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Abstract

We propose a simple and elegant algorithm to track non-
rigid objects using a covariance based object description
and a Lie algebra based update mechanism. We repre-
sent an object window as the covariance matrix of features,
therefore we manage to capture the spatial and statistical
properties as well as their correlation within the same rep-
resentation. The covariance matrix enables efficient fusion
of different types of features and modalities, and its dimen-
sionality is small. We incorporated a model update algo-
rithm using the Lie group structure of the positive definite
matrices. The update mechanism effectively adapts to the
undergoing object deformations and appearance changes.
The covariance tracking method does not make any as-
sumption on the measurement noise and the motion of the
tracked objects, and provides the global optimal solution.
We show that it is capable of accurately detecting the non-
rigid, moving objects in non-stationary camera sequences
while achieving a promising detection rate of 97.4 percent.

1. Motivation

Finding the correspondences of the previously detected
objects in the current frame, tracking, is an essential compo-
nent of several vision applications. Still, robust and accurate
tracking of a deforming, non-rigid and fast moving object
without getting restricted to particular model assumptions
presents a major challenge.

Here we briefly describe the conventional tracking meth-
ods and their latent shortcomings. Mean-shift [5] is a non-
parametric density gradient estimator to find the image win-
dow that is most similar to the object’s color histogram in
the current frame. It iteratively carries out a kernel based
search starting at the previous location of the object. Even
though there are variants [11] to improve its localization by
using additional modalities, the original method requires the
object kernels in the consecutive frames to have a certain
overlap. The success of the mean-shift highly depends on
the discriminating power of the histograms that are consid-
ered as the objects’ probability density function.

Tracking can be considered as estimation of the state
given all the measurements up to that moment, or equiva-
lently constructing the probability density function of object
location. A common approach is to employ predictive fil-
tering and use the statistics of object’s color and location in
the distance computation while updating the object model
by constant weights [15]. When the measurement noise are
assumed to be Gaussian, the optimal solution is provided
by the Kalman filter [3]. When the state space is discrete
and consists of a finite number of states, Markovian filters
can be applied for tracking. The most general class of fil-
ters is represented by particle filters, which are based on
Monte Carlo integration methods. The current density of
the state (which can be location, size, speed, boundary [9],
etc.) is represented by a set of random samples with asso-
ciated weights and the new density is computed based on
these samples and weights. Particle filtering is a popular
tracking method [2],[16], [4]. However, it is based on ran-
dom sampling that becomes a problematic issue due to sam-
ple degeneracy and impoverishment, especially for higher
dimensional representations.

Tracking can also be considered as a classification prob-
lem and a classifier can be trained to distinguish the object
from the background [1]. This is done by constructing a
feature vector for every pixel in the reference image and
training a classifier to separate pixels that belong to the ob-
ject from pixels that belong to the background. As in the
mean-shift, an object can be tracked only if its motion is
small. One obvious drawback of the local search methods
is that they tend to stuck into the local optimum.

A major concern is the lack of a competent similarity
criterion that captures both statistical and spatial properties,
i.e., most approaches either depend only on the color dis-
tributions or structural models. Many different representa-
tions, from aggregated statistics to appearance models, have
been used for tracking objects. Color histograms are pop-
ular representations of nonparametric density, but they dis-
regard the spatial arrangement of the feature values. More-
over, they do not scale to higher dimensions due to exponen-
tial size and sparsity. Appearance models map the image
features onto a fixed size window. Since the dimensionality
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is a polynomial in the number of features and the window
size, only a relatively small number of features can be used.
Appearance models are highly sensitive to the pose, scale
and shape variations.

To overcome the shortcomings of the existing ap-
proaches, we proposed a covariance matrix representation
to describe the object windows. We generalize the idea pre-
sented in [13] to tracking problems. In the next section, we
explain how we construct the covariance matrices, compute
the distances, and update the models. In Section 3, we give
several examples of non-rigid object tracking under varying
illumination conditions, and fusion of infrared and color in-
formation.

