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Abstract

Time-varying phenomenon, such as ripples on water,
trees waving in the wind and illumination changes, pro-
duces false motions, which significantly compromises the
performance of an outdoor-surveillance system. In this
paper, we propose a corner-based background model to
effectively detect moving-objects in challenging dynamic
scenes. Specifically, the method follows a three-step pro-
cess. First, we detect feature points using a Harris corner
detector and represent them as SIFT-like descriptors. Sec-
ond, we dynamically learn a background model and clas-
sify each extracted feature as either a background or a fore-
ground feature. Last, a “Lucas-Kanade” feature tracker
is integrated into this framework to differentiate motion-
consistent foreground objects from background objects with
random or repetitive motion. The key insight of our work
is that a collection of SIFT-like features can effectively rep-
resent the environment and account for variations caused
by natural effects with dynamic movements. Features that
do not correspond to the background must therefore corre-
spond to foreground moving objects. Our method is com-
putational efficient and works in real-time. Experiments
on challenging video clips demonstrate that the proposed
method achieves a higher accuracy in detecting the fore-
ground objects than the existing methods.

1 Introduction

Surveillance systems seek to automatically and robustly
identify pedestrians, vehicles, or events of interest in var-
ious environments. With the assumption of a stationary
background which allows the use of statistical techniques
for background modelling, interesting moving-objects can
be distinguished from the background effectively for appli-
cations and environments that meet this assumption. How-
ever, the assumption of a stationary background can be chal-

lenged in many outdoor surveillance scenarios, such as rip-
ples on water, trees waving in the wind and illumination
changes.

1.1 Related work

Over time, the intensity value of an individual pixel
with a static background usually follows a normal dis-
tribution. Hence, a reasonable model to represent such
a statistical distribution is a single Gaussian model [11].
However, a single Gaussian is often inadequate to accu-
rately model the temporal changes of a pixel value in dy-
namic backgrounds, such as changes in light and shadow.
The use of multiple hypotheses to describe the behavior of
such dynamic scenes at the pixel level was a breakthrough
in background modelling. Specifically, methods employ-
ing a mixture of Gaussians have become a popular basis
for a large number of related techniques in recent years.
Friedman [4] proposed a mixture of three Gaussian com-
ponents to model the visual properties of each pixel, in
which Expectation-Maximization (EM) algorithm is pro-
posed to learn such a Gaussian Mixture Model (GMM). In
[5], the authors discussed modelling each pixel as a mix-
ture of Gaussians with flexible numbers of Gaussian com-
ponents, and using an on-line approximation to update the
model. Their real-time video surveillance system has been
proven robust for day/night cycles and for scene changes
over long periods of time. However, for backgrounds ex-
hibiting very rapid variations, such as ripples on water,
ocean waves, or moving trees, Gaussian Mixture Model can
result in a distribution with large variance over long video
sequences, thus significantly reducing the sensitivity for de-
tecting foreground objects. To address the dynamic back-
grounds, non-parametric method has recently been devel-
oped which use kernel density estimation technique to pre-
dict background-pixel value based on multiple recently col-
lected samples. This technique can adapt very promptly to
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rapid background changes. In [3], the authors introduced a
novel non-parametric background model and a background-
subtraction approach. Their method uses a normal kernel
function for density estimation. The learned model repre-
sents a history of recent sample values over a long sequence,
and it adapts to the background changes quickly. A similar
approach was described in [9], which emphasizes more of a
variable bandwidth kernel for the purpose of adaptive den-
sity estimation.

Other efforts dealing with background modelling can be
categorized as predictive methods, which treat pixel value
changes as a time series and use a temporal model to predict
the next pixel value based on past observations. Any devia-
tion between the predicted value and the actual observation
can be used to adjust the predictive model parameters. In
[12], an autoregressive model was proposed to capture the
properties of dynamic scenes for the purpose of foreground
detection in video surveillance.

1.2 Our corner-based approach

In general, pixel-level background modelling suffers
from two major disadvantages. First, the computational
complexity of these methods is inherently high, since every
pixel must be processed in each video frame. In many chal-
lenging dynamic scenes, a number of different frequency
components demand a model consisting of many Gaussians,
or a highly complicated predictive model to precisely cap-
ture the recurrent patterns of motion at a single pixel over
time. The performance tradeoff between detection accuracy
and computation cost is always a hard decision in choosing
a pixel-level framework. Secondly, the intensity value at in-
dividual pixels is very easily affected by image noise and
does not fully exploit the useful correlation of the spatially
neighboring pixels. In essence, what is lacking in such ap-
proaches is some higher level information, which is more
robust and can be derived from regions in the image or even
from the entire frame.

