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Abstract
In this paper, performances of stored-reference (SR), transmitted-reference (TR), and energy
detection (ED) based time of arrival (TOA) estimation techniques are analyzed for impulse-
radio ultra-wideband (IR-UWB) systems at subNyquist sampling rates. First, an additive
white Gaussian noise (AWGN) channel is considered to emphasize certain fundamental issues
related to these different transceivers. In particular, energy collection characteristics and
decision statistics are presented. Probability of accurate peak detection is analyzed for each
transceiver; and receiver operating characteristics for the leading edge are derived. Effects
of number of pulses per symbol and number of averaging symbols are investigated in detail.
Then, realistic multipath channels are addressed; and various maximum likelihood estimation
approaches are investigated. A new estimator that jointly exploits the noise statistics and
power delay profile of the channel is proposed, and a Bayesian estimator that (ideally) gives a
lower bound is analyzed. Simulation results show that while ED and TR have better energy
collection capabilities at low-rate sampling, they suffer from distributing the energy over time.
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Abstract—In this paper, performances of stored-reference
(SR), transmitted-reference (TR), and energy detection (ED)
basedtime of arrival (TOA) estimation techniquesare analyzed
for impulse-radio ultra-wideband (IR-UWB) systemsat sub-
Nyquist sampling rates. First, an additive white Gaussiannoise
(AWGN) channelis considered to emphasizecertain fundamental
issuesrelatedto thesediffer ent transceivers. In particular, energy
collection characteristics and decision statistics are presented.
Probability of accurate peak detection is analyzed for each
transceiver; and recever operating characteristicsfor the leading
edge are derived. Effects of number of pulsesper symbol and
number of averaging symbols are investigated in detail. Then,
realistic multipath channels are addressed;and various maxi-
mum lik elihood estimation approachesare investigated. A new
estimator that jointly exploits the noisestatisticsand power delay
profile of the channelis proposed,and a Bayesian estimator that
(ideally) givesa lower bound is analyzed.Simulation resultsshow
that while ED and TR have better energy collection capabilities
at low-rate sampling, they suffer from distrib uting the energy
over time.

I. INTRODUCTION

Ultra-wideband (UWB) is a technologythat has distinct
featurescharacterizedy its extremely wide bandwidth.Due
to high time resolution,it is arduousbut possibleto accurately
identify thefirst arriving signalcomponentHowever, thelarge
bandwidthwhich is typically larger than 500MHz makes it
difficult and costly to operaterecevers at above the Nyquist
rate. Instead,enegy can be capturedat lower samplingrates
after certainanalogfront-endprocessing.

The enegy detection (ED) of the signal is achiered by
passingthe signal through a square-lav device, followed by
an integrator and sampler Another option is to correlatethe
signal with a stored-referenc€SR) before an integrate-and-
dump circuitry. The latter is more robustto noiseeffectsdue
to the template being noise-free.In order to avoid timing
and pulse-shapenismatchbetweenthe templateand receved
signal, a transmitted-referencélR) schemecan also be con-
sidered,where a templateis transmittedwith and matches
the transmitteddata signal with a known delay in between.
After enegy capturingin ED, SRand TR via low-rate digital
samplesjeadingedgedetectionis neededor precisionrang-
ing. Apart from the fact that eachrecever type hasdifferent
captured-engy statistics,they also have different levels of
susceptibilitiesto timing mismatchesand responsego sub-
Nyquist sampling.
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Typical approachegor UWB time of arrival (TOA) esti-
mation in the literature are basedon Nyquist rate (or near
Nyquist rate) samplingof signals [1], [2], using an SR [3],
[4], and an ED [4], [5] recevers. A coarsetiming estimate
of a signal can be achiezed by maximum enegy selection
(MES) [3], [5], [6]-[10]. Someotherdetectionrelatedwork in
the literatureincludes[11], where detectionperformance®f
IR-UWB signalswith a squarelaw device were investigated,
and[12], whererecever operatingcharacteristic§ROCs) for
coherentUWB random noise radars have been analyzed.
Detection performancesof weighted square-lav and cross-
correlationUWB receversareanalyzedn [13]. In [14], anin-
depthanalysisof signalacquisitionusingmatchediltering and
ED is carriedout. Acquisitionis achieved usinga generalized
likelihood ratio testing (GLRT) and noisy templatesin [15],
[16]. On the other hand,a coherentacquisitionschemewith
low-rate samplesis discussedn [17], which shaws that the
compleity can be reducedby sub-samplingOnce an initial
acquisitionis achieved, precisearrival of the leadingedgecan
be estimatedy variousthresholdingechnique$1], [18], [19].
Trade-ofs betweenSR and TR transcever typesfor symbol
detectionare addressedn [20].

