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Abstract— We describe and analyze sparse graphical code
constructions for the problems of source coding with decoder
side information (the Wyner-Ziv problem), and channel coding
with encoder side information (the Gelfand-Pinsker problem).
Our approach relies on a combination of low-density parity check
(LDPC) codes and low-density generator matrix (LDGM) codes,
and produces sparse constructions that are simultaneouslygood
as both source and channel codes. In particular, we prove that
under maximum likelihood encoding/decoding, there exist low-
density codes (i.e., with finite degrees) from our constructions that
can saturate both the Wyner-Ziv and Gelfand-Pinsker bounds.

I. I NTRODUCTION

Sparse graphical codes, particularly low-density parity
check (LDPC) codes, are widely used and well understood
in application to channel coding problems [11]. For other
communication problems, especially those involving aspects
of both channel and source coding, there remain various
open questions associated with using low-density code
constructions. Two important examples are source coding
with side information (the Wyner-Ziv problem), and channel
coding with side information (the Gelfand-Pinsker problem).
This paper focuses on the design and analysis of low-
density codes—more specifically, constructions based on
a combination of LDPC and low-density generator matrix
(LDGM) codes—for source and channel coding with side
information. It builds on our previous work [8], in which we
proved that low-density constructions and ML decoding can
saturate the rate-distortion bound for a symmetric Bernoulli
source.

Related work: It is well-known that random constructions of
nested codes can saturate the Wyner-Ziv and Gelfand-Pinsker
bounds [14], [16]. However, an unconstrained random
construction leads to a high-density code, which is of
limited practical use. One practically viable approach to
lossy compression is trellis coded quantization (TCQ) [7].
A number of researchers have exploited TCQ as a quantizer
for the Wyner-Ziv and related multiterminal source coding
problems [2], [15] as well as for channel coding with
side information [5]. A disadvantage of TCQ is that
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saturating rate-distortion bounds requires that the trellis
constraint length be taken infinity [12]; consequently, the
computational complexity of decoding, even using message-
passing algorithms, grows exponentially. It is therefore
of considerable interest to develop low-density graphical
constructions for such problems. Past work by a number of
researchers [9], [13], [3], [10] has suggested that LDGM
codes, which arise as the duals of LDPC codes, are well-
suited to various types of quantization.

Our contributions: In this paper, we describe a sparse graphi-
cal construction for generating nested codes that are simultane-
ously good as both source and channel codes. We build on our
previous work [8], in which we analyzed constructions, based
on a combination of LDPC and LDGM codes, for the problem
of standard lossy compression. Here we prove that there exist
variants of these joint LDPC/LDGM constructions with finite
degrees such that, when decoded/encoded using maximum
likelihood, can saturate the Wyner-Ziv and Gelfand-Pinsker
bounds. Although ML decoding is not practically viable, the
low-density nature of our construction means that they have
low degree, and with high probability (w.h.p.) high girth and
expansion, all of which are important for the application of
efficient message-passing.

The remainder of this paper is organized as follows.
Section II provides background on source coding with side
information (SCSI, or the Wyner-Ziv problem), and channel
coding with side information (CSSI, or the Gelfand-Pinsker
problem). Section III introduces our joint LDGM/LDPC
construction, and provides a high-level overview of its use
for the SCSI and CCSI problems. In Section IV, we prove
that our construction produces codes that are simultaneously
“good” for both source and channel coding. We conclude
with a discussion in Section V.

Notation: Vectors/sequences are denoted in bold (e.g., s),
random variables in sans serif font (e.g., s), and random vec-
tors/sequences in bold sans serif (e.g., s). Similarly, matrixes
are denoted using bold capital letters (e.g., G) and random
matrixes with bold sans serif capitals (e.g., G). We useI(·; ·),
H(·), and D (·||·) to denote mutual information, entropy,
and relative entropy (Kullback-Leibler distance), respectively.
Finally, we usecard{·} to denote the cardinality of a set,



|| · ||p to denote thep-norm of a vector,Ber(t) to denote a
Bernoulli-t distribution, andHb (t) to denote the entropy of a
Ber(t) random variable.