We were inspired by recent advances in feature-based
object representation. For example, Lowe [2] uses a col-
lection of SIFT descriptors to represent an object. At the
other end of the spectrum, theASSET -2 system [10] uses
feature points to detect and track moving objects such as
vehicles observed by a moving camera. Our objective in
this work is to use a set of SIFT-like features to model the
entire scene, instead of foreground moving-objects. The ro-
bustness of SIFT-like descriptors could tolerate background
variations caused by natural phenomena such as ripples on
the water, swaying trees or illumination changes. Another
unique idea behind our method is that SIFT-like descriptors
are used as a strong cue for detecting and matching feature
points across video frames. In comparison, theASSET -2
system models each feature point in a very simple repre-
sentation using the smoothed image brightness and thex,

y image derivatives. In addition, their detection and track-
ing of moving objects relies heavily on clustering results of
feature points with the same motion.

In this paper, we propose a novel modelling technique,
which is based on a sparse feature set of detected corners
in each video frame. The proposed feature-based approach
follows a three-step process. For every video frame, we de-
tect the corners using a Harris corner-detector, and then, we
describe and represent them as SIFT-like features. Based
on this feature set, we build and maintain a dynamic back-
ground model which is able to account for variations caused
by natural dynamic effects. Using the learned model, we
classify each feature into either a background or a fore-
ground feature. In the last step, we propose a “Lucas-
Kanade” feature tracker to track each foreground feature
over time, where a temporally and spatially coherent cluster
of the tracked features indicates a real moving-object.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the corner detection and represents each
detected corner as a SIFT-like feature. In Section 3, we in-
troduce a corner-based background model, and by which we
classify each feature as either a foreground or a background
feature. Section 4 further improves the detection accuracy
of the real moving-objects using a “Lucas-Kanade” fea-
ture tracker. Experimental results will be analyzed in Sec-
tion 5. In the last Section, we conclude with a short discus-
sion of future work.

2 Feature Extraction

2.1 Harris corner-detector

Image-feature detection is an important task in various
vision applications. We use Harris corner-detector [6] to
extract useful features. In the implementation, some heuris-
tics can be applied to identifying image corners: (1) we
can adjust the threshold value to limit the number of de-
tected corners. (2) To prevent detecting too many corners
within a small region, we can enforce a minimum distance
between any pair of neighboring corners. In our implemen-
tation (targeting352× 240 resolution video sequences), we
keep about300 ∼ 400 corners in each video frame. The
minimum distance is restricted to 5 pixels between any two
corners. Moreover, sub-pixel precision techniques to fur-
ther refine the corner location, usually achieved through
a quadratic approximation, are not considered here due to
concerns about the high computational cost.

The key advantage of a high-level, feature-based, back-
ground model over the pixel-level models is the substantial
savings in computation cost for the processes of building
and maintaining the model. For a352 × 240 resolution
video sequence, we need to process about105 pixels in each
frame, if a pixel-level background model is used. For our
corner-based background model, however, only300 ∼ 400

2



selected corners need be considered in the later steps. Fur-
thermore, our optimized version of the Harris corner detec-
tor takes only a few milliseconds to detect corners in each
video frame.

Because we use a set of sparse features, instead of all the
pixels, to represent image and video sequences, an impor-
tant question is whether, and how much, such a sampling
would result in information loss and thus compromise the
accuracy of detecting moving objects. Consider the follow-
ing two scenarios of interest for a video surveillance scene:

• A moving object enters the homogenous sky or road
surface. Originally, few corners would have occurred
in such areas, but the intruder would instigate new cor-
ners, which indicate motion.

• A moving object enters the areas where a high density
of corners has been detected over time. This novel ob-
ject will introduce a number of corners that are likely
to have different color and gradient properties from
those of the background corners.

This simple analysis demonstrates the ability of a corner-
based background model for effectively detecting moving-
objects in video sequences. Next, we will introduce a SIFT-
like descriptor to help with accurate identification and clas-
sification for each detected corner.

