
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Blind Vision

Shai Avidan, Moshe Butman

TR2006-006 May 2006

Abstract

Alice would like to detect faces in a collection of sensitive surveillance images she own. Bob
has a face detection algorithm that he is willing to let Alice use, for a fee, as long as she learns
nothing about his detector. Alice is willing to use Bobś detector provided that he will learn
nothing about her images, not even the result of the face detection operation. Blind vision is
about applying secure multi-party techniques to vision algorithms so that Bob will learn nothing
about the images he operates on, not even the result of his own operation and Alice will learn
nothing about the detector. The proliferation of surveillance cameras raises privacy concerns that
can be addressed by secure multi-party techniques and their adaptation to vision algorithms.

European Conference on Computer Vision (ECCV)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2006
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Blind Vision

Shai Avidan1 and Moshe Butman2

1 Mitsubishi Electric Research Labs,
201 Broadway, Cambridge, MA 02139

avidan@merl.com
2 Department of Computer Science,

Bar-Ilan University, Ramat-Gan Israel
butmanm@cs.biu.ac.il

Abstract. Alice would like to detect faces in a collection of sensitive
surveillance images she own. Bob has a face detection algorithm that
he is willing to let Alice use, for a fee, as long as she learns nothing
about his detector. Alice is willing to use Bob’s detector provided that
he will learn nothing about her images, not even the result of the face
detection operation. Blind vision is about applying secure multi-party
techniques to vision algorithms so that Bob will learn nothing about the
images he operates on, not even the result of his own operation and Alice
will learn nothing about the detector. The proliferation of surveillance
cameras raises privacy concerns that can be addressed by secure multi-
party techniques and their adaptation to vision algorithms.

1 Introduction

The proliferation of surveillance cameras raises privacy concerns that must be
addressed. One way of protecting privacy is to encrypt the images on their
way from the camera to the remote server that controls it. However, in some
cases this might not be enough. For instance, when the client does not wish
to reveal the content of the image even to the server that runs the particular
vision algorithm. Consider, for example, a service center offering face detection
capabilities over the web. Clients might be interested in the service but reluctant
to reveal the content of their images, even to the service provider, either because
they don’t want the service center to learn the content of the image or they
are concerned that virus attacks on the service center will reveal the content
of the images. With slight modification the proposed algorithm can be used for
blind face recognition. For example, a government agency can have photos of
suspects and compare them to images taken from private surveillance cameras
without learning anything about the content of the images (so as not to invade
privacy), and without revealing the photos of the suspects. The only answer the
government agency will learn is either a given suspect appear in a particular
image or not. Another application might be in camera phones that does not
have the CPU power to run heavy vision algorithms and would like to run the
application securely on a remote server. Yet another application is blind OCR

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 1–13, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 S. Avidan and M. Butman

in which the client is not willing to reveal the content of the document to the
server. In these cases one can resort to secure multi-party protocols that allow
two parties to execute a given algorithm without learning anything about the
other party.

Here we investigate the use of secure multi-party protocols for image analysis.
This is a challenging task because secure multi-party protocols are known to be
computationally intensive and applying them to large data sets, such as images
and video streams makes the task even harder. Domain-specific constraints allow
us to devise new schemes that are faster to use but might not be applicable to
general secure multi-party problems.

As a concrete setup we focus on a surveillance scenario in which Alice owns a
surveillance camera and Bob owns a server that runs a face detection algorithm.
In our hypothetical scenario Alice and Bob will engage in a protocol that will
allow Alice to learn if, and where, are faces in her images without learning
anything about Bobs’ detector. Bob will learn nothing about the images, not
even if faces were detected in them.

We adopt secure multi-party protocols to derive a secure classification proto-
col. The protocol allows Alice to send Bob a candidate detection window and get
a yes/no answer to the question “Is there a face in this window?”. This results
in a secure protocol that leaks no information to either party, but is slow in
practice because of the use of cryptographic primitives. Then we suggest ways
to drastically reduce the number of detection windows that Alice needs to send
to Bob by using a non-cryptographic protocol that is very fast in practice but is
not as secure as the secure classification protocol.

