently,
if the all-zero codeword is within Hamming distanceDn of the source, then these
low weight codewords probably are as well and soPr[xj(D) = 1 | x0(D) = 1]
can be much larger thanPr[xj(D) = 1]. In particular, we can boundPr[xj(D) =
1 | x0(D) = 1] by considering the weight of the information sequencewj used to
generate thejth codeword:

Lemma 4. Let wj · G be thejth codeword obtained by multiplying a weightvj

vectorwj by a random matrix from the LDGM ensemble and letxj(D) denote the
event that codewordj is within Hamming distanceDn of a random Bernoulli(1/2)
source. Then for any even degreeγt, lettingv0 = 0 yields

Pr[xj(D) = 1 | x0(D) = 1] ≤

{

1 if 0 ≤ vj ≤ ν∗(D; γt)

2−n KL(D ‖ δ(vj ;γt)) otherwise,
(5)

3Proposition 1 can be established by defining an indicator random variable,r(D), for the event
{z(D) > 0} and applying the Cauchy-Schwartz inequality to obtainE[z(D)]2 = E[z(D)r(D)]2 ≤
E[z(D)2] · E[r(D)], which is equivalent to the desired result.
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where

ν∗(D; γt) =
1

2

[

1 −
(

1 − 2D
)

1

γt

]

. (6)

Lemma 4 shows thatPr[xj(D) = 1 | x0(D) = 1] is small whenever the weight
of the information sequence for a codeword is large. So to characterize the sum
over this probability we must consider how many vectors of a given weight in the
middle layer satisfy the constraints of the bottom LDPC codeCb. Specifically,
we denote the average (log domain) weight enumerator ofCb (i.e., the rate of
codewords ofCb with a given weight) as

ACb
(ω)

∆
=

1

n
card {q ∈ Cb | ||q||1 = ω · n}. (7)

Intuitively, by combining (7) with Lemma 4, we can bound the term in braces of
(4):

∑

j 6=0

Pr[xj(D) = 1 | x0(D) = 1] ≤

ν∗(D;γt)
∑

t=1

2AC
b
(t/n)+

n
∑

t=ν∗(D;γt)

2n[AC
b
(t/n)−KL(D ‖ δ(t;γt))].

(8)
Formally, we can use this idea to obtain the following result:

Theorem 2. Consider a sequence of rateR compound codes of increasing block-
lengthn. Suppose that the following inequality holds for all sufficiently large block-
lengths:

R−[1−Hb (D)] >
1

n
log







ν∗(D;γt)
∑

t=1

2AC
b
( t

n
) +

n
∑

t=ν∗(D;γt)

2n[AC
b
( t

n
)−KL(D ‖ δ( t

n
;γt))]







(9)
Then the probability that a code in the sequence fails to quantize a source with
distortion at mostDn goes to zero asn → ∞.

3.3 Reducing Dependency Between Codewords

The bracketed term on the RHS of (9) corresponds to theexcess raterequired
beyond the minimum1 − Hb (D) and is plotted in Fig. 2 for the compound code
in Fig. 1. The first term represents the number of low weight codewords of the
bottom code. Since the bound from Lemma 4 does not become active until weight
ν∗(D; γt), making the first term negligible requires choosing the LDPCensemble
so that the minimum distance is greater than the weightν∗(D; γt) resulting from
the choice of the degreeγt in the LDGM ensemble. The exponent of the second
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term in (9) is the sum of the weight enumerator and the bound from Lemma 4. For
this term to be negligible, the bottom LDPC code must have a weight enumerator
that grows less quickly than the error exponent in (5).
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Figure 2. Log of bounds and weight enumerator forR = 1/2, γt = 4, γc = 8, at
distortionD ≈ 0.11 normalized by the blocklengthn. The relative entropy bound
from (5) is zero for weights belowν∗(D; γt) and then quickly goes to2−n/2. The
(log domain) weight enumerator for a regular rate1/2 LDPC code is negative
for weights below the minimum distance and then rises to2n/2. As long as the
relative entropy bound is stronger than the weight enumerator, the excess rate in
(9) of Theorem 2 will be negligible.

Using the exact formula for the asymptotic weight enumerator of regular LDPC
codes developed by Litsyn and Shevelev [5], it is possible toprove the following
result:4

Proposition 2. There exist choices forγt, γv, andγc such that the term in braces
in (9) becomes negligible.