2. Covariance Tracking

A brief description of the tracking algorithm is as fol-
lows. At each frame, we construct a feature image (Section
2.1). For a given object region, we compute the covariance
matrix of the features as the model of the object (Section
2.2). In the current frame, we find the region that has the
minimum covariance distance from the model and assign it
as the estimated location (Section 2.3). To adapt to vari-
ations, we keep a set of previous covariance matrices and
extract an intrinsic mean using Lie algebra (Section 2.4).

2.1. Features and Spatial Arrangements

We denote the observed image with I , where it might be
one dimensional intensity image or three dimensional color
image, or four dimensional combination of color and in-
frared images, or etc. Let F be the W ×H ×d dimensional
feature image extracted from I

F (x, y) = Φ(I, x, y)

where the function Φ can be any mapping such as color, im-
age gradients Ix, Ixx, .., edge magnitude, edge orientation,
filter responses, etc. This list can be extended by including
higher order derivatives, texture scores, and temporal frame
differences, etc. For a given rectangular window R ⊂ F ,
let {fk}k=1..n be the d-dimensional feature vectors inside
R. We construct the feature vector fk using two types of
mappings; spatial attributes that are obtained from pixel co-
ordinate values, and appearance attributes, i.e., color, gradi-
ent, infrared, etc. These features may be associated directly
to the pixel coordinates

fk = [ x y I(x, y) Ix(x, y) ... ] .

Alternatively, they can be arranged in radially symmetric
relationship

f
r

k = [ ||(x′, y′)|| I(x, y) Ix(x, y) ... ]

where

||(x′, y′)|| =
√

(x′2 + y′2), (x′, y′) = (x − x0, y − y0)

are the relative coordinates, and (x0, y0) is the coordinates
of the window center.

Different associations of the spatial information to the
image features enables imposing of separate blending rules.
For instance, fk prevails an appearance model susceptible to
the object rotation with respect to window origin (x0, y0),
whereas f

r

k offers rotation invariant spatial formation of the
features.

2.2. Covariance Matrix

We represent an M×N rectangular region R with a d×d
covariance matrix CR of the feature points as

CR =
1

MN

MN∑
k=1

(fk − μR)(fk − μR)T (1)

where μR is the vector of the means of the corresponding
features for the points within the region R. The covariance
matrix is a symmetric matrix where its diagonal entries rep-
resent the variance of each feature and the non-diagonal en-
tries represent their respective correlations.

There are several advantages of using covariance matri-
ces as region descriptors. The covariance matrix proposes
a natural way of fusing multiple features without normal-
izing features or using blending weights. It embodies the
information embedded within the histograms as well as the
information that can be derived from the appearance mod-
els. In general, a single covariance matrix extracted from a
region is enough to match the region in different views and
poses. The noise corrupting individual samples are largely
filtered out with the average filter during covariance com-
putation. Covariance matrix of any region has the same
size, thus it enables comparing any regions without being
restricted to a constant window size. It has also an scale
invariance property over the regions in different images in
case the raw features such as, image gradients and orienta-
tions, are extracted according to the to scale difference.

As given above, covariance matrix can be invariant to ro-
tations. Nevertheless, if information regarding the orienta-
tion of the points are embedded within the feature vector, it
is possible to detect rotational discrepancies. We also want
to point that the covariance is invariant to the mean changes
such as identical shifting of color values. This becomes an
advantageous property when objects are tracked under vary-
ing illumination conditions.

It is possible to compute covariance matrix from feature
images in a very fast way using integral image represen-
tation [10]. After constructing tensors of integral images
corresponding to each feature dimension and multiplication
of any two feature dimensions, the covariance matrix of any
arbitrary rectangular region can be computed independent
of the region size. Refer to [13] for more details.
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2.3. Finding the Best Match

To obtain the most similar region to the given object, we
need to compute distances between the covariance matrices
corresponding to the target object window and the candidate
regions. However, the covariance matrices do not lie on the
Euclidean space. For example, the space is not closed un-
der multiplication with negative scalers. Therefore an arith-
metic subtraction of two matrices would not measure the
distance of the corresponding regions.