The performancetrade-ofs and comparisonof different
transcever typesfor UWB timing estimationis not available
in the literature to the best knowledge of the authors.In
this paper SR, TR, and ED basedrecevers and timing es-
timation schemesperatingat sub-Nyquistratesare analyzed
and compared.Our contritutions are as follows. First, with
the assumptionof additve white Gaussiannoise (AWGN)
channels,statistics and enegy collection characteristicsof
the three transceier types are addressedThen, peak selec-
tion error, leading edge detectionerror (conditionedon the
enegy capturecharacteristicof the transcevers at low-rate
sampling),and effects of pulse compression(increasingthe
numberof pulsesper symbol)and processinggain achievable
from replicatesymboltransmissionarediscussedAfterwards,
the TOA estimationperformancds analyzedundermultipath
channelsia likelihoodbasedestimatorsA Bayesiarestimator
algorithmthatideally givesa lower boundis presented.

Il. SYSTEM MODEL

While the transmittedsignalstructuresarethe samefor SR
and ED recevers, TR includesdelayedversion of the same
signal, and thereforeyielding a slightly differenttransmitted
signal model. Let the receved UWB signal in multipath
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Fig. 1. lllustration of IR-UWB pulse transmissionsin a sym-

bol, where (N5, Ny) = (5,4), T, = 3T, and ({¢;},{d;}) =

({0,2,1,1,0}, {+1,—1,—1,+1,—1}). The pulseswith solid lines corre-
spondto ED andSR. Dashedpulsescanbeincludedfor TR (afterappropriate
enegy scaling)with D = 2T¢.

channelfor the former schemese representecs

r(t) = Y djwmp(t — §Ts — ¢;Te — Teoa) +n(t) , (1)
j=—00

ro(t)

while for the TR casethe receved signalis modeledby

25 () +7y(t = D) (),
whereframe index and frame durationare denotedby j and
Ty, T, is thechip duration,T is the symbolduration,and s,

is the TOA of therecevedsignal.Effective pulseafterchannel
effectsis givenby wp,p(t) = % Zle oqwi(t — 7)), where
wi(t) is thereceved UWB pulseat/th tapwith unit enegy, Ey

is the symbol enegy (we assumeN; pulsesper symbol), o,

andr; arethe fading coeficientsand delaysof the multipath
components respectiely, and Zle o = 1. The AWGN

with zero-mearanddouble-sidegower spectraldensity Ny /2

and varianceo? is denotedby n(t). The delay betweenthe
data and referencesignalé is denotedby D, and enegy is
appropriatelyscaledso thatenegy per symbolis identicalfor

all casesNo modulationis consideredor therangingprocess.
In orderto avoid catastrophiaollisions (large numberof hits
betweenthe pulsesof differentusers),and smooththe power
spectraldensityof the transmittedsignal, time-hoppingcodes
¢;j € {0, 1,..., N, — 1} areassignedo differentusers,with

Ny, = Ty /T, denotingthe numberof chip positionsper frame.
Moreover, random-polaritycodesd; € {+1} areusedto get
additional processinggain for the detectionof desiredsignal,
and smooththe signal spectrum(seeFig. 1).

7(t) = )

A. Sampling the Received Signal After Different Energy Col-
lection Techniques

The signal arriving at the recever’'s antennais passed
through a low noise amplifier (LNA) and a band passfilter
(BPF) of bandwidth B. Different approachedor collecting
the enegy are possible before sampling the signal in (1)
or (2). The received signal can be sampledafter correlation
with a stored-referencsignal (Fig. 2a), after correlationwith
a transmitted-referencsignal (Fig. 2b), or after a square-lav
device (Fig. 2c). Block duration (which correspondgo the
samplinginterval) is denotedby T3, and is equivalentto T,

1Even though we refer the pair of signalsin TR as referenceand data
signals, this is just for the sale of distinction, and we considerno data
modulationfor rangingpurposes.
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Fig. 2.  Samplingof the receved signal after a) Correlationwith a local
referenceb) Correlationwith atransmittedeferenceandc) Enegy detection.

for chip-spacedsampling.In the sequel,we assumethat a
coarseacquisitionon the order of frame-lengthis acquired,
suchthat in (1) 740a ~ U(0,7T}), where{(.) denotesthe
(continuous)uniform distribution. The block index that con-
tainsthefirst arriving signaleneg%/ is correspondetdy n¢,, €
{1,2, ..., Nioo }, Where Ny,q = be The signal within time
frame T’ plus half of the next frameis sampledand searched
to factorin interframe leakagedue to multipath. Thus, the
numberof samples(or blocks/chips)within the TOA search
region is givenby Ny = %% andn € {1,2,...,n40q, ---, Np}
denoteghe sampleindex with respectto the startingpoint of
the uncertaintyregion.

With a samplingintenval of ¢,, the SR templatesignaland
the sample<xollectedafter correlatingthe receved signalwith
this templateare given by,

Ng—1
Stmp(t) = Z djw(t — jTy — ¢;T.) , 3)
j=0
(n—1)to+N, T
2(7) = / T(8)Stmp (t — (n — 1)ts)dt , (4)
(n—1)t,

respectiely, where w denotesthe correlator pulse shapé.
Since no channelestimateis available prior to signal acqui-
sition and TOA estimation,absolutevaluesof SR outputsare
used(as shavn in Fig. 2), yielding 5" = |z§f”|.

