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Abstract

In this paper we examine the problem of identifying trajectories of sound sources as captured
from microphone arrays. Instead of employing traditional localization techniques we attach this
problem with a statistical modeling approach of phase measurements. As in many signal pro-
cessing applications that require the use of phase there is the issue of phase-wrapping. Even
though there exists a significant amount of work on unwrapping wrapped phase estimates, when
it comes to stochastic modeling this can introduce an additional level of undesirable complica-
tion. We address this issue by defining an appropriate statistical model to fit wrapped phase data,
and employ it as a state model of an HMM in order to recognize sound trajectories. Using both
synthetic and real data we highlight the accuracy of this model as opposed to generic HMM
modeling.
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ABSTRACT

In this paper we examine the problem of identifying trajectories
of sound sources as captured from microphone arrays. Instead of
employing traditional localization techniques we attack this prob-
lem with a statistical modeling approach of phase measurements.
As in many signal processing applications that require the use of
phase there is the issue of phase-wrapping. Even though there ex-
ists a significant amount of work on unwrapping wrapped phase
estimates, when it comes to stochastic modeling this can introduce
an additional level of undesirable complication. We address this
issue by defining an appropriate statistical model to fit wrapped
phase data, and employ it as a state model of an HMM in order to
recognize sound trajectories. Using both synthetic and real data we
highlight the accuracy of this model as opposed to generic HMM
modeling.

1. INTRODUCTION

Localization is a problem that has been extensively studiedin the
audio processing literature [1, 2, 3]. In this paper we will present a
modeling approach that leads to a learning methodology, which
differs from the traditional time delay or subspace localization
methods. Conceptually similar approaches have been presented in
the past, however they involved black box training of cross-spectra
[4], or straightforward modeling of cross sensor differences [5]. In
our work we present a model which is fits sound source trajec-
tories as described from their cross-sensor phase characteristics.
We learn and subsequently recognize the physical trajectories of
sources as dynamic phase patterns across all frequencies. How-
ever because phase is a quantity that is estimated in a wrapped
form we had to devise a statistical model to assist the above pro-
cess, that can take wrapping into account without requiringphase
unwrapping. In section 2 we introduce that model and extend it to
deal with multivariate time series as an HMM, and in section 3we
show how this model can be used to learn and cluster sound source
trajectories and present the relevant results.

2. WRAPPED PHASE MODEL

In this section we define a statistical model for wrapped-phases
and wrapped-phase time series. We start from the univariatecase
in section 2.1 and then extend it for multivariate use and as the state
model of an HMM in section 2.2. From here on we will assume
that phase wrapping wraps in the interval[0, 2π].
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Figure 1:Histograms of phase data. On the left we have a case that
exhibits little phase wrapping which results into data thatcan be
well modeled by a Gaussian distribution. On the right we havea
case with severe phase wrapping on which a Gaussian distribution
approximation results in a very poor fit for the data.

2.1. Univariate model

When one makes statistical models the Gaussian distribution is
usually a reasonable place to start from. In the case of phasesig-
nals though we are faced with an interesting problem due to phase-
wrapping. When we model phase with a Gaussian distribution and
the mean of the given data is close to0 or 2π the distribution wraps
and becomes bimodal. When this happens a Gaussian model can
grossly misrepresent the data. To visualize this consider ahis-
tograms of phase data in figure 1. The phase data used for the
histograms were the phase differences for specific frequencies be-
tween two microphones recording speech. We can see that the
histogram on the left is adequately approximated by a Gaussian
distribution, however the histogram on the right, exhibiting wrap-
ping, has become bimodal and the fitted Gaussian distribution is
a poor description of the data. In order to deal with this issue we
will define a proper distribution that explicitly models phase wrap-
ping. To do so we will use the Gaussian distribution as a basis.
We will model phase data in its unwrapped form with a Gaussian
distribution. We will emulate the wrapping process by replicating
and adding the same Gaussian distribution at intervals of2π:
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Figure 2:Illustration of the wrapped Gaussian distribution model.
Replicating a Gaussian distribution at intervals of2π (dashed
lines) and summing the result in the interval between[0, 2π) (solid
line) results into accurate modeling of a wrapped Gaussian distri-
bution.

