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Abstract

In this paper we examine the problem of identifying trajectories of sound sources as captured
from microphone arrays. Instead of employing traditional localization techniques we attach this
problem with a statistical modeling approach of phase measurements. As in many signal pro-
cessing applications that require the use of phase there is the issue of phase-wrapping. Even
though there exists a significant amount of work on unwrapping wrapped phase estimates, when
it comes to stochastic modeling this can introduce an additional level of undesirable complica-
tion. We address this issue by defining an appropriate statistical model to fit wrapped phase data,
and employ it as a state model of an HMM in order to recognize sound trajectories. Using both
synthetic and real data we highlight the accuracy of this model as opposed to generic HMM
modeling.
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ABSTRACT .
In this paper we examine the problem of identifying trajee® 05 I o8
of sound sources as captured from microphone arrays. thsfea 04 \ 08
employing traditional localization techniques we attauk prob- AT o4
lem with a statistical modeling approach of phase measureme o3r , " 037
As in many signal processing applications that require geeaf 02 S . 02
phase there is the issue of phase-wrapping. Even though d¢ixer 04 J N o T
ists a significant amount of work on unwrapping wrapped phase Uj‘_ﬂﬁ/ﬂﬂﬂ Hﬂ\’—iﬂmmh . Hmﬂ mmwmﬁﬂ
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estimates, when it comes to stochastic modeling this candate
an additional level of undesirable complication. We adslitbss
issue by defining an appropriate statistical model to fit \pmb Figure 1:Hi$tograms of phase data. On the left we have a case that
phase data, and employ it as a state model of an HMM in order to €xhibits little phase wrapping which results into data teah be
recognize sound trajectories. Using both synthetic aridlegawe ~ Well modeled by a Gaussian distribution. On the right we have

highlight the accuracy of this model as opposed to generidvHM ~ case with severe phase wrapping on which a Gaussian disiibu
modeling. approximation results in a very poor fit for the data.

1. INTRODUCTION
2.1. Univariate model

Localization is a problem that has been extensively stuiti¢kde

audio processing literature [1, 2, 3]. In this paper we widgent a When one makes statistical models the Gaussian distribigio
modeling approach that leads to a learning methodologychwhi  usually a reasonable place to start from. In the case of pdigse
differs from the traditional time delay or subspace locaian nals though we are faced with an interesting problem duedsgh
methods. Conceptually similar approaches have been pessien wrapping. When we model phase with a Gaussian distributidn a
the past, however they involved black box training of cregsetra the mean of the given data is closedtor 27 the distribution wraps

[4], or straightforward modeling of cross sensor diffesn{5]. In and becomes bimodal. When this happens a Gaussian model can
our work we present a model which is fits sound source trajec- grossly misrepresent the data. To visualize this consideisa
tories as described from their cross-sensor phase chastice tograms of phase data in figure 1. The phase data used for the
We learn and subsequently recognize the physical trajestof histograms were the phase differences for specific fredeehe-

sources as dynamic phase patterns across all frequencms- H tween two microphones recording speech. We can see that the
ever because phase is a quantity that is estimated in a wtappe histogram on the left is adequately approximated by a Ganssi
form we had to devise a statistical model to assist the abowe p  distribution, however the histogram on the right, exhiigtivrap-
cess, that can take wrapping into account without requipimase ping, has become bimodal and the fitted Gaussian distritugio
unwrapping. In section 2 we introduce that model and extetad i  a poor description of the data. In order to deal with this ésae
deal with multivariate time series as an HMM, and in sectiane3 will define a proper distribution that explicitly models [geawrap-
show how this model can be used to learn and cluster soundesour ping. To do so we will use the Gaussian distribution as a basis
trajectories and present the relevant results. We will model phase data in its unwrapped form with a Gaussian
distribution. We will emulate the wrapping process by regting