2 Background

Secure multi-party computation originated from the work of Yao [16] who gave
a solution to the two-party problem where two parties are interested in eval-
uating a given function that takes as input private input from each party. As
a concrete example consider the millionaire problem: Two parties want to find
which one has a larger number, without revealing anything else about the num-
bers themselves. Later, Goldriech et al. [7] extended the case to n > 2 parties.
However, the theoretical construct was still too demanding to be of practical
use. An easy introduction to Cryptography is given in [14] and a more advanced
and theoretical treatment is given in [6].

Since then many secure protocols were reported for various applications. Of
particular interest here are those dealing with oblivious transfer [2], secure dot-
product [1] or oblivious polynomial evaluation in general [11, 3] and learning
decision trees [9]. Oblivious Polynomial Evaluation (OPE) [11, 3] assumes that
Bob has a polynomial P (x) and Alice wants to evaluate the polynomial for a
particular x, unknown to Bob, without learning anything about the polynomial
coefficients. This was later used by [9] to devise an ID3 decision tree learning
algorithm where each party holds part of the training data, yet both parties are
interested in learning a decision tree that uses all the available training data.



Blind Vision 3

In the end both parties learn the parameters of the decision tree, but nothing
about the training data of the other party.

Secure multi-party protocols are often analyzed for correctness, security and
complexity. Correctness is measured by comparing the proposed protocol to the
ideal protocol where the parties transfer their data to a trusted third party
that performs the computation. If the secure protocol is identical to the ideal
protocol then the protocol is declared correct (note that one might come up with
secure approximation to an ideal algorithm). In security one needs to show what
can and cannot be learned from the data exchange between the parties. One
often assumes that the parties are honest but curious, meaning that they will
follow the agreed-upon protocol but will try to learn as much as possible from
the data-flow between the two parties. Put another way, one party is willing to
trust the other party but is concerned that virus attacks on the other party will
reveal the information. Finally, in complexity, one shows the computational and
communication complexity of the secure algorithm.

3 Notations

All computations must be done over some finite field F that is large enough to
represent all the intermediate results. One can approximate float numbers with
fixed arithmetic and represent it as integer numbers in this field. Denote by X
the image that Alice owns. A particular detection window within the image X
will be denoted by x ∈ FL and x will be treated in vector form. Bob owns a
strong classifier of the form

H(x) = sign(
N∑

n=1

hn(x)), (1)

where hn(x) is a threshold function of the form

hn(x) =
{

αn xT yn > Θn

βn otherwise, (2)

and yn ∈ FL is the hyperplane of the threshold function hn(x). The parameters
αn ∈ F , βn ∈ F and Θn ∈ F of hn(x) are determined during training; N is the
number of weak classifiers used.

4 Secure Classification

In this section we develop a secure classifier that is based on a linear combina-
tion of simple threshold function (’stumps’). However, the ideas presented here
can be used to develop other classifiers as well. For example, one can use the
OPE protocol mentioned earlier to construct a polynomial-kernel SVM. Work
still needs to be done to construct RBF-kernel SVM, or sigmoid-based neural
network.



4 S. Avidan and M. Butman

There is an inherent tension between secure multi-party methods and ma-
chine learning techniques in that one tries to hide and the other tries to infer.
In the extreme case, Alice can use Bob to label training data for her so that she
can later use the data to train a classifier of her own. The best we can hope for
is to ensure that Bob will not learn anything about Alice’s data and that Alice
will not help her own training algorithm, other than supplying it with labeled
examples, by running the secure classification protocol.

The cryptographic tool we will be using is Oblivious Transfer. Oblivious Trans-
fer allows Alice to choose one element from a database of elements that Bob holds
without revealing to Bob which element was chosen and without learning anything
about the rest of the elements. In the following we will denote OT M

1 to indicate
that Alice needs to chose one out of M elements. We will use OT to develop a
series of secure sub-protocols that result in a secure classification protocol.

4.1 Oblivious Transfer

Oblivious Transfer allows Alice to choose one element from a database of ele-
ments that Bob holds without revealing to Bob which element was chosen and
without learning anything about the rest of the elements. The notion of oblivious
transfer was suggested by Even, Goldreich and Lempel [5] as a generalization of
Rabin’s “oblivious transfer” [13].