Supposing no features in the feature vector would be ex-
actly identical, which states the covariance matrices are pos-
itive definite, it is possible apply the distance measure pro-
posed by Förstner [7]. The distance metric uses the sum
of the squared logarithms of the generalized eigenvalues to
compute the dissimilarity between covariance matrices as

ρ(Ci,Cj) =

√√√√ d∑
k=1

ln2λk(Ci,Cj) (2)

where {λk(Ci,Cj)} are the generalized eigenvalues of Ci

and Cj , computed from

λkCixk − Cjxk = 0 k = 1 . . . d (3)

and xk are the generalized eigenvectors. The distance mea-
sure ρ satisfies the metric axioms, positivity, symmetry, tri-
angle inequality, for positive definite symmetric matrices.

At each frame we search the whole image to find the re-
gion which has the smallest distance from the current object
model. The best matching region determines the location of
the object in the current frame.

2.4. Model Update Strategies

Since non-rigid and moving objects undergo shape, size,
and appearance transformations in time, it is necessary to
adapt to these variations. We construct and update a tempo-
ral kernel of covariance matrices corresponding to the pre-
viously estimated object regions R1, . . . , RT . We keep a
set of T previous covariance matrices [C1 . . . CT ] where
C1 denotes the current covariance matrix. From this set,
we compute a sample mean covariance matrix that blends
all the previous matrices.

In case all the previously detected regions and the cor-
responding feature measurements are stored, an aggregated
covariance matrix can be obtained by

C̃ =

⎡⎢⎣ σ2
1,1 σ2

1,2 · · ·
σ2

1,2 σ2
2,2

...
. . .

⎤⎥⎦
d×d

(4)

where the entries are defined as

σ2
u,v =

1

MNT

T∑
t=1

MN∑
k=1

[
f t

k(u) − μ(u)
] [

f t
k(v) − μ(v)

]
(5)

and f
t
k ∈ Rt. The mean μ is computed over all re-

gions R1, . . . , RT . Although this formulation is arguably
straightforward, it assumes that all the windows have identi-
cal sizes and they are equally influential. Besides, it is com-
putationally expensive, O(MNTd2) and requires a large
amount of memory to store all the previous observations.

It is desirable to obtain an aggregated covariance matrix
without being limited to a constant window size and keep-
ing all the previous measurements. We want to compute
a mean covariance matrix, an intrinsic average. However,
covariance matrices do not conform to Euclidean geome-
try. We can still find the mean of several covariance matri-
ces through Riemannian geometry since symmetric positive
definite matrices have Lie group structure.

Here we provide a brief overview of Lie group and alge-
bra. A Lie group is an analytic manifold that is also a group
such that the group operations

• multiplication (A,B) �→ AB : G × G �→ G

• inversion A �→ A
−1 : G �→ G

are differentiable maps. Lie groups can be locally viewed
as topologically equivalent to the vector space, R

d. Thus,
the local neighborhood of any group element A can be ade-
quately described by its tangent space. The tangent space at
the identity element of the group e, forms a Lie algebra g.
A Lie algebra g is a vector space. Note that, we use small
letters for elements of Lie algebra and capital letters for el-
ements of Lie group. For more details on Lie groups refer
to [12].

The exponential map, exp : g �→ G, maps the vectors
in the Lie algebra to the Lie group. We focus on matrix
Lie groups only. The exponential map of a matrix and its
inverse, log, is defined by

exp(a) =
∞∑

n=0

1

n!
a

n log(A) =
∞∑

n=1

(−1)n−1

n
(A − e)n.

