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Abstract

We have developed a set of algorithms and software tools to help an antenna designer inter-
actively explore the space of possible subarray positions in a sparse linear phase array, for the
purpose of designing antennas that minimize the maximum sidelobe level of the array response.
This paper presents two new results: (1) a fast search method for the optimal subarray positions
for a given array specification, and (2) a method for simultaneously optimizing a family of arrays
over a range of a given array design parameter. The first search method may be run offline in
a few minutes on a desktop computer, or may be run interactively with input from the designer.
The results from this method are compared to known global optimal solutions generated previ-
ously by exhaustive search on a supercomputer cluster. In these cases, the fast search method
almost always found the global optimum in just a few minutes. the second method, for optimiz-
ing array configurations over a range of a design parameter, is demonstrated for optimizing a
family of arrays over a range of total array size. It generates near-optimal configurations over the
range of array sizes. The families of antenna configurations generated using this second method
may also be explored interactively with a graphical interface.
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ABSTRACT

We have developed a set of algorithms and software
tools to help an antenna designer interactively explore
the space of possible subarray positions in a sparse lin-
ear phased array, for the purpose of designing antennas
that minimize the maximum sidelobe level of the array
response. This paper presents two new results: (1) a fast
search method for optimal subarray positions for a given
array specification, and (2) a method for simultaneously
optimizing a family of arrays over a range of a given ar-
ray design parameter. The first search method may be run
offline in a few minutes on a desktop computer, or may be
run interactively with input from the designer. The results
from this method are compared to known global optimal
solutions generated previously by exhaustive search on
a supercomputer cluster. In these cases, the fast search
method almost always found the global optimum in just
a few minutes. The second method, for optimizing ar-
ray configurations over a range of a design parameter,
is demonstrated for optimizing a family of arrays over a
range of total array size. It generates near-optimal config-
urations over the range of array sizes. The families of an-
tenna configurations generated using this second method
may also be explored interactively with a graphical inter-
face.

Key words: Phased array antenna; Synthesis; Optimisa-
tion.

1. INTRODUCTION

We have developed a set of algorithms and software
tools to help an antenna designer interactively explore
the space of possible subarray positions in a sparse linear
phased array (Fig. 1), for the purpose of designing an-
tennas that minimize the maximum sidelobe level of the
array response. This could, for example, be applied to a
distributed array radar problem [1]. This work is part of a
larger effort on phased array antenna design using human
guided search [2] to build systems that leverage the com-
plementary strengths of computers and human designers
to design high-performance antenna configurations.

This paper presents two new results: a fast search method
for optimal subarray positions for a given array specifica-
tion (Sec. 2), and a method for simultaneously optimizing
a family of arrays over a range of a given array design pa-
rameter (Sec. 3).

Figure 1. A typical configuration of the type of array
we are studying. The two outer subarrays are fixed, to
constrain the problem size. The inner subarrays are po-
sitioned inside, without overlap, and must be on half-
wavelength boundaries. Each element is labeled with its
distance, in wavelengths, from the beginning of the array.

2. FAST ARRAY OPTIMIZATION

2.1. Previous work: generate, evaluate, filter, browse

Our previous work on antenna design is based on a
generate-then-browse approach, as summarized in Fig. 2.
We built a system [3, 4] that discretized the design space,
exhaustively generated and evaluated all possible designs
in this discretized space, and stored the best 1 million
configurations. An antenna designer could then use the
browser shown in Fig. 3 to interactively explore this pre-
filtered design space. The evaluation routine computes
the gain pattern for each configuration and finds the width
of the main lobe, and the gain and frequency of the first
sidelobe and the highest sidelobe. The million configu-
rations with the lowest maximum sidelobe level (normal-
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Figure 2. Summary of generate-browse design strategy



Figure 3. Antenna configuration browser. This browser
facilitates exploration of on the order of a million pre-
filtered array configurations at a time [3].

ized to the main lobe) are stored for display in the in-
teractive browser. Because this method searches the de-
sign space exhaustively, the best configurations found are
known to be globally optimal.

The arrays we considered have a total size of 120λ, with
subarrays 10λ wide composed of 16 isotropic radiators
spaced 0.625λ apart (see Fig. 1). They have fixed subar-
rays at each end, and 4 ≤ n ≤ 9 interior subarrays whose
positions are discretized to λ/2 boundaries. The total
number of possible configurations for these are shown in
Tab. 1 (see Appendix). Because of the large number of
possible configurations, exhaustive generation and evalu-
ation requires a high-performance supercomputer cluster.
Larger design spaces cannot be easily investigated using
exhaustive generation. This motivated the development
of much faster ways to generate sets of candidate candi-
dates for browsing.

