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Abstract— A two-dimensional post normalization scheme is
proposed to improve the performance of conventional min-sum
(MS) and normalized MS decoding of irregular low density
parity check codes. An iterative procedure based on parallel
differential optimization algorithm is presented to obtain the
optimal two-dimensional normalization factors. Both density
evolution analysis and specific code simulation show that the
proposed method provides a comparable performance as belief
propagation decoding while requiring less complexity. Interest-
ingly, the new method exhibits a lower error floor than that of
belief propagation decoding in the high SNR region. With respect
to standard MS and one-dimensional normalized MS decodings,
the two-dimensional normalized MS offers a considerably better
performance.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] were first intro-
duced in the 1960’s and rediscovered in the 1990’s. Recently,
it was found that the belief propagation (BP) algorithm [2]
provides a powerful tool for iterative decoding of LDPC codes.
As shown in [3], LDPC codes with iterative decoding based
on BP achieve a remarkable error performance that is very
close to the Shannon limit [4]. Consequently, LDPC codes
have received significant attention recently.

An LDPC code is specified by a parity-check matrix con-
taining mostly zeros and only a small number of ones. In
general, LDPC codes can be categorized into regular LDPC
codes and irregular LDPC codes. An LDPC code is called
regular if the weights of rows and columns in its parity
check matrix are equal and is called irregular if not. It has
been shown, both theoretically and by simulation, that with
properly chosen structure, irregular LDPC codes have better
performance than regular ones [5].

To decode LDPC codes, either soft decision, hard decision
or hybrid decision decoding can be used. It has been shown
that soft decision decoding based on BP is one of the most
powerful decoding methods for LDPC codes. Although BP
decoding offers good performance, it can become too com-
plex for hardware implementation because of floating point
computations. By approximating the calculation at the check
nodes with a simple minimum operation, the min-sum (MS)
algorithm reduces the complexity of BP [6], [7]. While MS
is hardware efficient, its ultimate performance is often much
worse than that of BP. It has been observed that the degradation

of MS can be compensated by linear post processing (normal-
ization) of the messages delivered by check nodes [8], [9]. The
optimal normalization factors can be determined using density
evolution to search for the factors which yield the lowest
threshold. Simulation results and density evolution analysis
show that for decoding regular LDPC codes, normalized MS
with a single normalization factor is sufficient to achieve good
performance which is near that of BP. For decoding many
irregular LDPC codes, however, conventional normalized MS
exhibits a large performance degradation compared to that of
BP. In this paper, we present a two-dimensional (2-D) normal-
ized MS decoding of irregular LDPC codes. In 2-D normalized
MS scheme, belief messages outgoing from both check and
bit node processors are normalized. The normalization factor
of a check (bit) node processor depends on the degree of that
node. To circumvent brute force search, parallel differential
optimization and density evolution are used to obtain the 2-D
optimal normalization factor pair.

This paper is organized as follows. Section 2 briefly reviews
the standard BP decoding. Section 3 and Section 4 analyze
density evolution of conventional MS and normalized MS
decoding, respectively. Section 5 presents 2-D normalized MS
decoding and the corresponding density evolution. Section 6
describes the parallel differential optimization procedure to
obtain the optimal 2-D normalization factor pairs. Section 7
reports simulation results and Section 8 concludes this paper.

II. STANDARD BP

Suppose a regular binary (N, K)(dv, dc) LDPC code C
is used for error control over an AWGN channel with
zero mean and power spectral density N0/2. Assume
BPSK signaling with unit energy, which maps a codeword
w = (w1, w2, . . . , wN ) into a transmitted sequence q =
(q1, q2, . . . , qN ), according to qn = 1 − 2wn, for n =
1, 2, . . . , N . If w = [wn] is a codeword in C and q = [qn]
is the corresponding transmitted sequence, then the received
sequence is q + g = y = [yn], with yn = qn + gn, where
for 1 ≤ n ≤ N , gn’s are statistically independent Gaussian
random variables with zero mean and variance N0/2. Let
H = [Hmn] be the parity check matrix which defines the
LDPC code. We denote the set of bits that participate in check
m by N (m) = {n : Hmn = 1} and the set of checks in



which bit n participates as M(n) = {m : Hmn = 1}. We also
denote N (m)\n as the set N (m) with bit n excluded, and
M(n)\m as the set M(n) with check m excluded. We define
the following notations associated with i− th iteration:

• Uch,n: The log-likelihood ratios (LLR) of bit n which is
derived from the channel output yn. In BP decoding, we
initially set Uch,n = 4

N0
yn.