Bob privately owns two elements M0, M1 and Alice wants to receive one of
them without letting Bob know which one. Bob is willing to let her do so provided
that she will not learn anything about the other elements. The following protocol,
based on RSA encryptions can be used to solve the problem in a semi-honest
(i.e. honest but curious) setting.

Algorithm 1. Oblivious Transfer
Input: Alice has σ ∈ {0, 1}
Input: Bob has two strings M0, M1

Output: Alice learns Mσ.

1. Bob sends Alice two different public encryption keys K0 and K1.
2. Alice generates a key K and encrypts it with K0 or K1. For the sake of argument,

let’s say she chooses K0. She sends Bob E(K, K0); that is, she encrypts K with
one of Bob’s public keys.

3. Bob does not know which public key Alice used, so he decrypts with both of his
private keys. He thus obtains both the real key K, and a bogus one K′.

4. Bob sends Alice E(M0, K) and E(M1, K
′), in the same order he sent the keys K0

and K1 in step 1. Alice decrypts the first of these messages with the key K and
obtains M0.

Can Alice cheat? She would need to be able to find K’, but she cannot do this
unless she knows how to decrypt messages encrypted with the public key K1.

Can Bob cheat? He would have to be able to determine which one of K and
K’ was the key Alice generated. But K and K’ both look like random strings.



Blind Vision 5

4.2 Secure Dot Product

Before diving into the technical details, let us give an intuitive introduction. Our
goal is to break the result of the dot product operation xT y into two shares a
and b, where a is known only to Alice, b is known only to Bob and it holds that
xT y = a+b. We do this by breaking the product of every pair of elements xi ∗yi

into two shares ai and bi and then letting Alice and Bob sum the vectors a and
b, respectively to obtain shares of the dot product. Observe that ai and bi must
sum to xi ∗ yi where xi is in the range [0, 255] and yi ∈ {−1, 0, 1} so the size of
the field F should be at least 512 to accommodate all possible cases. The details
are given in protocol 2.

Algorithm 2. Secure dot-product

Input: Alice has vector x ∈ F L

Input: Bob has vector y ∈ F L

Output: Alice and Bob have private shares a and b s.t. a + b = xT y

1. Bob generates a random vector b ∈ F L

2. For each i=1...L, Alice and Bob conduct the following sub-steps
(a) Bob enumerates all possible xi values and constructs a 256D vector a, s.t.

ai = yi ∗ xi − bi xi ∈ [0...255]

(b) Alice uses OT 256
1 with xi as her index, to choose the appropriate element from

the vector a and stores it as ai.
3. Alice and Bob sum their private vectors a and b, respectively, to obtain the shares

a =
�L

i=1 ai and b =
�L

i=1 bi of the dot-product xT y.

Correctness. The protocol is clearly correct.

Security. The protocol is secure for both parties as we will show next

– From Alice to Bob
• In step 2(b) Alice uses OT with xi as an index to choose an element from

the vector a. Because OT is secure, Bob can not learn which element she
chose and hence can learn nothing about the vector x.

– From Bob to Alice
• For each element, Bob lets Alice pick one element from the vector a and

since a is the sum of the vector y with some random vector b, Alice can
learn nothing about y from a.

Complexity and Efficiency. The protocol is linear in L - the dimensionality
of the vectors x and y.



6 S. Avidan and M. Butman

4.3 Secure Millionaire

Alice and Bob would like to compare and find which one has a larger number,
without revealing anything else about their number [16]. We show here a solution
to the problem based on the OT primitive. The idea is to have Alice and Bob
represent their numbers in binary format, scan it one bit at a time from left
(most significant bit) to right (least significant bit) and then get the result. For
each bit Bob should prepare a lookup table that is based on his current bit
value and the two possible bit values of Alice. Alice will use OT 2

1 to obtain some

Algorithm 3. Secure Millionaire
Input: Alice has a number x ∈ F
Input: Bob has a number y ∈ F
Output: Alice and Bob find out if x > y

1. Bob defines three states {A, B, U} that correspond to: Alice has a larger number,
Bob has a larger number and Undecided, respectively. For each bit, Bob encodes
{A, B, U} using a different permutation of the numbers {1, 2, 3}.