(6)
For commutative groups, the exponential map satisfies the
identity exp(a)exp(b) = exp(a + b). This identity does
not hold for non-commutative Lie groups such as covari-
ance matrices. The mapping is defined by exp(a)exp(b) =
exp(BCH(a,b)) through Baker-Campbell-Hausdorff for-
mula

BCH(a,b) = a + b +
1

2
[a,b] + O(|(a,b)|3), (7)

where [a,b] : g × g �→ g is the Lie bracket operation.
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In several applications the Lie algebra is used for com-
puting intrinsic means of points having Lie group struc-
ture [6, 8, 14]. We adapt the similar idea to obtain the intrin-
sic mean of covariance matrices. Let c be a point on the Lie
algebra and C = exp(c) be its mapping to the Lie group.
The distances on manifolds are defined in terms of mini-
mum length curves between points on the manifold. The
curve with the minimum length is called the geodesic and
the length of the curve is the intrinsic distance. The intrin-
sic distance of point C to the identity element of the group
e is given by ‖log(C)‖. Left multiplication by the inverse
of a group element C−1 maps the point C to e and tangent
space at C to Lie algebra. This mapping is an isomorphism.
Given {Ct}t=1...T as the data points on the group, taking
the log of the above mapping

ct = log(C−1
Ct) (8)

the data points are mapped to the Lie algebra and C to
0. Since Lie algebra is a vector space, we can compute a
first order approximation to the true (intrinsic) mean of the
points.

Starting at an initial matrix C1 and iteratively computing
first order approximations to the intrinsic mean, we con-
verge to a fixed point on the group. The algorithm is sum-
marized as follows

• initialize Ĉ = C1

• repeat

– for t = 1 to T

compute ct = log(Ĉ−1
Ct)

– compute ΔĈ = exp
(

1

T

∑T

t=1
ct

)
– assign Ĉ = ĈΔĈ

• until ‖log(ΔĈ)‖ < ε

The error at each iteration of the algorithm can be ex-
pressed in terms of higher order terms in Baker-Campbell-
Hausdorff formula (7) and the mapping (8) ensures that er-
ror is minimized. At the end of the iterations, we find the
intrinsic mean and use Ĉ as the current model.

In the above formulations, we considered all the previous
matrices C1 . . .CT in the set as equally influential on the
result regardless of whether they are accurate or not. To pre-
vent the model from contamination, it is possible to weight
the data points proportional to its similarity to the current
model. Then, the computation step on the above algorithm
becomes

ΔĈ = exp

(
1

ρ∗

T∑
t=1

ρ−1(Ct,C
∗)ct

)
(9)

where ρ is defined in (2), ρ∗ =
∑T

t=1
ρ−1(Ct,C

∗) and C
∗

is the model Ĉ computed at the previous frame.

Table 1. Tracking Performance Scores

miss/total detection† trials ‡

Pool Player 1 8/92 91.4 0.0356
Running Dog 1 9/125 92.8 0.0284
Subway 1 4/173 97.6 0.0091
Jogging 1 20/824 97.7 0.0096
Street-color 1 16/180 91.1 0.0351
Street-infrared 1 61/180 66.2 1.6376
Street-joint 1 8/180 95.6 0.0175
Race 2 2/692 99.7 0.0015
Crowd 3 7/522 99.1 0.0034
Percentages of correct estimation rates†, ratio of the
number of trials to get a correct estimate to the total

number of total locations‡. Video size 352×288
1,

352×240
2, 440×360

3.

2.5. Complexity

The covariance matrices are low-dimensional compared
to other region descriptors and due to symmetry CR has
only (d2 + d)/2 distinct values. Whereas if we represent
the same region with the feature values we need nd values,
where n = MN is the number of pixels inside the object
region. A conventional color histogram representation with
h-quantization levels per color channel would require h3-
bins. Usually it is the case that n � h � d.

As mentioned before, it is possible to improve the com-
putational complexity of covariance computation using in-
tegral histogram techniques [10, 13]. The computational
complexity of constructing integral covariance representa-
tion is O(WHd2). Using the constructed representation,
the covariance of any rectangular region can be computed
using O(d2) arithmetic operations.