• U
(i)
mn: The LLR of bit n which is sent from check node

m to bit node n.
• V

(i)
mn: The LLR of bit n which is sent from the bit node

n to check node m.
• V

(i)
n : The a posteriori LLR of bit n computed at each

iteration.

The standard LLR BP algorithm is carried out as follows [3]:

Initialization: Set i = 1, maximum number of iteration to
IMax. For each m,n, set V

(0)
mn = Uch,n.

Step 1: (i) Horizontal Step, for 1 ≤ n ≤ N and each
m ∈M(n), process:

U (i)
mn = 2 tanh−1

∏

n′∈N (m)\n
tanh

V
(i−1)
mn′

2

(1)

(ii) Vertical Step, for 1 ≤ n ≤ N and each
m ∈M(n), process:

V (i)
mn = Uch,n +

∑

m′∈M(n)\m
U

(i)
m′n

V (i)
n = Uch,n +

∑

m∈M(n)

U (i)
mn

(2)

Step 2: Hard decision and stopping criterion test:

(i) Create ŵ(i) = [ŵ(i)
n ] such that ŵ

(i)
n = 1 if

V
(i)
n < 0, and ŵ

(i)
n = 0 if V

(i)
n ≥ 0.

(ii) If Hŵ(i) = 0 or the maximum iteration
number IMax is reached, stop the decoding
iteration and go to Step 3. Otherwise set
i := i + 1 and go to Step 1.

Step 3: Output ŵ(i) as the decoded codeword.

III. MS DECODING

The check node processing in the standard BP decoding may
require considerable computational resource and may cause
hardware implementation difficulties as well as high decod-
ing delay. BP decoding can be simplified by approximating
the calculation at the check nodes with a simple minimum
operation, which results in MS decoding [6], [7].

A. MS algorithm

In MS decoding, the bit node operation is the same as in
the standard BP. Taking advantage of the odd property of the

function tanh(), MS simplifies the updating rule in check nodes
by modifying (1) into

U (i)
mn =

∏

n′∈N (m)\n
sgn

(
V

(i−1)
mn′

)
· min

n′∈N (m)\n
|V (i−1)

mn′ | (3)

The MS algorithm is much simpler than the BP decoding,
since only comparisons and additions are needed in check and
bit node processing. The product of the signs in (3) can be
easily calculated by modulo 2 addition of the hard decision of
all {V (i−1)

mn′ : n′ ∈ N (m)\n}. The minimum magnitude can
be found by comparison.

B. Density evolution of MS

Density evolution can be used to track the process of
iterative decoding and determine the threshold of an iteratively
decodable code when decoded by a certain algorithm [4]. The
density evolution of MS has been presented in [10], [11]. By
applying a similar analysis approach as [1, Lemma 4.1], in the
following we derive it in a different way.

Let f
(i)
V and f

(i)
U be the pdf’s of LLR delivered by bit and

check node, respectively. In MS, the density evolution of bit
node is the same as that in BP

f
(i)
V = F−1

(
F(fUch

) ·
(
F(f (i)

U )
)dc−1

)

where F denotes Fourier transform.
To derive the density evolution of check node processor in

MS, we can first prove a theorem following a similar spirit
as the lemma 4.1 [1, p.41]. Consider J independent random
variables {X1, X2, . . . , XJ}. Let pXj(x) be the pdf of Xj ,
for j = 1, 2, . . . , J . Given a nonnegative value a, let PXj,+

and PXj,− be the probabilities of Xj has magnitude greater
or equal than a, and sign + and −, respectively; i.e, PXj,+ =∫ +∞

a
pXj(x)dx and PXj,− =

∫ −a

−∞ pXj(x)dx. Next consider
a new random variable

Y =
J∏

j=1

sgn(Xj) ·
J

min
j=1

|Xj |. (4)

Similarly define PY,+ and PY,− as the probabilities that Y
has magnitude greater or equal than a, and sign + and −,
respectively. We have

Lemma 1:

PY,+ =

∏J
j=1(PXj,+ + PXj,−) +

∏J
j=1(PXj,+ − PXj,−)

2
(5)

PY,− =

∏J
j=1(PXj,+ + PXj,−)−∏J

j=1(PXj,+ − PXj,−)
2

(6)
Proof: Consider the function

J∏

j=1

(PXj,+ + t · PXj,−) (7)

Observe that if this function is expanded as a polyno-
mial in t, the coefficient of tk is the probability that in