2. For the left most bit, Bob constructs a 2-entry lookup table z(n) using the following
table.

yn = 0 yn = 1
xn = 0 U B
xn = 1 A U

where xn, yn are the left most (most significant) bit of the numbers x, y, respec-
tively. If yn = 0 then Bob should construct a table from the left column, otherwise
he should use the right column.

3. Alice uses OT 2
1 with xn as her index to obtain s(n) = z(n)(xn)

4. For each i = n − 1, ..., 1, Alice and Bob conduct the following sub-steps
(a) Bob constructs a 6-entry lookup table z(i) that is indexed by s(i+1) and xi,

s.t.
yi = 0 yi = 1

s(i+1) = A ∧ xi = 0 A A
s(i+1) = B ∧ xi = 0 B B
s(i+1) = U ∧ xi = 0 U B
s(i+1) = A ∧ xi = 1 A A
s(i+1) = B ∧ xi = 1 B B
s(i+1) = U ∧ xi = 1 A U

where s(i+1) is the state variable from the previous bit. If yi = 0 then Bob
should construct a table from the left column, otherwise he should use the
right column.

(b) Alice uses OT 6
1 with s(i+1) and xi as her indices to obtain s(i) = z(i)(s(i+1), xi)

5. Bob sends Alice the meaning of the three states of s(1) of the least significant bit.
Alice now knows which number is larger.

6. If she wants, Alice can send the result to Bob.



Blind Vision 7

intermediate result and they both will continue to the next bit. The problem
with this approach is that comparing least significant bits is meaningless if the
most significant bits were already used to determine which number is larger.
Note, also, that Alice and Bob should not abort in the middle of the scan as
this might reveal some information about the numbers themselves. To solve this
problem we will use a state variable s that can take one of three states: A Alice
has a larger number, B Bob has a larger number or U Undecided yet. For each
bit Bob constructs a 6-way lookup table that consists of the 3 states of s and
the two possible values of the next bit of Alice, the output is the new state after
evaluating the current bit. For example, if s = A, Bobs’ current bit is 1 and
Alice’s’ current bit is 0 then the output should be s = A and they both move to
the next bit. To prevent Alice from interpreting the state s Bob can use different
numbers to represent A, B, U for each bit so, for example, for the first bit A is
represented as the number 1 but for the second bit 1 might represent the symbol
B. The details are given in protocol 3.

Correctness. The protocol is clearly correct.

Security. The protocol is secure for both parties as we will show next

– From Alice to Bob
• In steps 3 and 4b Alice uses xi as her index in the OT operation. Since

OT is secure, Bob can learn nothing about the number x.
– From Bob to Alice

• For each bit, Bob lets Alice pick one element from the lookup table z
and returns the state s. Since the values of the state s are represented
using random numbers for each bit, Alice cannot determine what does a
change in s mean and can not learn anything about the number y, other
than learning, in the end, if x > y.

Complexity and Efficiency. The protocol is linear in the number of bits of
the numbers x and y.

4.4 Secure Classifier

We are now ready to present the secure classifier protocol. The protocol relies
on the secure dot-product and Millionaire protocols and the details are given in
protocol 4.

Correctness. The protocol is clearly correct.

Security. The protocol protects the security of both parties.

– From Alice to Bob
• In step 2(a) Alice and Bob engage in a secure dot-product protocol so

Bob learns nothing about the vector x.
• In step 2(b) and 3 Alice and Bob engage in secure Millionaire protocol

so Bob can learn nothing about Alice’s data.



8 S. Avidan and M. Butman

Algorithm 4. Secure Classifier
Input: Alice has input test pattern x ∈ F L

Input: Bob has a strong classifier of the form H(x) = sign(
�N

n=1 hn(x))
Output: Alice has the result H(x) and nothing else
Output: Bob learns nothing about the test pattern x

1. Bob generates a set of N random numbers: s1, ..., sN , such that s =
�N

n=1 sn

2. For each n = 1, ..., N , Alice and Bob conduct the following sub-steps:
(a) Alice and Bob obtain private shares a and b, respectively, of the dot product

xT yn using the secure-dot-product protocol.
(b) Alice and Bob use the secure Millionaire protocol to determine which number

is larger: a or Θn−b. Instead of returning A or B the secure Millionaire protocol
should return either αn + sn or βn + sn. Alice stores the result in cn.