The samplesat the output of the square-lav device are

Ns  (j=1)T¢+(ci+n)ts
2o = / ®)

(G—1)Ty+(ci+n—1)ts

r()[dt

j=1
while the samplesafter correlatingwith the delayedversion

2Note that sincereceved pulseshapew; canchangeat differentmultipath
componentglue to its large bandwidth,w will not typically matchwith the
receved pulse shapes.However, we have usedw = w; for all { in the
simulationsfor simplicity.
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Fig. 3. Receved normalized pulse shape,and the sampledoutputscorre-
spondingto SR,ED, andTR for differenttiming offsets(1ns pulseis sampled
at 8GHz, and enegy is collected within 1ns windows and different time
offsets).

of the signalitself is formulatedas

No o r(i=D)Ts+(ci+n)ts
L) /
n

=17 G-DTs+(cj+n-1)ts

()7t — D)dt .  (6)

In the TR caseaswell, the absolutevaluesof the samplesare
usedto yield 50 |z§fr)|. The performancecan be further
improved by having a processinggain from multiple symbol
transmissionsNote that averagingmust be performedprior
to absolute-alue operation.In what follows, we refer to the

numberof symbolsas Ny.,.

B. Trade-offs Between Different Transceiver Architectures

It is very well known that matchedfiltering, in which a
storedreferencaemplateis correlatedwith therecevedsignal,
is optimal detectiontechniquewhen the knowledge of the
receved waveform shapeis available. However, Nyquist-rate
samplingis essentiato matchwith the received signal,sothat
perfectalignmentwith the templateand receved waveform
canbe obtained.If only lower samplingratesare possible,it
is apparentfrom (4) that the SR will not be able to collect
sufficient enegy from the received multipath arrivals due to
timing mismatchegand pulse shapedistortions).

Ontheotherhand,ED andTR signalingcanbotheffectively
capturethe receved enegy. Even at sub-Nyquistsampling
rates,neitherschemerequiresthe knowledgeof the sampling
timing or pulse shapes(assumingaccuratedelay lines for
the TR case).The existenceof the TR pulseyields a 3dB

transmittedenegy losscomparedwith the othertwo schemes.

lllustration of thetiming susceptibilityfor SR, TR, andED are
presentedh Fig. 3. If asufficientsamplingrateis available,the
SRwill bettercharacteriz¢he peak;however, atlow sampling
rates(e.g.ts > 1ns), it becomesmore likely for SR to miss
the peak.

Note that in non-coherentapproacheghe enhancedoise
termsin the low SNR region becomesanissue.In particulay

noise-squargermsfor the ED, andnoise-cross-noistermsfor
TR seriouslydominateanddegradethe detectionperformance.
Therefore,even thougha non-coherenapproachoutperforms
the SR at high SNR due to better enegy capture at sub-
Nyquist sampling rates, they have poor performancewhen
the noisevarianceis large. Moreover, non-coherenschemes
suffer from degraded SNR when symbol enepgy is spread
over more pulses,whereasenegy in an SR symbol can be
distributed over multiple pulseswith no SNR loss. Due to
similar reasons,TR and ED are much more susceptibleto
interferencecomparedo SR. A cross-correlatiomecever can
also be consideredinsteadof TR (asin [13]), which yields
identicalenegy capturewith ED but a smallernoisevariance.

Comparing the transmittedwaveforms, TR has a longer
time spancomparedto ED and SR, and D hasto be large
enoughso that multipath interferencebetweenreferenceand
data pulsesis not a serious problem. Also, TR obsenes
enhancecearly/late (E/L) noisetermsthat arise when either
the referenceor datasignal samplesare correlatedwith the
noise-onlysamples.This scalesthe noisevarianceat +D of
theactualTOA by thesignaleneny. Finally, thedelayedsignal
from a previous frame may affect the resultsfor TR recevers,
and D parameteshouldbe selectedcarefully consideringthe
framedurationandthe maximumexcessdelayof the channel.

In the next sectionsfirst, an AWGN channelis considered
to highlight certainpointsrelatedto differenttranscevertypes.
Someof the fundamentalrade-ofs discussedn this section
areexpandedn detail. Later, underrealisticmultipathchannel
models, maximum likelihood techniquesfor time of arrival
estimationare given.

I1l. AWGN CHANNEL ANALYSIS

UWB recevers typically obsene dispersie channelsthat
have hundredsof multipathcomponentsHowever, it is more
usefulto analyzecertainfundamentabhspectselatedto signal
acquisition and leading edge detectionin less complicated
scenarios.In this section, we consideran AWGN channel
(L =1, s =1, m = 0), and analyzeperformancetrade-
offs betweendifferenttranscever types.In particular decision
statistics(for single and multiple pulsesper symbol), as well
as enegy collection characteristicsunder timing mismatch
(dueto sub-Nyquistsampling)are investigatedn detail. Peak
selectionperformancesare comparedfor the three schemes,
which is closely tied with signal acquisition. Then, leading
edge detection characteristicsare analyzedby conditioning
the detectionprobability on the leading edge enegy, which
dependon the transceier’s enegy collection capability