2.2. Fast search method

To speed the process of finding good candidate config-
urations of subarray positions, we developed a a simple
greedy algorithm to rapidly find large numbers of local
minima sampled evenly over the design space. Let P be
the set of possible configurations given the design param-
eters of the array, and let c(p) be the cost of a given con-
figuration p ∈ P (in this case, c(p) is the gain ratio of the
maximum side lobe to the main lobe). The method is:

1. Initialize the set of visited configurations to empty
V ← ∅.

2. Pick a random configuration: p← rand(P).

3. If it is already visited (p ∈ V), go to step 2. Other-
wise, mark it as visited: V ← (V ∪ p).

4. Let N be the set of configurations that can be
reached from p by moving a single subarray a sin-

# of interior subarrays
4 5 6 7 8

Possible configurations

(millions)
9.3 97 470 870 380

Minutes elapsed before

best configuration

found

< 1 4 (A) 4 < 1

Table 1. Approximate number of possible discretized con-
figurations for each number of interior subarrays, and
minutes of search on a desktop computer before the best
single configuration was found. (A) For 6 inner subar-
rays, no better than 3rd-best configuration was found in
20 minutes of search. The 3rd best configuration was
found within 2 minutes.

gle step (allowing a subarray to “push” another if
they are touching).

5. Evaluate each element inN , and pick the best: n←
argmaxn′(c(n′))|n′∈N .

6. If c(p) < c(n) (a local minimum has been reached)
then go to step 2. Otherwise, p← n and go to step 3.

The search is an anytime algorithm, and may thus be ter-
minated after a given amount of search time, a given num-
ber of configurations have been visited, or when the entire
configuration search has been visited. It can be further
sped by caching the results of evaluated configurations.

To be effective in covering the search space, the selec-
tion of a random state must sample the design space uni-
formly. This can be done by enumerating the possible
discrete configurations, then using this enumeration to
map a uniformly sampled integer to a configuration. The
enumeration is described in the Appendix.

2.3. Optimization Results

We can tell how well this search method finds optimal
candidate configurations, for at least some array parame-
ters, because we can compare it to results previously ob-
tained from exhaustive search on a supercomputer clus-
ter. We ran the search on a desktop computer for arrays
of total size 120 wavelengths and between 4 and 8 inte-
rior subarrays. As shown in Tab. 1, the global optimal
configuration is typically found within a few minutes on
a desktop computer. Fig. 4 shows the proportion of the
best 10 and best 100 configurations found for the array
with 7 inner subarrays (the array with the largest search
space tested). We can see that roughly half of the top 10
configurations and a sixth of the top 1000 configurations
are found within 20 minutes on a desktop computer.

2.4. Interactive search

The search method of Sec. 2.2 can also be interspersed
with human designer input. Fig. 5 shows a graphical in-
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Figure 5. Graphical interface for fast, interactive antenna optimization
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Figure 4. Number of top 10 and top 1000 best configura-
tions found, verses search time. This is for arrays with 7
subarrays, out of 869,648,208 possible configurations.
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Figure 6. Revised design strategy, with fast, interactive
candidate generation

terface with which a designer may switch between auto-
matic improvement and user exploration and manipula-
tion. The designer can directly manipulate subarray po-
sitions and see the resulting gain patterns, see a display
of which subarrays might be moved to improve perfor-
mance, or tell the computer to take one or more steps
automatically. The resulting configurations can be saved
and browsed using the interface shown in Fig. 3.

3. OPTIMIZING FAMILIES OF ARRAYS

Although the fast search method described in Sec. 2 al-
lows a designer to start browsing many optimal and near-
optimal results after just a few minutes of computation,
this is just for a single set of antenna design parame-
ters (e.g., number of interior subarrays, number of indi-
vidual radiators each subarray, subarray size, total array
size, and fill-factor). This section introduces a method
for computing near-optimal configurations over a range
of a continuous design parameter. For now, we allow a
range only for one parameter at a time, and have so far
focused on optimizing over a range of total array sizes.
These solutions for “families” of arrays may be used to

• quickly explore the design parameter space (e.g., de-
termine the best total array size to use), and thus



solve more open-ended design problems, or

• generate near-optimal configurations extremely
quickly (e.g., for use in a microcontroller) over the
set of parameters.

A high level description of the method is:

1. For the largest value in the specified range of total
array sizes, find a set of “seed” configurations by
running the fast search algorithm of Sec. 2, and fil-
tering them so they are sufficiently different from
one another (Sec. 3.1).

2. For each seed configuration, generate an initial map-
ping function from array size to subarray positions,
with a set of adjustable coefficients (Sec. 3.2).

3. For each initial mapping from the previous step, ad-
just the coefficients to optimize the performance of
each mapping over the entire range of array sizes
(Sec. 3.3).