2.2 SIFT-like descriptor

Stable local-feature representation is a fundamental
component of many image-understanding applications,
such as object-recognition, image-matching, retrieval, etc.
A local descriptor of a corner, ideally, should be distinctive
(reliably distinguishing one corner of interest from others),
precise, and robust with regard to small shifts and illumi-
nation changes. In [8], the authors compare and evaluate a
number of descriptors, among which SIFT (Scale Invariant
Feature Transform) [2] outperform others and prove to be
highly robust to common image deformations. A SIFT lo-
cal image descriptor is computed based on a histogram rep-
resentation of image gradient orientations in its local neigh-
borhood. More specifically, a4×4 grid of histograms, each
with eight orientation bins, effectively encodes the rough
spatial structure of the image patch around the point of in-
terest. The resulting 128-dimensional vector is then normal-
ized to unit length.

The original objective of the SIFT-descriptor was devel-
oped for the image-matching task, where points correspond-
ing to the same object are extracted from the images under
different scales and views. Hence, the descriptors need to
be scale-rotation-invariant. Our purpose is quite different.
For background modelling, the corners, extracted from the
same position in the background, operate under the same
scale and rotation over time. Therefore, it is unnecessary

to have a multi-scale implementation and orientation align-
ment, which are the major contributors to the high compu-
tational cost of building the original SIFT-descriptor. How-
ever, the following features of the standard SIFT-descriptor
[2] are particularly useful for our application:

• A Gaussian weighting function is used to assign a
weight to each pixel, in which the pixels farther away
have less impact. The purpose of this Gaussian win-
dow is to provide robustness against boundary effects.
That is, gradual changes in location will not result in
sudden changes in the obtained feature vector.

• The descriptor could tolerate small localization errors
through the creation of histograms over4 × 4 sam-
ple sub-regions. Because the sub-pixel precision tech-
niques, which could further refine the corner location,
are not used in our system, it is inevitable that the po-
sitions of the detected corners might incur small shifts
over time. This could cause unstable representations
for the corners corresponding to the same background
positions. Dividing the whole sample window into
4× 4 sub-regions effectively alleviates such a negative
effect.

• Linear illumination changes are implicitly eliminated
since the descriptor only contains gradient orientation
information. Non-linear illumination changes might
result in large magnitudes for some gradients. There-
fore, we limit the gradient magnitudes by applying a
threshold to the unit feature vector (for example, lim-
iting each bin value to 0.2). Then we re-normalize it
to unit length. The value of 0.2 was suggested experi-
mentally in [2].

In Figure 1, we make a direct comparison between two
different types of local feature descriptors. We present two
challenging scenes in the top row: the left image comes
from a video clip containing swaying trees and significant
illumination changes; the right image shows ripples on wa-
ter. Red rectangles indicate the positions where a corner
is supposed to be detected. We compare two types of cor-
ner descriptors: (1) SIFT-like Descriptor strictly follows the
definition of SIFT but skipping a multi-scale implementa-
tion and orientation alignment, i.e. building gradient orien-
tation histogram over4 × 4 sample sub-regions and with
post-steps of normalizing and thresholding the generated
histogram. (2)ASSET -2 Descriptor exactly follows the
definition in [10], i.e. the means of the smoothed image
brightness and thex, y image derivatives. For the graphs on
the 2nd and the3rd rows, we plot the correlations of fea-
tures detected and described over ten frames in each scene.
Specially, the correlation is computed between a pair of lo-
cal descriptors extracted from two consecutive frames, as
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expressed in Equation (1).

Correlation =

∑
i

Ui × Vi

√∑
i

U2
i × V 2

i

(1)

where U and V are two multi-dimensional feature vectors.
Two identical vectors result in a maximum value of 1. For
features with respect to the same object in the background,
we expect a good descriptor to maintain a high correlation
value over time, and thus we can detect a foreground ob-
ject at this position once features with low correlation value
have been observed. For both video clips, the SIFT-like de-
scriptor significantly outperforms theASSET -2 descriptor.
This result clearly demonstrates that a few critical steps of
the original SIFT definition, such as sampling over4 × 4
sub-regions and some post-steps, significantly help with the
stability of a local descriptor when small shifts and illumi-
nation changes occur.