A. Decision Statistics

As in ary detectionor estimationproblem,the performance
dependson decisionstatistics,which are derived from z,(fd),
28 and 28 for the problemin hand(prior to ary absolute
value operationfor SR and TR). Due to nature of the ac-
quisition and leading edgeestimationproblem,no parameter
estimates(i.e., the channel estimate) are available to the
recever, which makesthe recever strictly sub-optimal [14].
Below, we assumea Gaussianapproximationof the signal



TABLE |
COMPARISON OF OUTPUT STATISTICSFOR DIFFERENT TRANSCEIVER

TYPES.
SR TR ED
Lno 0 0 NsMo?
E
o2 Nso? NeMo*4o> 2k 2N, Mo*
no Nsym Naym Nsym
E
pen | Nsy/ 5t = VIN:Ep Ey/2 NsMo? + Ep
E
o2 Nyo2 NeMo*+202 = | aN,Mot+402Ey
sn Noym Nsym Nsym

statisticsfor TR andED, which is valid for large M x N, and
becomesmore accurateif the signal is averagedover large
numberof symbols.M denotesthe degree of freedomof the
noisesuchthat M = 2Bt, + 1.

Consider a scenario where ideal sampling instants are
assumedandt; = T.. Using a normalizedtemplateat the
recever, the output of the correlatoris given by +/Ej in the
presenceof signal, and the noise varianceis given by o2
regardlesof the presencef the signal.On the otherhand,the
capturedsignal eneny is E; for ED, and E; /2 for TR (due
to referencepulse). The arising noise-cross-nois¢éerms and
noise-squaréermsenhancehe noisevariancein TR andED,
respectiely. Notethatbeforeany absolute-alueoperation ED
is the only schemethat hasa non-zeronoise-mear(but also
hasa larger enegy offset comparedo the others).When N,
pulsesper symbol are used,and/orthe samplesare averaged
over N,,, symbolsthe statisticscanbe easilyshavn to yield
thevaluesin Tablel, wherenotations(no) and(sn) correspond
to noise-onlyand signal-plus-noiseases.

After the samplesof SR and TR are fed into the absolute
value operator their statistics obviously change.However,
their distributionscanbe still derivedin termsof the statistics
of the original Gaussiarparametersin the presencef signal,
the distribution of Z,, = |z, (i.€. the absolutevaluesof the
samplesor SR and TR asillustratedin Fig. 2) canbe easily
formulatedast

0 if 25, <0,
1 _ (2an—pten)?
p(gsn) = \/27r0'§n |:eXp ( 2‘737: )
+exp(—%)] if 2zgn >0,
(1)

which for s, — 0 becomeshe specialcasefor noise-only
samples

i 0 if Zno<07
P =Y o (< ) ez, ©

and above formulationsstill allow using Q-functionsto eval-
uate the detectionerrors. Note that if SNR is large, as an
approximation,the secondexponentialterm in (7) may be
neglected(sincethe areaunderthe tail will be negligible).

SFor the rest of the paper we neglect the effects of time-hoppingand
polarity randomizationcodes(i.e. ¢; = 0 andd; = 1 for all j) for the
simplicity of analysis.

4See [21] for calculating the probability density function (PDF) of a
function of a randomvariable.

B. Peak Selection Error

Acquisition of an UWB radio signalis commonlyachiered
by peakselectionof the receved signalsampleswhich gives
a coarseTOA information. The leading edge detectioncan
then be performedusing differentsearch-baclschemesCon-
sidering a single-tapchanneland alignmentof the sampling
instantswith chips, the probability of peak selectioncan be

formulatedas (z, denotesary of 259, 787, or (")

Pps = P(ﬁznmaw)

/OO
Znmaz =0

X P(2nman) P(Znmant1 < Zngas) X -
X P(sz < anaz)dznma.z )

P(z1 < 2zn,,..)P(22 < 2Zp,,0.) X -

9)

wheren;,, = nmqe: denotesthe location of the peak. After
somemanipulation,(9) yields

* Npy—1
Zn — Mno
Py = 1-— Mmaz I"TO . dz, 7
! /Z =0 ( ICQ( Ono )) p(z maz) ZNmaz
(10)

where z,,,... ~ N (fsn,02,), K = 1 for ED and K = 2
for SR or TR. Note that the secondexponentialin (7) is
neglectedfor simplicity, which yieldsa goodapproximatioras
will be comparedater with the simulations.The probability
of erroneouslyselectinga noise-only sampleas the peakis
thengiven by

Nmax

Pyse =1 — Py,. (11)

C. Leading Edge Detection and Effects of Non-Ideal Sampling
Instant

If samplinginstantsare alignedwith chip positions,sam-
pling the receved signal at chip-ratewould be suficient to
capturethe correlation peaks.However, due to lack of syn-
chronizationthe receved signhal may arrive anywhere within
the sampling block. Therefore, how finely the correlation
peaks (and the leading edge) are characterizeddependson
the samplingrate of the receved signal,aswell asrecever’s
enegy output characteristicsin Fig. 3, the pulse shapeused
in this paper(root raisedcosinepulse),andthe enegy outputs
of the SR, TR, andED areshaown. For a uniformly distributed
TOA, eachof the samplesbecomeequally likely to be the
leadingedgesample andthe PDFsandcumulative distribution
function (CDFs) of the leadingedgeenegy sample(i.e., E;.)
canbe easily obtainedfor differenttranscevers.