4. Compare and inspect the optimized models, and se-
lect one or more (Sec. 3.4).

3.1. Generating seed configurations

The first part of the process is to generate “seed” con-
figurations. We use configurations optimized for a sin-
gle value of the range parameter (total array size, via the
method of Sec. 2). We typically perform this initial op-
timization at the highest end of the array size range, be-
cause this is the most difficult part of the space to opti-
mize.

The method of Sec. 2 is run (for about twenty minutes) to
generate a variety of near-optimal configurations. Then,
the resulting configurations are filtered so as not to be too
similar to one another, to avoid multiple seeds leading to
the same local minimum:

1. An initial population of configurations P is gener-
ated by taking the best few hundred results from a
run of fast array optimization at x = xmax.

2. The set of seed configurations is set to empty S ← ∅.

3. For each element pi ∈ P in decreasing order of fit-
ness (c(pi) ≤ c(pi+1)): If [D(pi, s) > ǫ]∀s∈S , then

S ← (S ∪ pi).

Here the distance function D(pi, s) is the minimum num-
ber of one-element steps necessary to transform pi into s.

3.2. Parameterizing the mapping

This step takes a single seed configuration and builds a
parameterized mapping over the entire range of the vari-
able parameter (i.e., total array size). This is a mapping
from a value of the variable parameter to the position of
each subarray within the array. This mapping will be fur-
ther optimized over that range in the next step.

Canonical position Because we want this mapping
to represent all physically realizable configurations and
no physically unrealizable configurations (i.e., subarrays
may not overlap, and no subarray may lie outside the an-
tenna), we chose a simple canonical representation for
the locations of the subarray elements. For each subarray
in order from left to right, its canonical position is 0 at
its leftmost possible location, 1 at its rightmost possible
location, and linearly scaled in between. So an antenna
with four interior subarrays all bunched at the leftmost
side of the array, the canonical position is [0 0 0 0]. In
practice, if an element of a canonical position vector is
not within the range 0 to 1, it is clamped to that range
before use. This is a continuous parameterization.

Polynomial mapping The mapping from array size to
subarray positions is represented by a set of polynomials,
one for each subarray. Polynomials were chosen for the
mapping functions due to their smoothness and simplic-
ity. If pi is the canonical position of the ith element from
the left of the array, where x is the parameter value and
xs is the value of that parameter used in generating the
seed value, then the position mapping is:

pi = ai0+ai1(x−xs)+ai2(x−xs)
2+. . .+aim(x−xs)

m

(1)
or

p = f(a, x). (2)

The polynomial coefficients a = {aij} will be trained to
optimize the quality of the output positions over the range
of the variable parameter (i.e., array size). Because the
initial polynomial mapping is taken from a seed position
s, we set ai0 ← si, and ai,{j 6=0} ← 0. This causes the
array to be at the seed position when x = xs (when the
array is the size that the seed position was optimized for).
Because p represents a canonical position, the positions
of the subarray elements are initially scaled proportion-
ally to the total size of the array in this mapping function.

3.3. Optimizing the mapping

Once the initial mapping is created, we can optimize
it to improve the performance of the array configura-
tions it generates. The cost function chosen for the op-
timization considers the individual costs of the generated
configurations over the range of the variable parameter
xmin ≤ x ≤ xmax.

C(a) =

∫ xmax

xmin

c(f(a, x))

E[c(x)]
dx (3)

The normalization value, the expected performance of an
array with the given parameter value (E[c(x)]), is es-
timated by averaging the performance of randomly se-
lected array configurations with that parameter value. It
does not depend on a. In practice, the above integral is
approximated by sampling evenly over the range of the
variable parameter.



Figure 7. Performance of mapping for arrays with 7 in-
ner elements. The maximum sidelobe level is given in dB,
and the array size in wavelengths (λ, not including the
lengths of the exterior subarrays, which are each 10λ).
The mapping is labeled by the index numbers of the sub-
array positions of its seed configuration.

It is not easy to compute the gradient of (3), so we chose
an optimization method that does not require a gradient:
the simplex algorithm of Nelder and Mead [5]. Because
the output of mapping function f(c, ·) is much more sen-
sitive to the coefficients of higher-order polynomial terms
than to lower-order terms, we scale the coefficients by a
factor ρ so they will have roughly the same effect before
they are passed to the optimizer. Here, s is the distance
between the exterior subarrays, n is the number of subar-
ray elements, and d is the degree of a coefficient’s term:

ρ(s, n, d) =
(s/n)d+1

2.0
(4)

3.4. Evaluating/browsing the mapping

Because each seed configuration results in a different out-
put mapping, we run the optimization for a set of about
10 distinct seeds, and select from the resulting mappings.
These can be compared by the value of the cost function
they achieved. If there are a few output mappings with
similar resulting cost values, they can also be compared
via plots for how they perform over the range of parame-
ter values, and by browsing the array configurations they
generate over the range of parameter values.