The step of building SIFT-like descriptors demands sig-
nificant computation; therefore we can afford to build de-
scriptors for only a small number of corners. In our im-
plementation, this step takes about 10 ms to generate the
descriptors for all corners detected in a new video frame.
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Figure 1. A comparison of descriptors

3 Background Modelling

Now with a set of detected image corners, each of which
is represented by a 128-dimensional feature vector, the next
step is to build and maintain a background model over
time that in turn helps with effective detecting foreground
moving-objects. In this section, we first introduce the
data structure used in our corner-based background model.
Then, we describe a dynamic process of learning this model
over time. In the mean time, we use this dynamically
learned model to classify each of the features detected in
the current frame as either a background or a foreground
feature.

3.1 Structure of model

In a pixel-based framework, each individual image can
be treated as a two-dimensional matrix, where each matrix
element records a history of the changes of the correspond-
ing pixel. The exact information stored in this matrix, such
as Gaussian parameters or properties of the predictive mod-
els, depends on the specific models used. In principle, a
feature-based model differs from the pixel-based model in
two ways. First, for the feature-based model, the image ma-
trix is, in general, very sparse - most entries are empty. An
entry is added only when a corner occurs in that position.
Second, more information is maintained in each matrix en-
try and more complicated updating algorithm can be toler-
ated due to the significant saving in computation from the
sparse representation of image. We represent each matrix
entry as a 4-tuple vector as follows:

• Frequency of occurrence{frequency}. We increment
the count if a corner is detected in the current frame.
Moreover, this count automatically decays over time,
thus gradually reducing the weights of records in past
history.

• Mean of the descriptor{descriptor}. For features that
appear in the same location over time, we calculate the
mean vector of the 128-dimensional descriptor. This
mean vector compactly encodes the information of a
particular location in the background, and later will be
used to classify feature into either background or fore-
ground.

• Mean and variance of correlation{correlation, var}.
We have already defined a vector correlation in Equa-
tion (1). This metric can be applied between the mean
descriptor and the descriptor of newly detected fea-
tures as well. We monitor the mean and the variance of
this correlation over time. A low correlation indicates
that the new features are probably from foreground ob-
jects. The variance is used to apply an adaptive thresh-
old in feature classification step.
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In the later discussion, this two-dimensional sparse matrix
is referred to as modelM . Each model entryM(x; y) is a
4-tuple vector.

3.2 Dynamically learning

Based on a set of features detected and described in the
previous steps, we aim to achieve two main goals during the
learning step: background modelling and feature classifica-
tion. We detail the learning and classification in Algorithm
1. In our algorithm, instead of blindly updating the back-
ground model, we choose the selective update scheme, i.e.
only the background features classified in Step 3 are used
to update model entry. Moreover, rather than using a direct
mapping between position of model entry and feature loca-
tion, a local window (e.g.5 × 5) is defined to search the
best model entry accounting for the newly detected feature.
This shift matching design results in a very sparse repre-
sentation of the learned model because an existing model
entry will prohibit generating new entries within its neigh-
borhood. Therefore, features subject to small shifts will be
mapped onto the same model entry as time proceeds. In
the experimental section, we will explain why this design is
highly valuable for coping with some challenging dynamic
scenes.

4 “Lucas-Kanade” tracker

A motion, caused by a real moving-object, should
be highly spatial-temporal-correlated. In other words, a
moving-object in a video sequence should be seen as the
conjunction of several smoothed and coherent observations
over time. In [7], a salient motion is defined as a motion
that is likely to result from a typical surveillance target as
opposed to other distracting motions (e.g., ocean waves and
the oscillation of trees in the wind). They propose to detect
the salient motions using the temporal integration of optical
flow that is computed between two consecutive frames.

In our feature-based approach, a “Lucas-Kanade” fea-
ture tracker can be naturally integrated into the whole
framework, which differs from the previous approaches in
two ways:

• The tracker is directly applied to foreground features
rather than every pixel or the whole frame. The fore-
ground features, attached to a real moving-object in the
image, should appear in the texture-rich regions, where
the process of flow recovery is most well conditioned
and where the information is most relevant. Therefore,
our sparse representation of the image still keeps the
most useful information while saving significant com-
putation.

• The number of features identified as foreground is al-
ways much smaller than the number of the corners de-
tected in each frame. And thus, we could design a

Algorithm 1 Modelling and Feature Classification

INPUT: n video framesI1; :::; In

OUTPUT: features identified as foreground,F1; :::; Fm

For each new video frame do:

1. Define a local5× 5 window around each detected
feature in location (x, y).

2. In the local window, search for a model entryM(x′, y′)
whose mean descriptor has the maximum correlation
with the feature under consideration.