and adding the same Gaussian distribution at intervas-of
2. WRAPPED PHASE MODEL

. 2
In this section we define a statistical model for wrappedspha Z ! e*% if z € [0,2m)
and wrapped-phase time series. We start from the univazéte folz) =< k=0 V 2102
in section 2.1 and then extend it for multivariate use antiastate
model of an HMM in section 2.2. From here on we will assume 0 otherwise

that phase wrapping wraps in the inter{@|2x]. (@)
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Wrapped Gaussian model with 1 =0.8, 6 =2.5
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Figure 2:lllustration of the wrapped Gaussian distribution model.
Replicating a Gaussian distribution at intervals 2# (dashed
lines) and summing the result in the interval betwfeir) (solid
line) results into accurate modeling of a wrapped Gaussiistrid
bution.

The tails of the replicated Gaussian distributions poséib out-
side the[0, 2) interval will be accounting for the wrapped parts
as they enter it. To illustrate consider figure 2 which depibe
distribution of Gaussian distributed phases centerecha®s. In
dotted lines we depict a few of the summed Gaussian disimifsit
used in equation 1. The solid line defined in the intef@a2) is
their sum and the resulting wrapped distribution. We cartisae
parts of the central Gaussian distribution that were negatnd
were wrapped arouriir are being accounted for by the rightmost
Gaussian, and the smaller wrapped amount begarid explained
by the left one. The effect of consecutive wrappings of thig-or
inal data can be respectively explained by Gaussian ditiwilis
placed at increasingly distant multiples2f. Now that this model

is established we move on into describing a procedure to find i
optimal parameters to fit a given sample set. To do so we wéll us
Expectation-Maximization (EM) [6]. We will start with a wpaed
data setr; defined in the interval0, 27), and initial model values
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to account for multiple wraps. However the cases where we get
more than three consecutive wraps in our data result fromge la
data variance with which the data becomes essentially umifio

the defined space ¢, 2w). This can be adequately modeled by
a largec and a couple of replicated Gaussians thereby defeating
the need of excessive summations oketn all our experiments

in this paper we usedl € —1,0, 1. This truncation o however
introduces a complication in estimatipg As mentioned above

is estimated with an arbitrary offset 627, ¢ € Z. Now thatk is
truncated and we have a finite number of Gaussians, it is best t
ensure that we have the same number on each sidsothat we

can represent wrappings equally well from both sides. Tarens
this we need to make sure that [0, 27) which we can easily do

by wrapping the estimate we obtain from equation 3.

2.2. Multivariateand HMM extensions

Having the univariate model we can now use it as a basis fola mu
tivariate Hidden Markov Model. First we define the multieae
version. We do so simply by taking the product of the univaria
models for each dimension:

Fx(x) =[] fz(@) 5)

This essentially corresponds to a diagonal covariancepefaus-
sian model. A more complete definition is possible by acdagnt

for the full interactions between the variates resultirtg ite full
covariance equivalent, however it is computationally tapen-

sive a model and not required for the purposes of this paper. |
this case the parameters that need to be estimated; aved o,

for each dimension. Estimation of the parameters can be done
by performing the EM process described above one dimension a
a time. Using this as a state model inside an HMM is a straight-
forward matter. We use the Baum-Welch algorithm [7] to tramn
HMM that has a wrapped Gaussian as a state model. The only
difference from a conventional HMM is that the a posterioalp
abilities are computed using the wrapped Gaussian statelmod
and that the state model parameter estimation in the M-stepw

wando. The first thing to do is the expectation step, we do so by defined as:

finding how much each sample belongs into each of the Gaussian

distributions in our model:

_ (z+k2n—mw)?
e 202

fa()

Using P, as a weighting factor we can perform the maximization
step and estimate ando. We do so by:

1
v/ 2
PL k= 2o

)

—+oo

T <Z Pw,k(:r+k27r)> 3)
k=—oc0
—+oo

o’ = < Z Pw,k(x+k27r—u)2> 4
k=—oc0

where(-) denotes expectation. Note that the estimate &f am-
biguous due to wrapping and any solution of the farmc2n, ¢ €