Most computational power is spent to compare the model
with the covariance matrices of the candidate regions. The
computational complexity of the distance algorithm, which
requires extraction of the eigenvalues, is a polynomial in
the size of the feature vector. Using the dense methods,
i.e. Cholesky factorization and then QR algorithm, the com-
plexity of distance computation can be obtained as O(d3).
As a result, the total complexity of the tracking becomes
O(WHd2 + WHd3). For a 7×7 covariance matrix, the
search takes about ∼600 msec/frame on a P4 3.2GHz ma-
chine for 320×240 images. Hierarchical search methods,
which are common in block matching, can also be adapted
to reduce the complexity. The algorithm runs at ∼150
msec/frame while achieving the same tracking performance
when we apply a sampling based hierarchical search.

3. Experiments

We assessed the performance using 15 sequences total-
ing more than 3000 frames. These include moving and

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: Joseph Marks. Downloaded on November 25, 2008 at 15:13 from IEEE Xplore.  Restrictions apply.



frame 1 frame 10 frame 34 frame 73

frame 1 frame 32 frame 52 frame 96

frame 1 frame 50 frame 100 frame 172

frame 1 frame 50 frame 150 frame 250
Figure 1. Tracking results for four different sequences. In Pool Player and Running Dog sequences, the camera and objects are moving,
and the appearances are changing. In Subway and Crowd, the objects have indistinctive color and insignificant texture information.

stationary camera recordings, infrared sequences, etc., and
some of the results are listed in Table 1. We computed two
performance metrics. The detection rate is the ratio of the
number of frames the object location is accurately estimated
to the total number of frames in the sequence. We consider
the estimated location accurate if the best match is within
the 9× 9 neighborhood of the ground truth object center lo-
cation. For example, there are 101376 possible regions for a
352×288 image and the probability of correctly estimating
the object location is 1 : 1251, if we draw it randomly.

We also analyzed the number of trials to find the correct
estimation. This is based on ordering the search regions ac-
cording to the match scores until we find the correct estima-
tion. We defined the metric as the ratio of the total number
of trials to the total number of possible regions.

Sample tracking results are given in Figures 1 and 2.
For color sequences, we used all 3 RGB channels as sep-
arate features. For sequences recorded in stationary camera
setups, we included a frame difference score. The frame
difference feature improved the performance in infrared se-
quences since infrared imagery lack of sufficient spatial in-
formation to compute reliable features for small objects.
For non-stationary setups, we selected the feature vector as

fk = [ x y I(x, y) |Ix(x, y)| |Iy(x, y)| ]

Objects are manually initialized and we applied the covari-
ance tracking with the weighted Lie algebraic update. We
computed the covariance matrices in full resolution feature
image and performed the exhaustive search in half resolu-
tion grid to find the best match.
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frame 1 frame 75 frame 120 frame 196 frame 242

frame 400 frame 480 frame 640 frame 784 frame 811

frame 1 frame 46 frame 53 frame 64 frame 102

frame 400 frame 409 frame 413 frame 429 frame 483

Figure 2. Tracking results using for moving camera sequences. Size changes (frames 75, 196, 242, 881) in Race sequence and severe
occlusions (frames 53, 64, 409, 413) in Jogging sequence are accurately detected.

Moving Camera, Non-rigid Body: We observed that
the covariance modeling and update mechanism success-
fully detect and adapt models to the undergoing changes as
several examples are given in Figures 1 and 2. Note that,
in approximately 1% of the frames the objects were fully
occluded, therefore the overall detection rate was bounded
at 99%. Still, the covariance tracker was able to find ob-
jects at 97.4% of the frames as given in the first column of
Table 2. In comparison, optimal histogram matching could
detect only 72.8% of objects in our datasets. The original
mean shift [5], on the other hand, was able to keep track of
objects only for a couple of initial frames in case the objects
move fast and erratically (Jogging) or the color variation
is low and object color resembles to the background (Pool
Player). The average tracking performance of the original
mean shift was less than 40%.