{X1, X2, . . . , XJ} there are k negative items and J − k
positive items, and each of them has a magnitude greater than
or equal to a. The expansion of function

J∏

j=1

(PXj,+ − t · PXj,−) (8)

is identical except that all the coefficients of tk with odd power
k are the opposite of those in the expansion of (7). Adding (7)
and (8), all coefficients of tk with even power k are doubled,
while all the coefficients of tk with odd power k are cancelled
out. Setting t = 1 and dividing the summation by 2, the result
is the probability that in {X1, X2, . . . , XJ}, there are even
number of items with sign − and magnitude greater than or
equal to a. From (4), it is clear that this probability equals
the probability that Y has sign + and magnitude greater than
or equal to a; therefore we obtain (5). Following a similar
approach, it is straightforward to prove (6).
If the J independent random variables {X1, X2, . . . , XJ} have
identical distribution pX(x), we have

Corollary 2:

PY,+ =
(PX,+ + PX,−)J + (PX,+ − PX,−)J

2

PY,− =
(PX,+ + PX,−)J − (PX,+ − PX,−)J

2

where PX,+ =
∫ +∞

a
pX(x)dx and PX,− =

∫ −a

−∞ pX(x)dx.
Based on the assumption of infinite codeword length and

tree like structure of the graph representation of (dv, dc)
regular LDPC codes, the LLR values delivered by check (bit)
nodes have the same distribution. The check node processing
(3) can be expressed as

U (i) =
dc−1∏

j=1

sgn(V (i−1)
j ) ·

dc−1
min
j=1

|V (i−1)
j |. (9)

where (V1, V2, . . . , Vdc−1) are i.i.d. Following similar nota-
tions as in [10], for a > 0, we define ψ

(i)
+ (a) =

∫ +∞
a

f
(i)
V (v)dv

and ψ
(i)
− (a) =

∫ −a

−∞ f
(i)
V (v)dv. Hence ψ

(i)
+ (a) and ψ

(i)
− (a) are

the probabilities that V (i) has magnitude no less than a, and
sign + and −, respectively. Applying Corollary 2, for u > 0,
the PDF of U (i) is

F
(i)
U (u) = 1− Pr(even number of negative values in

{V (i−1)
j }, and |V (i−1)

j | > u, ∀j)

= 1− 1
2

[ (
ψ

(i−1)
+ (u) + ψ

(i−1)
− (u)

)dc−1

+
(
ψ

(i−1)
+ (u)− ψ

(i−1)
− (u)

)dc−1
]

(10)

Similarly for u < 0, the PDF of U (i) is

F
(i)
U (u) = Pr(odd number of negative values in

{V (i−1)
j }, and |V (i−1)

j | > u, ∀j)

=
1
2

[ (
ψ

(i−1)
+ (|u|) + ψ

(i−1)
− (|u|)

)dc−1

−
(
ψ

(i−1)
+ (|u|)− ψ

(i−1)
− (|u|)

)dc−1
]
. (11)

Differentiating (10) and (11), we obtain the pdf of U (i)

f
(i)
U (u) =

dc− 1
2

[ (
f

(i−1)
V (u) + f

(i−1)
V (−u)

)

·
(
ψ

(i−1)
+ (|u|) + ψ

(i−1)
− (|u|)

)dc−2

+
(
f

(i−1)
V (u)− f

(i−1)
V (−u))

)

·
(
ψ

(i−1)
+ (|u|)− ψ

(i−1)
− (|u|)

)dc−2
]

(12)

IV. CONVENTIONAL NORMALIZED MS

Although the MS algorithm greatly reduces the decoding
complexity for implementation, it may cause a significant
performance degradation compared to BP decoding. In [8],
[9], normalized MS is proposed to improve the performance
of standard MS.

A. Normalized MS algorithm

Let UBP and UMS denote the LLR values calculated by BP
and MS decoding with (1) and (3), respectively. It was proved
that sgn(UBP ) = sgn(UMS) and |UBP | > |UMS | [8], which
implies that a linear post processing of UMS could reduce
the gap between BP and MS decoding. The normalized MS
modifies the check node processing (3) as

U i
mn ← α · U i

mn (13)

where α is a normalization factor, 0 < α ≤ 1.

B. Density evolution of normalized MS

By keeping the normalization factor constant, it is straight-
forward to obtain the density evolution of normalized MS from
that of standard MS. The only change is the density function
f

(i)
U (u) in (12) as

f
(i)
U (u) ← 1

α
f

(i)
U

(u

α

)
(14)

and the other procedures are the same as in MS [9].