Z is equivalent. For practical implementations summatiorrof
infinite number of Gaussians is obviously an issue. Our éxper
ence has been that withe —1, 0, 1 we can get very good results,
and fork € —2, —1,0, 1,2 we practically get the same results as
with any greatetk values. The reason to use large valueg @f

—+oo
Mij = < > Vi Pook (@i + k27T)> > Vi
k=—o00 VYV,

“+oo
ol = < > Vi Pogi(@s + k2w —Mj)2> /Z Vi (7)

k=—o00 Va,;

(6)

where~ are the posterior probabilities for each statehe state
index, and; the dimension index. To obtain any reasonable results
all of the models we've shown so far are best computed in tipe lo
arithmic probability domain to avoid numerical underflowsis
also best if for the first few training iterations aff are clamped to
small values to allow all: to start converging towards the correct
solution. This is because there are strong local optima head

27 corresponding to a high®. Allowing 1 to converge first is a
simple way to avoid this problem.

3. LEARNING SOUND TRAJECTORIES

Now that we have a model capable of modeling time series of mul
tidimensional wrapped phase data we can employ it to perform
sound trajectory modeling. To do so we will assume that wehav
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Figure 3: The eight trajectory types used in the synthetic room
examples. The two circles in the middle represent the jposdf
the two microphones in the room.

Figure 4:Model likelihoods for each testing trajectory. Each clus-
ter of bars denotes the likelihood of a trajectory throughtake
learned trajectory models (trajectory model are denotedamof
bars). The likelihoods are normalized so that the mostyikebdel
has zero likelihood (effectively no bar). The top plot shtvesre-

. sults of a regular HMM, whereas the bottom plot shows theltesu
a two element microphone array, and that we measure the phasé

difference in each frequency between the two microphones. T of awrapped Gaussian HMM.
do so we perform a short time Fourier transform on both sigynal
(F1(w,t) and F>(w, t)) and compute their relative phase by:

3 (wvt)

yet through all models. The results are shown in figure 4. The

groups of bars indicate the likelihoods for each of the teget-

) ) . ) tories over all trajectory models. The likelihoods are nalized

Each time instance ob was used as a sample point. Subject qyer the groups so that the more likely model exhibits ailiked

to symmetry ambiguities, most positions around the two @aicr  of zero. The wrapped Gaussian HMM models always have the

phones will exhibit a unique phase pattern. Moving sounda®8I ot likely model correspond to the trajectory type, whickams

will create time series of such phase patters which we wi#napt  {h4¢ we have assigned all the testing trajectories to thecbtype.

to model with the framework we just introduced. To avoid mea- Thjs is not the case for the regular HMM model which makes-clas

surement noise issues we only used the phase of frequead@s r  sification mistakes due to the inability to model phase aely.

ing from 400Hz to 8kHz. We present results from two experi- | addition to that the wrapped model provides a statidicabre

ments, a synthetic one and one with data from a real recarding  confident classification than the regular model evident byatger
separation of likelihood between the correct and incomeadels.

3.1. Syntheticresults

In this experiment we used the source-image room model [8] to
create sound trajectories inside a synthetic room. The neas 3.2. Real dataresults
two-dimensional 10m x 10m) and we used up to 3rd order re-

flections and a sound absorption coefficien0df. Two cardioid We repeated the above experiment on data from real recarding
virtual microphones were positioned near the center of tloenr This time we performed stereo recordings i8.80m x 2.90m x
at positions(4.9m, 5m) and(5.1m, 5m) pointing at opposite di- 2.60m room. The room featured two glass windows and a white-