• If M(x′, y′) exists, jump to Step 3
• If return NULL, jump to Step 4

3. Maximum correlation obtained in Step 2> correlation
- 3× var stored inM(x′, y′)

• True, a background feature, jump to Step 5
• False, a foreground feature, jump to Step 6

4. Allocate a 4-tuple vector, and attach to model M at
position (x, y), jump to Step 6

5. Update each item ofM(x′, y′) based on the new feature.

6. For each entry in model M, decay its frequency. If it is
reduced to 0, remove this entry from M.

powerful feature tracker without incurring high com-
putational cost. Especially, our tracker acts as an inde-
pendent “agent”, which can deal with optic-flow cal-
culation, merge into another tracker and delete itself.

We detail the usage of a “Lucas-Kanade” tracker in Al-
gorithm 2, which mainly consists of three individual mod-
ules. The first module takes charge of generating a new
tracker for each newly identified foreground feature. The
second module deals with the optic-flow calculation for
each tracker in the list once a new frame becomes avail-
able. A number of rules are designed for tracker deletion
and merger, which result in a significant reduction of the
total tracker count. In addition, we pass the trackers with
consistent trajectories to the third module, where a cluster
of similar motion trajectories is confirmed as a real moving-
object. The misclassified features, which are from the dy-
namic background, usually result in repetitive or random
motion. Therefore, they can be removed in this step. In or-
der to achieve sufficient tracking accuracy, we adopt an it-
erative implementation of the “Lucas-Kanade” optic-flow
computation [1]. In our experiment, this step requires about
8∼ 12 ms per-frame.
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Algorithm 2 “ Lucas-Kanade”Feature Tracker

INPUT: m identified foreground features,F1; :::; Fm

OUTPUT: p confirmed moving-objects,M1; :::; Mp

For each newly identified foreground feature do (Module1):

• Generate a “Lucas-Kanade” point tracker and add it
to the tracker list.

• Each tracker records a trajectory of position changes
{(X0, Y0), (X1, Y1)(Xi, Yi)} over time

For each new video frame do (Module2):

• Update each tracker’s trajectory based on the new
computed “Lucas-Kanade” optic-flow.

• Delete point trackers with inconsistent trajectory, e.g.
small accumulated distance within 30 frames.

• For point trackers with consistent trajectory, e.g. accu-
mulated distance within 30 frames exceeds 10 pixels,we
add a new record to the motion-trajectory list and delete
this tracker.

• Merge two trackers if across the same position (signifi-
cantly reduces the total number of the tracked features).

For all reported trajectories, do filtering (Module3):

• Cluster similar trajectories to confirm a finding of real
moving-objects.

• Eliminate noise trajectories

5 Experiments and Discussions

Previously developed surveillance methods can effec-
tively describe scenes that have a relatively static back-
ground and limited variations, but these are markedly less
effective for handling dynamic backgrounds, such as the
glinting of sunlight on water, the wafting of leaves in the
wind, the movement of ocean waves, or variations in lights
and shadows over a period of time. To demonstrate the
strength of our proposed approach, we particularly tested
and evaluated the ability of our corner-based background
model on detecting and tracking moving-objects in such dy-
namic backgrounds.

5.1 A comparison to pixel-based model

In our experiments, we implemented a pixel-based back-
ground model, using Intel CVLib, to make a comparison
with the proposed corner-based model. In Figure 2, we
demonstrate a challenging surveillance scene, whose back-
ground provides significant illumination changes and con-
tains waving trees which cover a significant area of the im-
age. The first row shows four frames from a long video
sequences. The images in the second row show the results

using a pixel-based model. For the images in the third row,
we show results of moving-object detection, using the pro-
posed approach. Each circle represents a foreground fea-
ture confirmed by a “Lucus-Kanade” feature tracker, in
which a consistent motion trajectory is observed in the sub-
sequent frames. Clearly, the visualized result demonstrates
that the proposed method achieves a very low false-positive
and a high detection rate in identifying the true moving ob-
jects, whereas the pixel-based method seemed more eas-
ily confused by distracting motions in the dynamic back-
grounds. Figure 3 presents another video example with very
challenging situations. The small oscillation of the cam-
era itself, along with the water ripples, produces significant
distracting motions throughout the whole video sequence.
Also, the size of the true moving object is in the distance
thus seems relatively small and slow-moving. Superior and
convincing results of the proposed method have been ob-
tained for this video clip as well.