4 Concluding Remarks

In this paper, we proposed a new construction for low densitysource codes and in-
troduced tools to analyze low density generator matrix codes. As stated in Lemma 4
and illustrated in Fig. 2, our main insight was that the source coding performance

4The proof essentially requires showing that the sum of the weight enumerator and the bound
from Lemma 4 is negative for all weights in[ν∗(D; γt), 1/2. This can be done by checking the
appropriate derivatives of the sum and is omitted for brevity.
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of a low density code can be bounded by considering the weightof the codewords.
Thus, by using a compound code to control the weight spectrumwe obtained codes
that approach the rate-distortion function. A future paperwill describe and analyze
these types of compound constructions in application to source and channel coding
with side information.

A Proofs

Proof of Lemma 1:By construction of the LDGM ensemble forG, each bit of the
codewordw · G is independent of the others and is the modulo-2 sum ofγt ran-
domly and independently selected bits ofw. So the resulting codeword has a
Bernoulli distribution and all that remains is to determinethe probability that a
given bit is one, which we denote asδ(v; γt).

For any output bit, let the random variableei denote whether theith one in a
column ofG occurs in a position wherew has a one (i.e., ei is the value of the
variable node connected to theith link of a given check node at the top of Fig. 1).
Thenδ(v; γt) is exactly the probability that

∑γt

i=1 ei is even. Letting∆v(z) denote
the generating function (i.e., thez-transform) of

∑γt

i=1 ei yields

δ(v; γt)−(1 − δ(v; γt)) = ∆v(z = −1) =

γt
∏

i=1

(

Pr[ei = 0] + z−1 Pr[ei = 1]
)

∣

∣

∣

∣

z=−1

(10)

= (1 − v + v · z−1)γt

∣

∣

∣

∣

z=−1

= (1 − 2v)γt . (11)

Equating the leftmost term of (10) and the rightmost term of (11) and solving for
δ(v; γt) yields the desired result.

Proof of Lemma 2:

E[z(D)] = E

[

∑

i

xi(D)

]

=
∑

i

E[xi(D)] =
∑

i

Pr[dH(qi, s) ≤ Dn] (12)

≥
∑

i

2−n KL(D ‖ 1/2)

(n + 1)2
=

∑

i

2−n[1−Hb(D)]

(n + 1)2
=

2n{R−[1−Hb(D)]}

(n + 1)2
(13)

The first line follows by repeatedly expanding the definitionof the random vari-
ablesz(D) and xi(D). For the next line, we lower bound the probability that
a given codewordqi is within distortionDn using standard large deviations re-
sults [4][Theorem 12.1.4]. Note that nothing in this argument depends on the actual
code construction itself (except for the number of codewords).
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Proof of Lemma 3:

E[z(D)2] = E





∑

i

∑

j

xi(D)xj(D)



 = E[z(D)] +
∑

i

∑

j 6=i

E [xi(D)xj(D)]

(14)

= E[z(D)] +
∑

s

∑

i

∑

j 6=i

Pr[dH(qj , s) ≤ Dn, dH(qi, s) ≤ Dn] Pr[s = s]

(15)

= E[z(D)] +
∑

s

∑

i

∑

j 6=i

Pr[dH(qj ⊕ qi, s ⊕ qi) ≤ Dn,

dH(0, s ⊕ qi) ≤ Dn] Pr[s = s] (16)

= E[z(D)] +
∑

s

∑

i

∑

j′ 6=0

Pr[dH(qj′ , 0) ≤ Dn, dH(0, s′) ≤ Dn] Pr[s = s]

(17)

= E[z(D)] +
∑

i

∑

j′ 6=0

Pr[xj′(D) = 1, x0(D) = 0] (18)

= E[z(D)] +

{

∑

i

Pr[x0(D) = 1]

}

·







∑

j′ 6=0

Pr[xj′(D) = 1|x0(D) = 1]







(19)

To obtain (14) we consider the diagonal terms separately from the off-diagonal
terms, and note thatE[xi(D)2] = E[xi(D)] since thexi(D) are indicator variables.
Next, we apply the definition ofxi(D) to get (15) and then addqi to each side of the
dH(·, ·) terms to obtain (16). Since the code is linear, adding the codewordsqi and
qj yields another codeword which we denoteqj′ . This observation combined with
writing s′ = s⊕qi yields (17). To go from (17) to (18), we note that for a uniformly
random source,Pr[s = s] = Pr[s = s′]. Finally, to obtain the desired result from
(19), we note thatxi(D) is independent ofi and henceE[xi(D)] = E[x0(D)].