In orderto analyzethe leadingedgedetectionperformance
of different transcever typesin AWGN channels,consider
a 1-tap channeland chip-spacedsampling, where the pulse
durationis equalto the chip interval. Then,the received pulse
may arrive arywhere within the first enegy block, implying
that an enegy samplemay contain only a fraction of the
entire pulse enegy. As discussedbefore, the PDF of this
fractional enegy will changefor different transcever types.
Using Neyman-Pearsonheory the thresholdthat maximizes
the detection probability can be found for a given false-
alarmprobability. In the absencef the signal,the falsealarm



probability can be definedas the probability of erroneously
selectingthe noise-onlysampleasa signal-containingsample,
andis given by

Uno
andfor a fixed Py,, the thresholdis given by
Py,
£=0noQ " ( }é ) + o - (13)

Given the threshold for a particular Py,, the detection
probability of the leading edge can be obtainedfor different
transceversby averagingoverthe PDF of E;.. For amultipath
channelthe detectionprobability of the leadingedgecan be
definedto be probability of accuratedetectionof the leading
edgeafter searchingback the samplesprior to the maximum
enegy sample However, dueto cumbersomehannektatistics
causedby multiple clustersand delay spread,and diversity
of acquisitionand leadingedgedetectiontechniquessuchan
analysisis not followed in this paper Instead,we definethe
probability of detectionfor the leadingedgeas

Py = /0 P(e > E)p(E)dE | (14)
where P(z;e > &) using(7) is given by (assumingeD hasa
large noiseoffset)

_ . ke
Pz > ) = 1_32}':;—{)+Q(u;:) ::EE?rTR,

(15)

E. is the instantaneoudeading edge enegy, whose PDF
can be obtainedfrom the correlationfunctions of the three
differenttranscever types(Figs. 3), and y., o;. arethe mean
andthe standarddeviation of the leadingedgeenegy sample,
respectiely. Regardlessof the leading edge searchscheme
after acquisition,(14) characterizefiow likely we candetect
the leadingedgeonce/if we reachit.

IV. MULTIPATH CHANNEL ANALYSISAND LIKELIHOOD
BASED TOA ESTIMATION

In realistic multipath channels,the detectionperformance
of theleadingedgedefinedin previous sectionis not the only
measureof the timing estimationerror, and channelstatistics
suchasthe numberof clusters,delay betweenthe peakand
the leadingedgeetc. shouldbe taken into consideration [9],
[22]. Sincetheremay be a large delay betweenthe peakand
theleadingedge typically, ary of the sampleghatarrive later
(or earlier dependingon the algorithm)thanthe leadingedge
may be selectedasthe TOA, andthusclosedform theoretical
error expressionsare non-trivial due to cumhbursumechannel
characteristics.

In order to illustrate the timing difference betweenthe
strongestsampleand the leading edge sample,considerthe
CM1 channelmodelin [23]. The CDF of the delaysbetween
the maximumenegy sampleandthe leadingedgesamplefor
this channemodelarecomparedor differenttranscevertypes
in Fig. 4 with and without path offset within the first enegy
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Fig. 4. CDFs of delaysbetweenpeakand leading edgefor SR, TR, ED
(ts = T = 1ns),andwith andwithout pathoffsetswithin first enegy block.

block®. While choosingthe peaksyields a closer timing to
the leadingedgefor SR in the first scenarioED and TR has
bettercharacteristicait low samplingrateswhenno first-path
synchronizatioris assumed.

Due to this large possibledelay betweenthe peakand the
leadingedge,peakselectionfails to give accurateiming esti-
mates,and more sophisticatedalgorithmsarerequired.In this
section ratherthanthresholdbasedechniquessin [18], [19],
[22], we considerlikelihood basedestimationof the signal
timing. Starting from a simple peak selectionthat discards
the enegy informationin the neighboringsamplesmaximum
likelihood methodsof different compleity levels (and a-
priori information requirementswill be analyzed.Sincethe
location of the peakis assumedunknownn, the techniquesto
be discussednay alsobe usedfor initial signalacquisition.

A. Problem Formulation

Let z denoté the1 x N, vectorof samples,, N, denotethe
numberof signal plus noise enegy samples,gfc"") and g§:">
denote(for the kth hypothesis)the noise-onlyenegy vector
and signal plus noise enegy vector of sizes1 x (N, — N,)
and 1 x N, respectiely, where vectorson the two sidesof
signalplus noisevectorgf") are concatenatetb yield ggc""
Consideran ED with N; = 1. Then, the following multiple
hypothesigestingcan be formulatedfor £ = 1,2, ..., Nyoq

n = Jity g, ()t n=1,.k—1
nTy
f(nblTb[s —}—n()] dt, n=k,.,k+N,—1
f(’;LTbl t)dt, n=k+N,,. N,
(16)

5We definethe path offset to be the relative time differencebetweenthe
first arriving path and the beginning of the leading edgeblock. As implied
by the discussionin Sectionll-A, it is assumediniformly distributed.