3. Alice and Bob use the secure Millionaire protocol to determine which number is
larger:

�N
n=1 cn or

�N
n=1 sn. If Alice has a larger number then x is positively

classified, otherwise x is negatively classified.

– From Bob to Alice
• In step 2(a) Alice and Bob engage in a secure dot-product protocol so

Alice learns nothing about Bobs’ data.
• In step 2(b) Alice and Bob engage in a secure Millionaire protocol so

Alice only learns if a > Θn − b but since she does not know b she can
not learn anything about the parameter Θn. Moreover, at the end of the
Millionaire protocol Alice learns either αn +sn or βn +sn. In both cases,
the real parameter (αn or βn) is obfuscated by the random number sn.

• In step 3 Alice learns if her number
∑N

n=1 cn is greater than Bob’s num-
ber

∑N
n=1 sn. Since s is a random vector, she can gain no knowledge

about the actual parameters of Bobs’ strong classifier.
• Alice can learn the number of weak classifier N from the protocol. This

can easily be fixed if Bob will add several fake weak classifiers hn(x)
whose corresponding weights αn, βn are zero. This way Alice will only
learn an upper bound on N and not N itself.

Complexity and Efficiency. The complexity of the protocol is O(NLK),
where N is the number of weak classifiers used, L is the dimensionality of the
test vector x and K it the number of bits in the dot-product xT yn.

Applying the secure classification protocol to face detection is straightfor-
ward. Alice scans her image and sends each detection window to Bob for evalua-
tion. Bob learns nothing about the image and Alice only gets a binary answer for
every detection window. The problem with the protocol is speed. As we discuss
in the experimental section, it might take from a few seconds to a few minutes to
classify a detection window (depending on the number of levels in the rejection
cascade, see details in the experiments section). This means that the protocol is
prohibitively expensive to compute in practice. Therefor we investigate methods
to accelerate it.



Blind Vision 9

5 Accelerating Blind Vision

There are three methods to accelerate the above protocol. The first relies on
cryptographic methods that leverage a small number of OT operations to per-
form a large number of OT [12, 8]. We will not explore these methods here.

A second approach would be for Bob to reveal a stripped-down version of
his classifier to Alice. This way, Alice can run the stripped-down classifier on
her data. This stripped-down classifier will effectively reject the vast majority of
detection windows and will allow Alice to use the expansive secure protocol on
a relatively small number of detection windows.

Finally, the last method of acceleration is to develop one-way hash functions
that will allow Alice to quickly hash her data but still let Bob correctly classify
the patterns without learning much about the original image itself. This will be
used as a filter to quickly reject the vast majority of detection windows, leaving
the “difficult” examples to be classified using the secure classification protocol.

5.1 Image Hashing Using Histograms of Oriented Gradients

There is a large body of literature on one way hash functions [14]. These functions
take the input message (detection window in our case) and map it to some hashed
vector in such a way that the original message can not be recovered. These one
way hash functions are not suitable for our purpose because they map nearby
patterns to different locations in hash space. So, two images that are nearby in
image space might be mapped to far-apart vectors in the hash space. There is
little hope then that a classifier will be able to learn something in the hash space,
because the basic assumption that nearby patterns should have similar labels is
violated.

We therefor use a domain-specific hash function. Specifically, we use the
Histogram of Oriented Gradients (HoG) as our hash function. HoG was proved
very useful in a variety of object recognition and detection applications [10, 4],
yet it destroys the spatial order of pixels, as well as their absolute values, and
is coarsely binned so we assume that recovering the original image patch from
a given HoG is impossible. Figure 1 show some examples of face and non-face
image patches and their corresponding HoGs.

In our system, Alice computes the HoG for each detection window and store
each bin in a response image. We use 18 bin HoG so there are 18 response images
used to represent the HoG for every detection window. That is, the 18 bins of
the HoG of a particular detection window are stored at the central pixel location
of that detection window, across all 18 response images.