5.2 Dynamic scenes

Dynamic textures often exhibit repetitive patterns in the
space-time domain. Therefore, a natural approach to model
their behavior is via a “pixel-process” - that is, analyzing
the values of an individual pixel over time. Our feature-
based approach is superior to the traditional pixel-based
methods in three aspects:

• Our SIFT-like descriptor achieves a stable representa-
tion of background features, whereas values of indi-
vidual pixels are more vulnerable to image noise.

• Instead of exploiting the repetitive patterns of the tem-
poral changes, our method is to explore and utilize the
repetitive changes in the spatial domain. An important
factor in the development of this new modelling tech-
nique is that, for a specific location in a dynamic back-
ground, features detected over time often encounter
small shifts in the spatial domain. For example, a tree
leaf waving in the wind may appear in a different lo-
cation with a deviation of several pixels from the loca-
tion observed in the previous/future frames. Therefore,
we don’t use a direct mapping between the location of
model entries and the feature location during the learn-
ing of the model. A local window is defined to search
for a model entry which best accounts for a newly de-
tected feature. This shift matching design can effec-
tively cope with many known dynamic scenes.

• A “ Lucas-Kanade” tracker is used to monitor fore-
ground features over time, where flow recovery is
most well conditioned and where the information is
most relevant. Because repetitive motions can result
in inconsistent trajectories, and thus we can differenti-
ate such dynamic motion-patterns from the interesting
motions caused by foreground moving-objects.
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5.3 Parameter setting and computation cost

In our featured-based approach, there are two tunable pa-
rameters. The first one is the maximum number of corners
detected in each video frame. We do not need to specify
this parameter in advance. Instead, it can be adaptively ad-
justed to the sensitivity of the system on-the-fly. For exam-
ple, this number can be dynamically increased to enhance
the sensitivity for detecting new intruders once a large num-
ber of foreground features with consistent trajectory have
been observed. In the experiments, we found that, in most
surveillance scenarios,300 ∼ 400 corners are sufficient for
keeping a high detection accuracy. Another important pa-
rameter is the size of the local window designed for the shift
matching algorithm during background modelling. Usually,
a large local window results in a very sparse learned model.
The main advantage of a large local window is that back-
ground features subject to significant shifts will be mapped
onto the same model entry as time proceeds. However, an
overly sparse model will inevitably compromise the sen-
sitivity of the system for detecting small moving-objects.
Therefore, this parameter should be set at a value which
strikes a good balance between these tradeoffs. In general,
a relatively static background prefers a small local window
size (e.g.3 × 3), whereas the background presenting sig-
nificant dynamic-motions demands a relatively large local
window. As we are particularly interested in the dynamic
scenes, a5×5 local window is chosen for the testing videos
in our experiments.

In addition to its effectiveness in modelling the dynamic
scenes, our feature-based approach is highly efficient. Table
1 shows a comparison of the computation costs for a number
of well-known methods. The Multiple Gaussian method [5]
is a milestone work for background modelling, and the other
two more recent methods are specifically designed to cope
with the challenging dynamic scenes.

Methods Frame size Speed
Multiple Gaussian [5] 160× 120 13 fps
Density Estimation [9] 160× 120 7 fps

Autoregressive Model [12] 170× 115 0.125 fps
Corner-based Model 352× 240 25 fps

Table 1. A comparison of computation costs

6 Conclusions and future work

This paper has presented a sparse background model for
detecting and tracking features over time, which is learned
from a set of SIFT-like features and tries to exploit only the
most useful parts (i.e. corners) of the image. Such a frame-
work results in very significant savings in computation costs
and effectively coping with dynamic scenes. We are inves-
tigating the use of other features, such as the edges and col-
ors, to build the corner descriptor. In addition, we are de-

signing a more comprehensive evaluation procedure for our
method in order to make a thorough and logical comparison
with other methods.
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Figure 2. Video with moving-cars, trees swaying in the wind and significant illumination changes. (7f,
467f, 770f, 1184f out of 1200 video frames in total)

Figure 3. Video with a small boat and water ripples in the distance. (21f, 569f, 970f, 1318f out of 1400
video frames in total)
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