6The samplesz, in the sequelcorrespondto zﬁfd) However, similar
analysismay also be easily performedfor z, being 2,(f ") and z(”).



wherer(t) is the noiseafter the BPF (signal partis assumed
to be undistorteddue to BPF), and #,,,, is the correct
hypothesis.Note that maximum likelihood estimationof the
correcthypothesigequiresthe channelstatisticsandthe noise
varianceinformation.

Using the Chi-squarestatistics[24] that arise due to the
square-lav device, (16) becomes

He: zn =x(M), n=1,.,k—1
—X(En, M), n=k,.k+N,—1 (17
zn:X(M)a n=k+ Ne,....Np

where Chi-squarerandom variable is denotedwith y, with
parametet) for the centralizedand parametergE,,, M) for
non-centralizedcases respectiely. The signal enegy in the
nth block is denotedby E,,.

For notationalcorveniencedefineindex m € {1,2,..., N, }
for the signal plus noise enegy vector for the rangeof £ <
n<k+N,—1, wherem =n—-k+1,and&,, = E,.
Gaussianapproximationcan be usedto model z,, for large
enoughM where the meansand variancesbecomep,,
Mo?, a = 2Mo¢g* for the centralized,and y,, = Mo? +
E,, 02 = 2Mo* + 402 E,, for the non-centralizecChi-square
distributions.

B. Maximum Likelihood Estimation

Typically, N, in (16) is much larger than1 for T, values
on the orderof pulseduration,andthe signalenegy is spread
over mary blocks. The coarsestway of obtaininga time of
arrival estimateis the maximumenenpy selection(MES) from
the individual enegy samplesby neglecting the information
in the neighboringsampleswhich yields

argmax {z} . (18)

ke{l,...,Np}
However, MES is susceptibldgo noisesincethe enegy in only
a single sampleis used,and it doesnot provide high timing
resolutionastheremay be a large delay betweenthe leading
edgeandthe maximumenegy block (seeFig. 4).

In orderto exploit the enepgy in the neighboringmultipath
componentsenegy samplesanbe summedwithin awindow.
With a window duration of N,, < N, blocks, the leading
block estimateusingmaximumenegy sumselection(MESS)
is given by

~ (mess) _
toa

argmax {g?"’N’”) X le} , (19)
ke{l,..,Ny}

is a column vector of onesof length N,,, and
(sn,Ny )

where 1,
MESS collapsesto MES for N, = 1 The vector z,,
composedof first N,, elementsof zk . Sincea very Iarge

window lengthcaptures lot of nmseandsmallwmd(w length
doesnot capturesufficient enegy, there exists an optimum

window length that changeswith the channel model and
the Ey /Ny, which we will demonstrateusing simulations.
Note that (19) is similar conceptuallyto the synchronization
algorithmin [5] exceptthe window definitionsand signaling
schemeq[5] usesa direct-sequenc&WB signaling). How-

ever, the optimality of the window lengthwasnot investigated
beforeto our bestknowledge.

If a-priori knowledgeaboutthe channelpower delayprofile
is available, we proposeto useit to weigh the hypothesized
enegy vector which yields

~(wmess) __
toa

rgmax { 2N x 20
kg{lg,...ivb}{gk evt @
Wherep is the columnvectorof 1 x N, meanenegiesfor
a partlcufarchannelmodel and block duration.In [9], mean
enegieswith respectto block index have beenpresentedor
CM1 and CM2, andfor T, = 4ns, which we alsousefor our
simulations.Note that the weighted-MESSW-MESS)in (20)
is actuallyequivalentto correlatingthe receved enegy vector
with the meanenegy valuesbeforepeakselection.
Carefulobser\auon of (16) shows that for correctHy, the
noise parametermk ") and &("") are minimized. Therefore,
weighingthe enegy sumin (20) with the inverseof [ A(”") X
,(c”") (referredto as W,-MESS) will mcreasethellkehhood
of the correcthypothesisThe proposedlOA estimatefor Ws-
MESSthenbecomes
(sn,Ne)

N (wzmess) _
toa

(21)

ooy
argmax { ———~————~- ¢ -
ke{T,....No} A(no) x a_,(cno)
Note that for both W-MESS and W,-MESS, even if the
power delay profile is not exactly available, an appropriate
exponentialcanbe usedto weightthe enegy vectorto enhance
the performanceof the MES.