Proof of Lemma 4:We focus on the case whenδ(vj ; γt) ≥ D. Solving this rela-
tion for vj yields the formula forν∗(D; γt) in (6) and soδ(vj ; γt) < D corresponds
to the trivial bound in the top case of (5). Thus, forδ(vj ; γt) ≥ D we have

Pr [xj(D) = 1 | x0(D) = 1 ] ≤ Pr [dH(qj , s) ≤ Dn | dH(s, 0) ≤ Dn] (20)
(a)

≤ max
t≤Dn

Pr

[

dH(qj , 1
t0n−t) ≤ Dn

]

(b)

≤ Pr

[

dH(qj , 0
n) ≤ Dn

]

(c)

≤ 2−n KL(D ‖ δ(vj ;γt)).

(21)
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We obtain (20) from the definition of the random variablexj(D). For (a), since
qj is a Bernoulli sequence, without loss of generality we can imagine that all the
ones ins occur at the start of the sequence. To obtain an upper bound, we put in
as many such ones as required to maximize the desired probability. In (b), we note
that δ(vj ; γt) ≤ 1/2 implies that it is more likely that a given position ofqj is
zero than one sot = 0 gives the largest value for the maximization. Finally, to
obtain (c), we apply Sanov’s Theorem [4][Theorem 12.1.4]. Note that the reason
we requiredδ(vj ; γt) ≥ D originally is that this condition is required by Sanov’s
Theorem in (c).

Before proving Theorem 2, we require the following lemma:

Lemma 5. For a compound code that satisfies (9),Pr[z(D) > 0] > (1/2) · (n +
1)−2.

Proof. First, assume that
∑

j 6=0 Pr[xj(D) | x0(D)] ≥ 1 because if this is not
the case then (4) immediately implies thatPr[z(D) > 0] ≥ 1/2 and the proof
is complete. Therefore continuing from the assumption that

∑

j 6=0 Pr[xj(D) |
x0(D)] ≥ 1 yields

Pr[z(D) > 0]
(a)

≥
E[z(D)]2

E[z(D)2]

(b)
=

E[z(D)]2

E[z(D)]{1 +
∑

j 6=0 Pr[xj(D) | x0(D)]}
(22)

(c)

≥
E[z(D)]2

2 · E[z(D)] · {
∑

j 6=0 Pr[xj(D)|x0(D)]}
=

E[z(D)]/2
∑

j 6=0 Pr[xj(D)|x0(D)]

(23)

(d)

≥
E[z(D)]/2

2n{R−[1−Hb(D)]}

(e)

≥
2n{R−[1−Hb(D)]}

2(n + 1)2 · 2n{R−[1−Hb(D)]}
=

1

2(n + 1)2

(24)

where (a) follows from Proposition 1, (b) comes from Lemma 3,(c) follows from
the assumption in the first sentence, (d) comes from (9), and (e) comes from
Lemma 2.

Proof of Theorem 2:Lemma 5 tells us that the probability that at least codeword
is found within distortionD is at at least(1/2)/(n + 1)2, i.e., there is at least a
small chance that a good codeword exists. The key insight of the remainder of
the proof is that while(1/2)/(n + 1)2 may be small, it is notexponentiallysmall.
Hence if we can show that the distortion for a compound code isconcentrated near
its typical value except with someexponentiallysmall probability, then Lemma 5
immediately implies that the event{z(D) > 0} must correspond to the typical
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distortion. To prove exponential concentration, we show that the actual error prob-
ability, Pr[z(D) = 0] is smaller thane−cn for some constantc using martingale
arguments [1,9].

Specifically, we define a Doob martingalemi(Cb) that is the expected value of
the distortion between the best codeword and the source (conditioned on the bottom
codeCb) when the firsti columns of the generator matrixG (i.e., the connections
from the firsti checks to their respective variables) of the top code in Fig.1 have
been revealed. Since the check degree ofG is bounded, going from stepi to i + 1
and revealing checki+1 can only change the value of the martingalemi(Cb) by at
most 1. Hence, by the Azuma-Hoeffding inequality, the probability that a sample
path of the martingale differs from its expected value by more thanǫ is less than
2e−nǫ2 .

Since Lemma 5 shows that the probability thatPr[z(D) > 0] is at least an
inverse polynomial (and hencenot exponentially small), the event{z(D) > 0}
must determine the expected value of the martingale. Therefore other events that
result in a distortion larger thanD (e.g., {z(D) = 0}) must be exponentially small.

Proof of Theorem 1:Combining Theorem 2 with Proposition 2 establishes this re-
sult.
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