V. TWO-DIMENSIONAL NORMALIZED MS

Another possible way to improve the performance of MS is
to reprocess the delivered LLR from bit nodes by modifying
(2) into

V (i)
mn = Uch,n + β ·

∑

m′∈M(n)\m
U

(i)
m′n (15)



where β is a normalization factor. For regular LDPC codes, the
normalization factor for each check (bit) node is identical. In
this case, bit node normalization processing (15) is equivalent
to check node normalization. For irregular LDPC codes, the
conventional normalized MS only reprocesses the LLRs out-
going from check nodes while keeping the bit node processor
unchanged. For any given check node, the outgoing LLRs are
normalized equally without considering the degree differences
among the adjacent bit nodes in the graph representation of
the code. However, intuitively, for bit nodes with different
degrees, this same incoming LLR should play a different role
in the outgoing LLRs. This implies it is possible to apply
normalization post processing in both check and bit nodes.
Because conventionally, only outgoing LLR from check nodes
(horizontal step) are normalized, we may refer to it as one-
dimensional normalized MS while we refer to this proposed
approach as two-dimensional (both horizontal and vertical
step) normalized MS decoding.

A. 2-D normalized MS algorithm

Consider an irregular LDPC code with degree distribution

λ(x) =
dvmax∑

j=1

λjx
j−1 and ρ(x) =

dcmax∑

j=1

ρjx
j−1, which

specify the degree distribution of bit nodes and check nodes,
respectively. The parameters λj and ρj are the fractions of
edges belonging to degree-j bit and check nodes, respectively.
The limits dvmax and dcmax denote the maximum degree for
bit and check nodes, respectively. Let αj be the normalization
factor for check nodes with degree j, for j = 1, 2, . . . , dcmax.
Let βj be the normalization factor for bit nodes with degree j,
for j = 1, 2, . . . , dvmax. Let dv(n) be the degree of bit node
n, for n = 1, 2, . . . , N . Let dc(m) be the degree of check node
m, for m = 1, 2, . . . , M . The initialization and hard decision
procedures in 2-dimensional normalized MS are the same as
in MS decoding. Step 1 of normalized MS decoding is
Step 1: (i) Horizontal Step, for 1 ≤ n ≤ N and each
m ∈M(n), process:

U (i)
mn = αdc(m) ·

∏

n′∈N (m)\n
sgn

(
V

(i−1)
mn′

)

· min
n′∈N (m)\n

|V (i−1)
mn′ | (16)

(ii) Vertical Step, for 1 ≤ n ≤ N and each m ∈ M(n),
process:

V (i)
mn = Uch,n + βdv(n) ·

∑

m′∈M(n)\m
U

(i)
m′n (17)

V (i)
n = Uch,n + βdv(n) ·

∑

m∈M(n)

U (i)
mn (18)

It is worth mentioning that by using different normalization
factors at different iterations (especially the first few itera-
tions), the error performance of 2-D normalized MS decoding
can be improved further.

B. Density evolution of 2-D normalized MS

Given the structure of a code and an iterative message-
passing decoding algorithm, if the bit error rate (BER) after
each iteration is independent of the transmitted codeword,
the analysis of density evolution can be greatly simplified by
assuming the all-zero codeword was transmitted. It has been
shown in [4] that, if the channel and message-passing decoding
satisfy three symmetry conditions, the entire behavior of
the decoder can be predicted from its behavior assuming
transmission of the all-zero codeword. Next we verify that
the 2-D normalized MS decoding satisfies these symmetric
conditions and therefore its density evolution can be analyzed
based on the all-zero transmitted codeword.
Channel symmetry: For an AWGN channel, the output is
symmetric,

f(y|q) =
1√

2πσ2
exp

(
− (y − q)2

2σ2

)

= f(−y| − q)

where σ2 = 1/2R · (Eb/No) is the variance of the noise and
R is the code rate.
Check node symmetry: In check node processing, the sign
of an outgoing message can be factored out:

U (i)
mn = Ψ(i)

c (V1, V2, . . . , Vdc(m)−1)

= αdc(m) ·
∏

n′∈N (m)\n
sgn

(
V

(i−1)
mn′

)
· min

n′∈N (m)\n
|V (i−1)

mn′ |

=
dc(m)−1∏

j=1

sgn(Vj) ·Ψ(i)
c (|V1|, |V2|, . . . , |Vdc(m)−1|)