C. Bayesian Estimation

Thetechniquesliscussedn the previoussectionassumehe
knowledge of the power delay profile, which is the average
enepgy within individual blocks. If the distribution of &£, are
known a-priori for eachenegy block m, and noise variance
o2 is known accurately(both of which are extremely difficult
in most cases),an optimal solution can be developedusing
a Bayesianapproach(see[25] for a discussionon Bayesian
estimators).We then estimatethe leading enegy block as

follows
e = agmax { [ [ palhotg)
ke{l,..,Ne} Ule Je,  Jen,
x p(gl)...p(sNe)dsNe...dgl} @)
wheref = [£1, &2, ..., En.] is the vector of sighalenegiesin

the signal plus noiseblocks, the distribution function is given
by (which can be simplified further)
n - H‘no)2
202,

I o (- ©

p(z |k,0%, &) =

k+N.—1
% H 1 exp ( . (Zn ,usn,m)z)
nek \/2m0%, 20%m
Nioa
H ( ( Zn — ,uno)2)
n=k+N, V 27“77210 207, 7
(23)



wherem = n—k+1, andthenoise-onlyparameter$ii,,,, o)
and signal plus noise parametersat the mth enegy sample
(Wsn,m>0sn,m) are calculatedfrom Table | using £ and o.
The PDFsof elementsof £ within 100 discretebinsin (0,1)
are presentedn [9], which we also usein the simulations,
anddo not repeatheredueto spacelimitations. It is desirable
to chooseN, on the orderof maximumexcessdelayto have
accurateestimates.

Note that in order to keep the problem analytically

tractable,(22) assumeshat the enegies&,,, areuncorrelated.

The ideal Bayesianestimatorshould considerthe joint PDFs
of the enegies, which is very difficult to extract from the
channelmodels.

Sinceit is usually very hard to know the prior PDFs of
the parametersand it requiresmultidimensionalintegration
over the PDF of each parameteryielding a very comple
implementation,Bayesiananalysisis usually of theoretical
interest and senes as a benchmarkfor other sub-optimal
estimatorgratherthan for practicalconsideration.

V. NUMERICAL RESULTS

Computersimulationsare performedto comparedetection
performance®f differenttranscever typesin AWGN andin
multipath channels.A raised cosine pulse of T, = 1ns is
consideredor all scenariosandtherecevedsignalis sampled
at 1ns for AWGN channel,and 1ns or 4ns for multipath
channelsThe delay D is setto 60nsfor TR.

For AWGN channel simulations, peak selection perfor
mancesand ROCs of the differenttransceier typesare ana-
lyzed for various Ny, N, and Ny, with andwithout perfect
alignmentof samplinginstantsto chip intervals.

In multipathscenariosthechanneimodelsCM1 (residential
LOS) and CM2 (residential NLOS) of IEEE802.15.4aare
used. The channelrealizationsare sampledat 8GHz, 1000
different realizationsare generatedand eachrealizationhas
a TOA uniformly distributedwithin (0, Ty). After introducing
uniformly distributed delays (first path may arrive arywhere
within the first signal block), enegies are collected within
non-overlapping windows to obtain decision statistics. The
other simulation parametersare Ty = 200ns, B = 4GHZ/,
N, =1, and only a single rangingsymbolis used.Both 1ns
and4ns are consideredor T3, with correspondingV, of 100
and 25, respectiely, so that significantmultipath enegy can
be capturedFor all the simulationsthe TOA estimateis taken
to be the centerof the block estimate,and timing errorsare
averagedover 1000 differentchannelrealizations.

A. AWGN Channel Smulations

1) Peak Sdlection Error: In Fig. 5, theoreticalpeakselec-
tion errorsare comparedfor different settingsof N, (to be
comparedvith simulationsin Fig. 6). For perfectsynchroniza-
tion, SR outperformsthe other transceier types. Moreover,
SR is not affected from increasingnumber of pulses per
symbol, while ED and TR performancesseriously degrade

“Note thatfor a samplingintenal t; = 1ns, the samplingrate corresponds
to 1/8 of the requiredNyquist rate.

Peak Selection Error (theo)

:I_O_3 L 1 1 1 1 L L
4 5 6 7 8 9 10 11 12

E/N, (dB)

Fig. 5. Peakselectionerrors (theory) of different transceier types
for AWGN channeland for different Ny (N, = 100, Ngym = 1,
M = 8).

o

Peak selection error (sim)
=
O\
T

10_ L 1 1 1 1 L L
4 5 6 7 8 9 10 11 12

E/N, (dB)

Fig. 6. Peakselectionerrors(simulation)of differenttransceier types
for AWGN channeland for different Ns (N, = 100, Ngym = 1,
M = 8).

with increasingN; (as also implied by Table I). Effects of
Ngym 0N peakselectionerror are presentedn Fig. 7, where
SRis seento betterbenefitfrom the processinggain.

2) Leading Edge Detection Smulation Results: In orderto
assesghe leading edgedetectionperformancesa uniformly
distributed r;,, is consideredand the detectionperformance
of the leading edgeis analyzed.In Fig. 8, theoreticalROCs
(Pp vs. Pg,) of different transcever types are shovn for
two different E, /Ny values (see Fig. 9 for the simulation
results). While SR performedwell for peak selectionwith
perfectsynchronizatior(in previousfigures),its ROC is worse
than the other two transceiers when timing mismatchesare
consideredThis is dueto the enegy collectioncharacteristics
of different transceters. Note that ROC is the worst for the
45° line, which may be obtainedusinga detectorthatignores
all the data (i.e., by tossinga coin) [25]. When Ny > 1,
as expected, the performanceof SR is not affected, and
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Fig. 7. Peakselectionerrors (theory) of different transceier types for
Nsym = 1,3,5 (N, = 100, Ny = 1, M = 8).
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Fig. 8. ROC (theory)for differenttransciger typesandin the presenceof
timing offsets(Ns =1, M = 8).

degradationsare obsenedin the performance®f TR andED
(seeFig. 10).