By scrambling the order of pixels in the response images we effectively destroy
the spatial relationship between the HoGs so Bob can not use this information to
reconstruct the original image (the same scrambling permutation must be per-
formed on all 18 response images). Figure 2 show how the response image that
corresponds to one of the bins of the HoG looks like with and without scram-
bling the order of its pixels. Specifically, figure 2b shows a response image that
corresponds to one bin in the HoG. Scrambling the order of the pixels (figure 2c)



10 S. Avidan and M. Butman

(a)

(b)

Fig. 1. Image to Histogram of Oriented Gradients (HoG) Hashing. (a) some examples
of face images and their corresponding HoG. (b) some example of non-face images and
their corresponding HoG. We assume that it is impossible to reconstruct an image from
its HoG.

(a) (b) (c)

Fig. 2. The importance of scrambling. (a) original image. (b) Image of the first bin of
the Histogram of Oriented Gradients (HoG). (c) Same as (b) after pixel scrambling.

destroys the spatial relationship between HoGs. In addition, Alice can bury the
scrambled image in a larger image that contain random values (not shown here).

The inclusion of fake HoGs, by burying the response images in a larger image,
prevents Bob from recovering the original image, because he does not know if
he is using HoGs that came from the original image. Moreover, it prevents Bob
from knowing the result of his classification, because he does not know if the



Blind Vision 11

HoGs that he classified as positive (i.e. originated from a detection window that
contains a face) correspond to real or fake image patches.

6 Experiments

We implemented the secure classification protocol in C++ using the NTL1 pack-
age for large numbers and used RSA encryption with 128-bit long encryption
keys. The HoG detector was implemented in MATLAB. We simulated Alice and
Bob on one PC so communication delays are not reported here.

We converted our Viola-Jones type face detector [15] to a secure detector. In
the process we have converted the integral-image representation to regular dot-
product operation, a step that clearly slowed down our implementation as we no
longer take advantage of the integral image representation. Also, we shifted the
values of the filters from the range [−1, 1] to the range [0, 2] to ensure that all
values are non-negative integers. We then converted all the thresholds to non-
negative integers and updated them to reflect the shift in the filter values. The
face detector consists of a cascade of 32 rejectors, where each rejector is of the
form presented in equation 1. The first rejector requires 6 dot-product operations
and the most complicated rejector require 300 dot-products. There is a total of
4303 dot-products to perform. Instead of computing the secure dot-product for
each filter, we use OT to compute the secure dot-product for all the weak clas-
sifiers in a given level and allowed Alice and Bob to make a decision after every
level of the cascade. This clearly reveal some information to Alice, as she knows
at what level of the cascade a pattern was rejected but it greatly accelerates the
performance of the program. We found that a single 24 × 24 detection window
can be classified in several minutes using all the levels of the cascade. In most
cases the first two levels of the cascade are enough to reject a pattern and they
can be processed in a few seconds per detection window. As expected, the main
bottleneck of the protocol is the extensive use of the OT operation.

To accelerate performance we used the HoG based image hashing. Each 24×
24 detection window was mapped to HoG as follows. Alice first computes the
gradient of every pixel and ignores every pixel whose x and y gradients were
below 5 intensity values. Then she binned the gradient orientation into 18 bins
and stored the result in a histogram. She then sends the HoGs, in random order
and together with some fake HoGs, to Bob. Bob’s HoG detector consists of a
cascade of 45 levels. Each level of the cascade consists of a feed-forward neural
network with 5 hidden units that was trained to reject as many negative examples
as possible, while maintaining 98% of its positive examples. The unoptimized
HoG detector takes several seconds to process a single 240 × 320 image. We
found that on average the HoG detector rejects about 90% of the detection
windows in an image. The remaining 10 percent are classified using the secure
classifier protocol described earlier. In a typical case, about 15, 000 detection
windows (out of a total of about 150, 000 detection windows) will be passed to
the secure classification protocol. This approach accelerates secure classification
1 Downloaded from http://www.shoup.net/ntl/index.html



12 S. Avidan and M. Butman

(a-1) (a-2)

(b-2) (b-2)

Fig. 3. Blind Face Detection. (a) result after running the HoG detection. (b) Final
detection result.

by an order of magnitude, at the risk of revealing some information. There is
clearly a trade-off between the quality of the HoG detector and the amount of
information revealed.