The tails of the replicated Gaussian distributions positioned out-
side the[0, 2π) interval will be accounting for the wrapped parts
as they enter it. To illustrate consider figure 2 which depicts the
distribution of Gaussian distributed phases centered around0.8. In
dotted lines we depict a few of the summed Gaussian distributions
used in equation 1. The solid line defined in the interval[0, 2π) is
their sum and the resulting wrapped distribution. We can seethat
parts of the central Gaussian distribution that were negative and
were wrapped around2π are being accounted for by the rightmost
Gaussian, and the smaller wrapped amount beyond2π is explained
by the left one. The effect of consecutive wrappings of the orig-
inal data can be respectively explained by Gaussian distributions
placed at increasingly distant multiples of2π. Now that this model
is established we move on into describing a procedure to find its
optimal parameters to fit a given sample set. To do so we will use
Expectation-Maximization (EM) [6]. We will start with a wrapped
data setxi defined in the interval[0, 2π), and initial model values
µ andσ. The first thing to do is the expectation step, we do so by
finding how much each sample belongs into each of the Gaussian
distributions in our model:

Px,k =

1√
2πσ2

e
− (x+k2π−µ)2

2σ2

fx(x)
(2)

UsingPx,k as a weighting factor we can perform the maximization
step and estimateµ andσ. We do so by:
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where〈·〉 denotes expectation. Note that the estimate ofµ is am-
biguous due to wrapping and any solution of the formµ+c2π, c ∈
Z is equivalent. For practical implementations summation ofan
infinite number of Gaussians is obviously an issue. Our experi-
ence has been that withk ∈ −1, 0, 1 we can get very good results,
and fork ∈ −2,−1, 0, 1, 2 we practically get the same results as
with any greaterk values. The reason to use large values ofk is

to account for multiple wraps. However the cases where we get
more than three consecutive wraps in our data result from a large
data variance with which the data becomes essentially uniform in
the defined space of[0, 2π). This can be adequately modeled by
a largeσ and a couple of replicated Gaussians thereby defeating
the need of excessive summations overk. In all our experiments
in this paper we usedk ∈ −1, 0, 1. This truncation ofk however
introduces a complication in estimatingµ. As mentioned aboveµ
is estimated with an arbitrary offset ofc2π, c ∈ Z. Now thatk is
truncated and we have a finite number of Gaussians, it is best to
ensure that we have the same number on each side ofµ so that we
can represent wrappings equally well from both sides. To ensure
this we need to make sure thatµ ∈ [0, 2π) which we can easily do
by wrapping the estimate we obtain from equation 3.

2.2. Multivariate and HMM extensions

Having the univariate model we can now use it as a basis for a mul-
tivariate Hidden Markov Model. First we define the multivariate
version. We do so simply by taking the product of the univariate
models for each dimension:

fx(x) =
Y

i

fx(xi) (5)

This essentially corresponds to a diagonal covariance wrapped Gaus-
sian model. A more complete definition is possible by accounting
for the full interactions between the variates resulting into the full
covariance equivalent, however it is computationally too expen-
sive a model and not required for the purposes of this paper. In
this case the parameters that need to be estimated areµi andσi,
for each dimensioni. Estimation of the parameters can be done
by performing the EM process described above one dimension at
a time. Using this as a state model inside an HMM is a straight-
forward matter. We use the Baum-Welch algorithm [7] to trainan
HMM that has a wrapped Gaussian as a state model. The only
difference from a conventional HMM is that the a posteriori prob-
abilities are computed using the wrapped Gaussian state models
and that the state model parameter estimation in the M-step is now
defined as:

µi,j =
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whereγ are the posterior probabilities for each state,j the state
index, andi the dimension index. To obtain any reasonable results
all of the models we’ve shown so far are best computed in the log-
arithmic probability domain to avoid numerical underflows.It is
also best if for the first few training iterations allσ2 are clamped to
small values to allow allµ to start converging towards the correct
solution. This is because there are strong local optima near0 and
2π corresponding to a highσ2. Allowing µ to converge first is a
simple way to avoid this problem.