B. Multipath Channel Smulations

Effect of window length for MESS on timing error are
investigatedn Fig. 11throughFig. 15.1t is seernthatregardless
of the window length N,,, SR has a worse performance
comparedo ED and TR dueto undersampledignaland the
enegy collection characteristicsOn the other hand, Fig. 14
andFig. 15 show that optimal window lengthis around30ns,
which is on the order of delay spreadof the channel.The
E, /Ny valuesfor CM2 areselectechigherthanCM1 asCM2
hits the error floor at higher Ej, /Ny.

Note that theseresultsdo not contradictwith the results
presentedin [14] (where SR outperformsED) due to two

o
0.4} P — .~ SR,E/N=12dB |
P
03l - \ ! SR, E,IN,=22dB | |
7 —

, sR . iaa TR, E,/N,=12dB
0.2) — TR, E,/N,=22dB |
oab ED, Eb/N0i12dB |

= ED, E /N,=22dB

0 i i i n
0 0.2 0.4 0.6 0.8 1
fa
Fig. 9. ROC (simulations)for different transiceer typesandin the

presenceof timing offsets(N, =1, M = 8).
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Fig. 10. ROC (theory) for different transiceer types and in the

presenceof timing offsetsfor Ny = 1,10,100 (M = 8, Nsym = 1,
Ey/No = 17dB).

importantreasonsFirst, in [14], multiple acquisitionframes
are consideredwhere SR has better characteristicover ED
and TR. Second (and more important) reasonis that we
considerthe averagetiming error of the peak with respect
to the leading edge,assumingthe presenceof the signal. As
implied by Fig. 4b, when there is a randomtiming offset
within the first enegy sample,the delay betweenthe peak
is larger on the averagefor SR comparedto TR and ED.
Therefore,regardlessof the detectionperformanceof SR, its
meanabsoluteerror (MAE) may be worsecomparedo other
two schemesdue to their correlationand enegy collection
characteristics.

The MAE of the TOA estimatesfor the techniquesthat
require a-priori channelknowledge are presentedn Fig. 16
for the ED (CM1, T, = 4ns). The Bayesianestimationis
obtainedusing the histogramsof the signal enegies within
first N, = 25 blocks. While it yields a lower boundat high
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MAE whenusingMESSand TR (CM1, t; =T, = T =

E, /Ny, the Bayesianestimateis not as good at low Ej/Ng.
This may be explained with the fact that £, are assumed
uncorrelatecsdiscussedn SectionlV-C. Also, smallnumber
of samplesavailable (which may be insufficientto be modeled
via the PDFs), the mismatchbetweenthe PDF and current
realization(which may changeslightly dueto randomtiming
offsets), or the inaccurag of the Gaussiamapproximationof
Chi-squarestatisticsmay be the other reasonsaffecting the
optimality of Bayesianestimator On the other hand, it is
seenthat W,MESS significantly outperformsMES, and has
a reasonabljow compleity, requiringpower delay profile of
the channel Also, the four timesdecreasén the samplingrate
yields a 1nsincreasein the error floor for the performanceof
MES (to be comparedwith Fig. 13 for N, = 1).

V1. CONCLUSION

In this paper timing estimationfor IR-UWB systemsis
analyzedfor different transcever types. Theoreticalexpres-

10+

MAE (ns)
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Fig. 14. MAE with respectto N, for E,/No € {24,27}dB for
differenttransceiers (CM1, ts = T, = 1ns).

sions for peak selection error and leading edge detection
performancearepresentedn AWGN channelsvith sampling
rate constraintsand by consideringthe enegy collection
characteristicof the transcerers. Processinggain is shovn
to be better exploited by SR comparedto TR and ED. In
multipath channelspptimal window lengthfor peakselection
is shavn to be on the order of delay spreadof the channel.
Simulation results shav that performanceof peak selection
can be enhancedy likelihood basedmethodsthat make use
of channelinformation and noise statistics.

When an undersampledsignal is considered,SR, even
though not observingnon-coherentcombining loss, is more
susceptiblgo timing mismatchegandthus, sub-Nyquistsam-
pling rate effects) comparedto TR and ED. In order for
stored-referencéo have accuratetiming and efficient enegy
capture, high sampling rates on the order of Nyquist rate
are required.However, SR still has certain advantageseven
at low samplingrates.Consideringthe fact that the samples
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arerequiredto be averagedover a long preamblein orderto
achieve precisionranging requirementof wirelessnetworks,

SR is more beneficial as it does not obsene non-coherent

combiningloss.Spectramaskandpeakto averagepower ratio
requirementsof regulatory agenciesmay also enforce using
multiple pulsesto distribute the enegy over time, which is in
favor of SR.
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