Figure 3 shows sample results with and without model
update. We observed that the model update becomes more
critical especially for the objects having non-rigid deforma-

Table 2. Detection Rates - Gaussian Noise Contamination∗

σ2
η 0 0.01 0.1 0.3

Covariance tr. 97.4 94.3 89.0 70.6
Histogram mat. 72.8 65.2 42.6 18.9

(∗) not including infrared sequences

Table 3. Detection Rates - Severe Illumination Change

RGB HS-only
Covariance tracking 95.6 93.3
Histogram matching 48.7 64.0

tions. The model adaptation speed relies on the number of
previous frames T . For example, T = 5 provides flexible
models while T = 40 gives more robust estimates.

Noise and Illumination Changes: To test sensitivity
against noise, we contaminated the color values with ad-
ditive zero mean Gaussian noise with variance σ2

η, where
sample results are shown in Figure 4. We observed that
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Figure 3. Montages of the detected results from 88 consecutive
frames of Pool Player sequence. Some frames can be seen in Fig-
ure 1. With no model update; detection rate is 47.7% (top). With
weighted Lie algebraic model update; detection rate is 100% (bot-
tom).

while the performance of the histogram matching perfor-
mance significantly degrades (down to 18.9%), the covari-
ance tracking consistently achieves higher detection rates
(94.3% to 70.6%), as given in Table 2. Although a common
feature for tracking, histograms are easily contaminated by
the noise and loose their saliency.

To analyze robustness against the illumination changes,
we randomly scaled the color values of each frame as
I(x, y) = rtI(x, y) where rt is a random number between
0.2 and 1.0. The random numbers rt, rt+1 were indepen-
dent, thus sudden severe variations were allowed. The de-
tection rates are given in Table 3. To be more robust toward
illumination changes for histogram matching, we also tested
hue-saturation values only. Still, the covariance tracking
outperformed histogram matching. The last row of Fig-
ure 4 shows sample illumination transformed images and

Figure 4. Frames 8 and 84 from Running Dog (left) and montages
of 90 detected locations (right). From top to bottom: noisy data
with σ

2

η = 0.01 (detection rate for this sequence is 96.6%), noisy
data with σ

2

η = 0.3 (detection rate of 68.9%), sudden light changes
(detection rate of 95.6%). Red boxes in the montage images indi-
cate the misses.

the montage images of the tracked object. The covari-
ance tracker is very robust against the sudden illumination
changes.

Fusion of Infrared and Color: The covariance matrix
provides an effective solution to combine different modal-
ities. By extending the feature vector to include the tem-
perature values for pixel-wise aligned infrared and color se-
quences, we were able to take the advantage of both modal-
ities. In Figure 5, detected objects are given for three cases;
tracking using color only, infrared only, and joint as de-
scribed. Detection rate has significantly improved from
92%-color and 60%-infrared to 96%-joint, and the best
matches became closer to the ground truth.
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Images Color only Infrared only Joint

Figure 5. Detection rates of color: 92%, infrared: 60%, joint: 96%. Note that, localization also improves. Red boxes in the montage images
indicate the misses. Green indicates the frames where the object is fully occluded.

4. Conclusions

We summarize the main advantages of the covariance
tracking, which is a detection based localization method:

• It embodies both spatial and statistical properties of
objects, and provides an elegant solution to fuse multi-
ple features and modalities, e.g. thermal IR and color.

• It does not make any assumption on the noise and the
motion model. It can track objects even if their motion
is erratic and fast.

• It finds the global optimum solution unlike the local
approaches such as mean shift and particle filtering.

• It can effectively adapt to temporal model changes.
• It has very low-dimensionality of (d2 + d)/2.
• It is capable of comparing regions without being re-

stricted to a constant window size.
• Our experiments show that it is robust against noise

and severe lighting changes. Noise is largely filtered
out during covariance computation.
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