Figure 3 show some typical results. The top row shows the result of the HoG
detection, as Alice sees them. The bottom row shows the result, as Alice sees
it, after the secure classification. A couple of comments are in order. First, note
that after the HoG detection the only thing that Bob knows is that he detected
several thousands candidates. He does not know their spatial relationship, how
they actually look or if they came from the original image or are simply chaff
designed to confuse him. Second, the HoG detector is performed in a multi-scale
fashion. In our case Alice uses a 3 level pyramid with a scale factor of 1.2 between
scales. Finally, all the detection windows that were positively classified by the
HoG detector are then scaled to 24 × 24 windows and fed to the secure classifier
protocol.

7 Conclusions

Blind Vision applies secure multi-party techniques to image related algorithms.
As an example we have presented a blind face detection protocol that reveals
no information to either party at the expanse of heavy computation load. We



Blind Vision 13

then suggested image hashing technique, using Histogram of Oriented Gradients
(HoG) to accelerate the detection process, at the risk of revealing some informa-
tion about the original image. There are several extensions to this work. First is
the need to accelerate the detection process. Second is the need to develop secure
versions to other popular classifiers such as RBF or sigmoid function. Third, we
are investigating information theoretic approaches to analyze the amount of in-
formation leaked by the HoG hash function, as well as developing better and
more secure image hashing functions. Finally we are exploring ways to extend
Blind Vision to other vision algorithms such as object tracking or image seg-
mentation.

References

1. M. J. Atallah and W. Du. Secure multi-party computational geometry. In
WASDS2001: 7th International Workshop on Algorithms and Data Structures, pp
165-179, Providence Rhode Island, USA, August 8-10 2001.

2. C. Cachin. Efficient private bidding and auctions with an oblivious third party.
In Proceedings of the 6th ACM conference on Computer and Communications
Security, pp 120-127, Singapore, November 1-4 1999.

3. Y.C. Chang and C.J. Lu. Oblivious polynomial evaluation and oblivious neural
learning. In AsiaCrypt: Advances in Cryptology. LNCS, Springer-Verlag, 2001.

4. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

5. S. Even, O. Goldreich and A. Lempel, A Randomized Protocol for Signing Con-
tracts, Communications of the ACM 28, pp. 637-647, 1985.

6. O. Goldreich, Foundations of Cryptography, 2004.
7. O. Goldreich, S. Micali and A. Wigderson. How to play any mental game - a

completeness theorem for protocols with honest majority. In 19th ACM Symposium
on the Theory of Computing, pp 218-229, 1987.

8. Y. Ishai, J. Kilian, K. Nissim and E. Petrank. Extending Oblivious Transfers Effi-
ciently. In CRYPTO 2003, pp 145-161.

9. Y. Lindell and B. Pinkas, Privacy preserving data mining. In Advances in Cryp-
tology - Crypto2000, LNCS 1880, 2000.

10. D.G. Lowe, Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91-110, 2004.

11. M. Naor and B. Pinkas, Oblivious Polynomial Evaluation. In Proc. of the 31st
Symp. on Theory of Computer Science (STOC), Atlanta, GA, pp. 245-254, May
1-4, 1999.

12. M. Naor and B. Pinkas, Efficient Oblivious Transfer Protocols. In Proc. of the
twelfth annual ACM-SIAM symposium on Discrete algorithms , Washington, D.C.,
USA pp. 448-457, 2001.

13. M. O. Rabin, How to exchange secrets by oblivious transfer, Tech. Memo TR-81,
Aiken Computation Laboratory, 1981.

14. B. Schneier, Applied Cryptography, 1996.
15. P. Viola and M. Jones, Rapid Object Detection using a Boosted Cascade of Sim-

ple Features. In IEEE Conference on Computer Vision and Pattern Recognition,
Hawaii, 2001.

16. A. C. Yao, How to generate and exchange secrets, 27th FOCS, pp. 162-167, 1986.


	Title Page
	Title Page
	page 2


	Blind Vision
	Introduction
	Background
	Notations
	Secure Classification
	Oblivious Transfer
	Secure Dot Product
	Secure Millionaire
	Secure Classifier

	Accelerating Blind Vision
	Image Hashing Using Histograms of Oriented Gradients

	Experiments
	Conclusions