3. LEARNING SOUND TRAJECTORIES

Now that we have a model capable of modeling time series of mul-
tidimensional wrapped phase data we can employ it to perform
sound trajectory modeling. To do so we will assume that we have
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Figure 3: The eight trajectory types used in the synthetic room
examples. The two circles in the middle represent the position of
the two microphones in the room.

a two element microphone array, and that we measure the phase
difference in each frequency between the two microphones. To
do so we perform a short time Fourier transform on both signals
(F1(ω, t) andF2(ω, t)) and compute their relative phase by:

Φ(ω, t) = ∡
F1(ω, t)

F2(ω, t)
(8)

Each time instance ofΦ was used as a sample point. Subject
to symmetry ambiguities, most positions around the two micro-
phones will exhibit a unique phase pattern. Moving sound sources
will create time series of such phase patters which we will attempt
to model with the framework we just introduced. To avoid mea-
surement noise issues we only used the phase of frequencies rang-
ing from 400Hz to 8kHz. We present results from two experi-
ments, a synthetic one and one with data from a real recording.

3.1. Synthetic results

In this experiment we used the source-image room model [8] to
create sound trajectories inside a synthetic room. The roomwas
two-dimensional (10m × 10m) and we used up to 3rd order re-
flections and a sound absorption coefficient of0.1. Two cardioid
virtual microphones were positioned near the center of the room
at positions(4.9m, 5m) and(5.1m, 5m) pointing at opposite di-
rections. In all our examples we used white noise sampled at
44.1kHz as the sound source. Eight smooth random trajecto-
ries were computed and for each we generated nine similar copies
deviating from the originals with a standard deviation of25cm.
For each trajectory type, we used eight of its copies for fitting a
model and then evaluated the likelihood of the ninth one overall
these models. The eight types of trajectories are shown in fig-
ure 3. We used two training models, a standard Gaussian state
HMM and a wrapped Gaussian state HMM as introduced in sec-
tion 2.2. For both models we trained on eight copies of each of
the eight types of trajectories for thirty iterations and used an eight
state left-to-right model. Once the models were trained we evalu-
ated the model likelihood of the eight trajectories we have not used

−8000

−6000

−4000

−2000

0

 
 Trajectory #

M
od

el
 lo

g−
lik

el
ih

oo
d

Regular HMM models
 

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 12 2 2 2 2 2 2 23 3 3 3 3 3 3 34 4 4 4 4 4 4 45 5 5 5 5 5 5 56 6 6 6 6 6 6 67 7 7 7 7 7 7 78 8 8 8 8 8 8 8

−8000

−6000

−4000

−2000

0

 
 Trajectory #

M
od

el
 lo

g−
lik

el
ih

oo
d

Wrapped HMM models
 

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 12 2 2 2 2 2 2 23 3 3 3 3 3 3 34 4 4 4 4 4 4 45 5 5 5 5 5 5 56 6 6 6 6 6 6 67 7 7 7 7 7 7 78 8 8 8 8 8 8 8

Figure 4:Model likelihoods for each testing trajectory. Each clus-
ter of bars denotes the likelihood of a trajectory through all the
learned trajectory models (trajectory model are denoted ontop of
bars). The likelihoods are normalized so that the most likely model
has zero likelihood (effectively no bar). The top plot showsthe re-
sults of a regular HMM, whereas the bottom plot shows the results
of a wrapped Gaussian HMM.

yet through all models. The results are shown in figure 4. The
groups of bars indicate the likelihoods for each of the test trajec-
tories over all trajectory models. The likelihoods are normalized
over the groups so that the more likely model exhibits a likelihood
of zero. The wrapped Gaussian HMM models always have the
most likely model correspond to the trajectory type, which means
that we have assigned all the testing trajectories to the correct type.
This is not the case for the regular HMM model which makes clas-
sification mistakes due to the inability to model phase accurately.
In addition to that the wrapped model provides a statistically more
confident classification than the regular model evident by the larger
separation of likelihood between the correct and incorrectmodels.