rections. In all our examples we used white noise sampled atboard amounting to abodt5m? of highly reflective surfaces. Am-
44.1kHz as the sound source. Eight smooth random trajecto- bient noise in the form of computer fans and air-conditigmamounted
ries were computed and for each we generated nine similé@xop to a—12dB noise floor. The recordings were made using a Tech-
deviating from the originals with a standard deviation26tm. nics RP-3280E dummy head binaural recording device. We made
For each trajectory type, we used eight of its copies fomfitt recordings of eight distinct trajectories, twice using alg, pro-
model and then evaluated the likelihood of the ninth one a@ller  ducing wide-band noise, and once again using speech. We used
these models. The eight types of trajectories are shown in fig the shaker recordings to train our trajectory models andpleech

ure 3. We used two training models, a standard Gaussian stateecordings to evaluate their classification accuracy. lkestbe-
HMM and a wrapped Gaussian state HMM as introduced in sec- fore we used a sampling ratef.1k H z and only used the cross-
tion 2.2. For both models we trained on eight copies of each of microphone phase measurement of frequencies #0661 = to

the eight types of trajectories for thirty iterations anddian eight 8k H z. The results of this experiment are shown in figure 5. Just
state left-to-right model. Once the models were trained vedue like before we can see that the wrapped Gaussian model églgura
ated the model likelihood of the eight trajectories we hastaused classifies the speech trajectories to the proper class,eakdehe
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Figure 5:Model likelihoods for each of the real recording trajec-
tories. The top plot displays the likelihoods using stadddMM
models, and the bottom plot using wrapped Gaussian models.

standard HMM model is hindered by poor data fitting.

3.3. Unsupervised trajectory clustering

So far we used this model for a supervised learning process. W
can easily adapt this for clustering applications. Usingdéans
clusterng and wrapped HMM likelihoods as distances [9], we a
tempted to cluster the 72 trajectories used in the expetimesec-

tion 3.1. We were able to cluster the data in eight clustetls thie
proper trajectories in each cluster. Using standard Gans$s$MM
models for phase we were unable to obtain the correct clogter

4. CONCLUSIONSAND DISCUSSION

In this paper we presented a statistical model that is abfi to
multidimensional wrapped-phase time series. We demdastra
its use in effectively classifying and clustering soundettories
using microphone arrays. An interesting point that we hdwve o
served during our experiments is that since this model isiea
ing phase responses that describe entire environmentsoangh
microphone relationships, we are able to discern locatvanish
traditionally are not discernible using two element arraj3ue
to the fact that observed phase measurements are also shaped
the relative positions of all the reflective surfaces andjust the
microphones, it is more rare to have ambiguous symmetrifigson
urations that we often see in TDOA based localization. Iritaud
to being able to avoid symmetry ambiguities, this approadiiso
somewhat resistant to noise. Assuming that the same typaisd n
is present in the training and the classification examplggpbaase
disruption effects it will have will be learned as part of thedel
and, assuming they are not dominating, will not detrimeas<l
sification performance too much. The experiments we predent
in this paper make straightforward use of this model, buy tre
only a starting point as multiple extensions can be realikédti-
microphone extensions are possible in a variety of wayst otes
vious one being defining a model that factors over all micomgh
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pairs. Another simple extension that we have employed tiztes
account the amplitude difference between two microphomes a
not just the phase difference. We do so by defining our model in
the complex number domain and modeling the real part as a reg-
ular Gaussian and the imaginary part as a wrapped Gaussian. W
then use this model on the logarithm of the ratio of the speatr

the two signals. The real part of this quantity is the logaati

the signal energies, and the imaginary part is the crossephiehat

way we model simultaneously both the amplitude and phase dif
ferences and with an appropriate microphone setup we agg@bl
discriminate sources in a three dimensional space usingtaal
sensors (similar to how we are able to learn to localize ieeftti-
mensions using two ears). Finally we can also perform freque
band selection to make the model more robust. In our examples
we used a wide-band training sound which adequately traatied
the frequencies, however in cases where the training soamels
not as white then we are better off selecting the frequenagda
where both the training and testing sounds have the mostjener
and evaluating the phase model there. These are just a fdve of t
possible extensions that we have tried, there are many mays w
this model can be extended and we hope to address this irefutur
publications.
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