We ran this optimization algorithm for arrays with be-
tween 4 and 9 interior subarrays Each subarray is 10λ
wide and composed of 16 isotropic radiators spaced
0.625λ apart and approximately uniformly illuminated.
The total array size was set to the range of 80λ (or the
minimum array size that fits the required number of sub-
arrays) to 190λ. We generated mapping functions using
cubic polynomials.

Figure 8. Performance of mapping for arrays with 8 inner
elements.

Our algorithm typically yielded results less than one deci-
bel RMS from sampled estimates of global optima. Fig. 7
and Fig. 8 show performance of two of the best generated
mappings for arrays with 7 and 8 interior subarrays re-
spectively. The model line is the sampled performance
over the range of array sizes. The “best-found solutions”
line in the plot is an attempt to compare the performance
to best possible at each parameter value. It is generated
by running the quick search algorithm of Sec. 2 for 40
minutes at each sampled array size. For smaller arrays
this is probably the global optimum or close to it, but
for the larger arrays, where the number of possible con-
figurations is far higher, this is probably not the global
optimum. In fact we see that in some cases the mapping
results in better configurations than the best found after
40 minutes of the fast discrete space search.

The topmost lines in the plots are estimates of the ex-
pected performance of randomly selected arrays of the
given total size. This is the normalization value E[c(x)]
used in the cost function (3).

One interesting result is that both plots give an indication
of what the best overall size might be for these array fam-
ilies. The arrays with 7 inner elements have the lowest
maximum side lobe between 80λ and 90λ (between total
lengths of 100λ and 110λ including the lengths of the ex-
terior subarrays). The arrays with 8 inner elements have
the lowest maximum side lobe between 90λ and 100λ
(between total lengths of 110λ and 120λ including the
lengths of the exterior subarrays). This kind of informa-
tion only becomes apparent when you can optimize over
a range of design parameters.

The resulting models from the optimization can also be
browsed using the graphical interface shown in Fig. 9.
This browser lets the user both directly manipulate sub-
array positions and change the variable parameter and see
the resulting array configuration and corresponding gain
patterns.



Figure 9. Graphical interface for browsing array config-
urations generated by optimized mappings

4. CONCLUSION

This paper presented two new results for helping design-
ers of sparse linear phased array antennas find subarray
configurations that minimize side lobes of the gain pat-
tern. The first result is a fast search method for optimal
subarray positions for a given array specification. It elim-
inates the previous need to use a supercomputer cluster
to generate and filter the configuration space the designer
will browse. For the kinds of arrays we investigated, it
typically finds the global optimum configuration in a few
minutes. The second result is a method for simultane-
ously optimizing a family of arrays over a range of a total
array sizes. It typically yields results less than one decibel
RMS from sampled estimates of global optima over the
range of antenna sizes, and allows a designer to quickly
find answers to questions about design parameters such
as how large an array should be.
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APPENDIX: ENUMERATING DISCRETIZED AR-
RAY CONFIGURATIONS

Enumerating the possible discretized positions of subar-
rays in a sparse phased array antenna is useful for com-
puting the size of the design space, and for generating
random configurations. One such enumeration is:

1. Let configuration 0 be that in which all interior sub-
arrays are bunched at the left side of the array.

2. While possible, move the rightmost subarray one
step right and assign the new configuration the next
ordinal value.

3. When the rightmost subarray reaches the right side
of the array, move one step to the right the right-
most subarray that can be moved, bunching against
it all subarrays to its right. Assign this new configu-
ration the next ordinal value, and go to step 2. If no
subarrays can be moved to the right, then all config-
urations have been enumerated.

The following algorithm can map a given index to a set
of (non-canonical) positions quickly.

Compute discrete subarray position p, given position in-
dex I , distance between the exterior subarrays s, number
of subarray elements n, and width of a subarray w (all
integers) :

l← 0 (leftmost available position)
for i in 0 . . . n− 1 (loop over elements left to right)

r ← s− w(n− i) (available space right of element)
pi ← l
for j in 0 . . . r − 1

d← z(w, n− i− 1, s− l − w − j)
if d ≤ I

then pi ← l + j + 1; I ← I − d
else l← pi + w; next i.

z(w, n, s) is the number of possible configurations for an
array with n inner elements of width w and array size
(space between the exterior subarrays) s.

z(w, n, s) =







0 if s < nw,

s− w + 1 if n = 1,
∑s−w

i=0
z(w, s− w − i, n− 1) otherwise.

(5)
This recursive formula can be computed efficiently using
dynamic programming.

http://www.merl.com/projects/antenna/
http://www.merl.com/projects/antenna/

	Title Page
	Title Page
	page 2


	Very Fast Subarray Position Calculation for Minimizing Sidelobes in Sparse Linear Phased Arrays
	page 2
	page 3
	page 4
	page 5
	page 6