Bit node symmetry: In bit node processing, the sign of an
outgoing message flips if the signs of all the corresponding
incoming messages flip,

−V (i)
mn = −Ψv(Uch,n, U1, U2, . . . , Udv(n)−1)

= −Un,ch − βdv(n) ·
∑

m′∈M(n)\m
U

(i)
m′n

= Ψv(−Uch,n,−U1,−U2, . . . ,−Udv(n)−1)

Moreover, at iteration 0, the initial belief message

Uch,n = log
P (wn = 0|yn)
P (wn = 1|yn)

=
2
σ2

yn

has density function which is also symmetric:

fUch,n
(u) =

σ

2
√

2π
exp

(
− (u− 2

σ2 )2

2(4/σ2)

)

= fUch,n
(−u) exp(u)

Although the original pdf of belief messages in 2-D normal-
ized MS satisfies symmetry conditions, this symmetry property
is not preserved during decoding iterations. Therefore there is
no guarantee that the probability of error is non-increasing
for 2-D normalized MS decoding [12]. Since the pdf of the



outgoing messages of check nodes with different degree are
distinct, the expectation of these pdf’s is the overall pdf.
Similarly to (14), the density evolution of degree-j check
processor in 2-D normalized MS is based on

f
(i)
U,j(u) ← 1

αj
f

(i)
U

(
u

αj

)
(19)

where f
(i)
U,j(u) is the pdf of an outgoing message at a degree-

j check. The overall pdf for all messages going out of check
nodes is

f
(i)
U (u) =

dcmax∑

j=1

ρj · f (i)
U,j(u)

←
dcmax∑

j=1

ρj

αj
f

(i)
U

(
u

αj

)

Similarly the overall pdf for all messages going out of bit
nodes is

f
(i)
V (v) =

dvmax∑

j=1

λj

βj
F−

(
F(fUch

) ·
(
F(f (i)

U )
)j−1

)(
v

βj

)

VI. OPTIMAL 2-D NORMALIZATION FACTORS PAIR

Let α = {α1, α2, . . . , αdcmax} and β =
{β1, β2, . . . , βdvmax} be the normalization factors (vectors)
of check and bit nodes in 2-D normalization MS decoding,
respectively. Given an irregular LDPC code with degree
distribution pair (λ, ρ) and a normalization factor pair (α,β),
we can obtain the threshold of this code with 2-D normalized
MS decoding, by using density evolution. We try to find
the optimal normalization factor pair (α,β) which yields
the largest noise threshold. This is a nonlinear cost function
minimization problem with continuous space parameters.
The brute force search method becomes intractable when
dvmax · dcmax is large. However an algorithm called parallel
differential has been shown to be efficient and robust.
In [5], this technique has been successfully applied to
construct optimal irregular LDPC codes. In this paper parallel
differential optimization is used to generate the optimal
normalization factor pair of 2-D normalized MS decoding.

A. Parallel differential optimization

Parallel differential is a parallel direct search technique fea-
tured by evolution of variable vectors. Starting from an initial
set of randomly generated vectors, the algorithm iteratively
update each vector in the set simultaneously based on the
currently best vector, which yields the smallest cost function
value in the last iteration. The updating procedure is repeated
until the iterations converge, and the resulting solution is
the superior vector which has the best cost function value.
Because after each iteration of updating, the new generation
in general has a smaller average cost function value than that
of the last generation, this algorithm is also called differential
evolution. By updating all the vectors of the set in parallel,
the algorithm can help the vectors escape local minima and
prevent misconvergence.

B. Optimal normalization factor pair based on density evolu-
tion and parallel differential optimization

Given an irregular (dvmax, dcmax) LDPC code, the number
of degrees of freedom with normalization factor pair is dvmax ·
dcmax. In differential evolution optimization, the population
of each generation is often selected to be multiple of the
number of degrees of freedom. Let L = T · dvmax · dcmax

be the population in each generation, where T is a constant.
Apparently, the larger T is, the higher the probability that a
better optimal result could be found, and correspondingly the
higher the needed complexity. Let (α(g)

l , β
(g)
l ) denote the l-th

member of generation g. The procedure to find the optimal
factor pair of 2-D normalized MS based on density evolution
and parallel differential optimization is carried out as follows

Step 1 Initialization: Set the maximum number of gener-
ations to Gmax and the generation index g = 0.
Randomly generate a set of normalization factor
pairs {(α(0)

l ,β
(0)
l )} with cardinality L. For l =

1, 2, . . . , L, run density evolution of 2-D normal-
ized MS based on the factor pair (α(0)

l , β
(0)
l ) and

obtain the corresponding threshold ( Eb

No
)(0)l . Then

compare and find the factor pair which yields
the smallest Eb

No
. We denote this best pair among

the original generation as (α(0)
lbest

, β
(0)
lbest

), where

lbest = arg
L

min
l=1

(
Eb

No

)(0)

l

.