3.2. Real data results

We repeated the above experiment on data from real recordings.
This time we performed stereo recordings in a3.80m × 2.90m ×
2.60m room. The room featured two glass windows and a white-
board amounting to about4.5m2 of highly reflective surfaces. Am-
bient noise in the form of computer fans and air-conditioning amounted
to a−12dB noise floor. The recordings were made using a Tech-
nics RP-3280E dummy head binaural recording device. We made
recordings of eight distinct trajectories, twice using a shaker, pro-
ducing wide-band noise, and once again using speech. We used
the shaker recordings to train our trajectory models and thespeech
recordings to evaluate their classification accuracy. Justlike be-
fore we used a sampling rate of44.1kHz and only used the cross-
microphone phase measurement of frequencies from400Hz to
8kHz. The results of this experiment are shown in figure 5. Just
like before we can see that the wrapped Gaussian model accurately
classifies the speech trajectories to the proper class, whereas the
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Figure 5:Model likelihoods for each of the real recording trajec-
tories. The top plot displays the likelihoods using standard HMM
models, and the bottom plot using wrapped Gaussian models.

standard HMM model is hindered by poor data fitting.

3.3. Unsupervised trajectory clustering

So far we used this model for a supervised learning process. We
can easily adapt this for clustering applications. Using k-means
clusterng and wrapped HMM likelihoods as distances [9], we at-
tempted to cluster the 72 trajectories used in the experiment in sec-
tion 3.1. We were able to cluster the data in eight clusters with the
proper trajectories in each cluster. Using standard Gaussian HMM
models for phase we were unable to obtain the correct clustering.

4. CONCLUSIONS AND DISCUSSION

In this paper we presented a statistical model that is able tofit
multidimensional wrapped-phase time series. We demonstrated
its use in effectively classifying and clustering sound trajectories
using microphone arrays. An interesting point that we have ob-
served during our experiments is that since this model is learn-
ing phase responses that describe entire environments and not just
microphone relationships, we are able to discern locationswhich
traditionally are not discernible using two element arrays. Due
to the fact that observed phase measurements are also shapedby
the relative positions of all the reflective surfaces and notjust the
microphones, it is more rare to have ambiguous symmetric config-
urations that we often see in TDOA based localization. In addition
to being able to avoid symmetry ambiguities, this approach is also
somewhat resistant to noise. Assuming that the same type of noise
is present in the training and the classification examples any phase
disruption effects it will have will be learned as part of themodel
and, assuming they are not dominating, will not detriment clas-
sification performance too much. The experiments we presented
in this paper make straightforward use of this model, but they are
only a starting point as multiple extensions can be realized. Multi-
microphone extensions are possible in a variety of ways, most ob-
vious one being defining a model that factors over all microphone

pairs. Another simple extension that we have employed takesinto
account the amplitude difference between two microphones and
not just the phase difference. We do so by defining our model in
the complex number domain and modeling the real part as a reg-
ular Gaussian and the imaginary part as a wrapped Gaussian. We
then use this model on the logarithm of the ratio of the spectra of
the two signals. The real part of this quantity is the log ratio of
the signal energies, and the imaginary part is the cross-phase. That
way we model simultaneously both the amplitude and phase dif-
ferences and with an appropriate microphone setup we are able to
discriminate sources in a three dimensional space using only two
sensors (similar to how we are able to learn to localize in three di-
mensions using two ears). Finally we can also perform frequency
band selection to make the model more robust. In our examples
we used a wide-band training sound which adequately trainedall
the frequencies, however in cases where the training soundsare
not as white then we are better off selecting the frequency bands
where both the training and testing sounds have the most energy
and evaluating the phase model there. These are just a few of the
possible extensions that we have tried, there are many more ways
this model can be extended and we hope to address this in future
publications.
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