Step 2 Mutation and test: Set g ← g+1. Update each factor
pair in the candidate set according to the following
mutation algorithm. For l = 1, 2, . . . , L, generate J
distinct random numbers {rj |1 ≤ rj ≤ L, rj 6= l},
and generate the test vector

(α(g+1)
l ,β

(g+1)
l )t = (α(g)

lbest
, β

(g)
lbest

)

+γ ·
( ∑

1≤j≤J
j:odd

(α(g)
rj

, β(g)
rj

)

−
∑

1≤j≤J
j:even

(α(g)
rj

, β(g)
rj

)

)
(20)

where γ is a pre selected real constant which controls
the amplification of the differential variation. The use
of differences between candidate vectors increases
the variation, therefore helping the iteration escaping
from a local minimum. Then for l = 1, 2, . . . , L, run
density evolution of 2-D normalized MS based on the
newly generated test factor pair (α(g+1)

l ,β
(g+1)
l )t

and obtain the corresponding threshold ( Eb

No
)(g+1)
l,t .

Step 3 Compare and update: For l = 1, 2, . . . , L, set

(α(g+1)
l ,β

(g+1)
l )

=

{
(α(g+1)

l , β
(g+1)
l )t if ( Eb

No
)(g+1)
l,t ≤ ( Eb

No
)(g)
l

(α(g)
l ,β

(g)
l ) otherwise



and
(

Eb

No

)(g+1)

l

=





(
Eb

No

)(g+1)

l,t
if

(
Eb

No

)(g+1)

l,t
≤

(
Eb

No

)(g)

l(
Eb

No

)(g)

l
otherwise

Then update the best factor pair of
generation g + 1 to (α(g+1)

lbest
,β

(g+1)
lbest

), where

lbest = arg
L

min
l=1

(
Eb

No

)(g+1)

l

.

Step 4 Stoping test and output: If Gmax is reached or the
smallest threshold of generations stop decreasing,
output (α(g+1)

lbest
,β

(g+1)
lbest

). Otherwise, go to Step 2.

VII. SIMULATION RESULTS

Figure 1 depicts the word error rate (WER) performance of
the standard BP, 2-D normalized MS, conventional normalized
MS and MS algorithms for decoding a (16200,7200) irregular
LDPC code. The check and bit node distributions of this
code are ρ(x) = 0.00006x2 + 0.14917x3 + 0.29851x4 +
0.44777x5 + 0.10449x6 and λ(x) = 0.00002 + 0.38803x +
0.31344x2 + 0.29851x7, respectively. We observe that 2-D
normalized MS provides a comparable performance as BP
and interestingly has a lower error floor than that of BP in
the high SNR region. We also observe that 2-D normalized
MS outperforms conventional normalized MS and MS by
about 0.3dB. For this (16200, 7200) irregular LDPC code, the
thresholds computed by density evolution for standard BP, MS,
conventional MS and 2-D normalized MS are 0.77dB, 0.93dB,
0.90dB and 0.85dB, respectively. The optimum normalization
factor for 1-D normalized MS is α = 0.75 and the opti-
mum normalization vectors of 2-D normalized MS are α =
(1.00, 0.94, 0.92, 0.88, 0.86) and β = (1.00, 1.00, 0.91, 0.83).

VIII. CONCLUSION

In this paper a 2-D normalized MS decoding has been
presented to improve the performance of standard MS and nor-
malized MS decoding. The proposed method requires consid-
erably less complexity than that of BP while introducing small
performance degradation compared with BP. It is interesting to
note that in the high SNR region, 2-D normalized MS can have
a lower error floor than that of BP. With respect to conventional
normalized MS which can be viewed as a simplified version
of 2-D normalized MS decoding, the presented method offers
a better performance with negligible increased complexity.
Simulation and density evolution show that 2-D normalized
MS provides a good performance versus complexity tradeoff
for decoding irregular LDPC codes. The method discussed in
this paper can be extended to offset MS decoding of irregular
LDPC codes [13].
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