II. BACKGROUND

A. Source and channel coding

We begin with definitions of “good” source and channel
codes that are useful for future reference.

Definition 1. (a) A code family is agoodD-distortion binary
symmetric source codeif for any ǫ > 0, there exists a code
with rate R < 1 − Hb (D) + ǫ that achieves distortionD.
(b) A code family is agood BSC(p)-noise channel codeif for
any ǫ > 0 there exists a code with rateR > 1 − Hb (p) − ǫ

with error probability less thanǫ.

B. Wyner-Ziv problem

Suppose that we wish to compress a symmetric Bernoulli
sources ∼ Ber(1

2 ) so as to be able to reconstruct it with
Hamming distortionD. By classical rate distortion theory [4],
the minimum achievable rate is given byR(D) = 1−Hb (D).
In the Wyner-Ziv extension [14], there is an additional source
of side information abouts—say in the formy = s ⊕ w where
w ∼ Ber(δ) is observation noise—that is available only at the
decoder. In this setting, the minimum achievable rate takesthe
form RWZ(D, p) = l. c. e.

{
Hb (D ∗ p) − Hb (D) , (p, 0)

}
,

where l. c. e. denotes the lower convex envelope. Note that
in the special casep = 1

2 , the side information is useless, so
that the Wyner-Ziv rate reduces to classical rate-distortion.

C. Gelfand-Pinkser problem

Now consider the binary information embedding problem:
the channel has the formy = u ⊕ s ⊕ z, whereu is the
channel input,s is a host signal (not under control of the
encoder), andz ∼ Ber(p) is channel noise. The encoder is
free to choose the input vectoru ∈ {0, 1}n, subject to the
channel constraint‖u‖1 ≤ wn, so as to maximize the rate
of information transfer. We writeu ≡ um wherem is the
underlying message to be transmitted. The decoder wishes to
recover the embedded message from the corrupted observation
y. It can be shown [1] that the capacity in this set-up is given
by RIE(w, p) u. c. e.

{
Hb (w) − Hb (p) , (0, 0)

}
, whereu. c. e.

denotes the upper convex envelope.

III. G ENERALIZED COMPOUND CONSTRUCTION

In this section, we describe a compound construction that
produces codes that are simultaneously “good”, in the senses
previously defined, as source and channel codes. We then
describe how the nested codes generated by this compound
construction apply to the SCSI and CCSI problems.

A. Code construction

Consider the compound code construction illustrated
in Fig. 1, defined by a factor graph with three layers. The top
layer consists ofn bits, each attached to an associated parity
check. These parity checks connect tom variable nodes in

k

k1 k2

m

γt

γv

γc

n

G

H1 H2

Fig. 1. Illustration of compound LDGM and LDPC code
construction. The top section consists of an(n, m) LDGM
code with generator matrixG and constant check degrees
γt = 4; its rate is R(G) = m

n
. The bottom section

consists of(m, k1) and (m,k2) LDPC codes with degrees
(γv, γc) = (3, 6), described by parity check matricesH1

andH2 and ratesR(H1) = 1 −
k1

m
and R(H2) = 1 −

k2

m

respectively. The overall rate of the compound construction
is Rcom = R(G)R(H)), whereR(H) = R(H1) + R(H2).

the middle layer, and in turn these middle variable nodes are
connected tok = k1 + k2 parity checks in the bottom layer.
Random LDGM ensemble:The top two layers define an(n, m)
LDGM code. We construct it by connecting each of then

checks at the top randomly toγt variable nodes in the middle
layer chosen uniformly at random. We useG ∈ {0, 1}m×n

to denote the resulting generator matrix; by construction,
each column ofG has exactlyγt ones, whereas each row
(corresponding to a variable node) has an (approximately)
Poisson number of ones. An advantage of this regular-Poisson
degree ensemble is that the resulting distribution of a random
codeword is extremely easy to characterize:

Lemma 1. Let G ∈ {0, 1}m×n be a random generator
matrix obtained by randomly placingγt ones per column.
Then for any vectorw ∈ {0, 1}m with a fraction of v

ones, the distribution of the corresponding codewordwG is
Bernoulli(δ(v; γt)) where

δ(v; γt) =
1

2
· [1 − (1 − 2v)γt ] . (1)

Random LDPC code:The bottom two layers define a pair of
LDPC codes, with parameters(m, k1) and(m, k2); we choose
these codes from a standard standard(γv, γc)-regular LDPC
ensemble originally studied by Gallager. Specifically, each of
them variable nodes in the middle layer connects toγv check
nodes in the bottom layer. Similarly, each of thek check nodes
in the bottom layer connects toγc variable nodes in the middle
layer. For convenience, we restrict ourselves to even check
degreesγc. Dividing the k check bits into two subsets, of
sizek1 andk2 with respective parity check matricesH1 and
H2, allows for the construction of nested codes, which will be
needed for both the Wyner-Ziv and Gelfand-Pinsker problems.

B. Good source and channel codes

The key theoretical properties of this joint LDGM/LDPC
construction are summarized in the following results:

Theorem 1 (Good source code). With appropriate finite
degrees, there exist(n, m, k) constructions that areD-good
source codes for all rates aboveR(D) = 1 − Hb (D).



Theorem 2 (Good channel code). With appropriate finite
degrees, there exist(n, m, k) constructions that are goodp-
channel codes for all rates below capacityC = 1 − Hb (p).

Theorem 1 on source coding was proved in our previous
work [8], whereas a proof of Theorem 2 is given in Section IV.
We now describe how these two theorems allow us to establish
that our low-density construction achieves the Wyner-Ziv and
Gelfand-Pinsker bounds. At a high level, our approach is
closely related to standard approaches to SCSI/CSCI coding;
the key novelty is that appropriately nested codes can be
construction using low-density architectures.

C. Coding for Wyner-Ziv

We focus only on achieving rates of the formHb (D ∗ p)−
Hb (D), as any remaining rates on the Wyner-Ziv curve can
be achieved by time-sharing with the point(p, 0). To do this,
we use the compound code in Fig. 1. Specifically, a source
s is encoded toH2w where w is chosen to minimize the
distortion||s−w′G||1 subject to the constraint thatH1w = 0.
Theorems 1 and 2 show that maximum likelihood decoding
of H2w using side informationy approaches the Wyner-Ziv
bound in the sense that this construction yields a goodD-
distortion binary source code, and a nested subcode that is a
goodD ∗ p-noise channel code. Details follow.
Source coding component:The D−distortion source code
component of the construction involves then variable nodes
representing the source bits, them intermediate variable nodes,
and the subset ofk1 lower layer check nodes. This subgraph,
represented by the generator matrixG and parity check matrix
H1 (see Fig. 1), define a code (on then variable nodes) with
effective rate

R1 : =
m

(
1 − k1

m

)

n
=

m − k1

n
. (2)

Choosing the middle and lower layer sizesm andk1 such that
R1 = 1− Hb (D) guarantees (from Theorem 1) the existence
of finite degrees such that that this code is a goodD-distortion
source code.
Channel coding component:Now suppose that the sources
has been quantized, and is represented (up to distortionD)
by the compressed sequencex̂ ∈ {0, 1}m. We transmit the
associated sequenceH2x̂ ∈ {0, 1}k2 of parity bits associated
with the codeH2; doing so requires rateRtrans = k2

n . The
task of the decoder is as follows: given thesek2 parity bits
as well as thek1 zero-valued parity bits, the decoder seeks to
recover the quantized sequencex̂ on the basis of the observed
side-informationy. Note that from the decoder’s perspective,
the effective code rate is given by

R2 =
m − k1 − k2

n
(3)

Suppose that we choosek2 such thatR2 = 1 − Hb (D ∗ p);
then Theorem 2 guarantees that the decoder will (w.h.p.) be
able to recover a codeword corrupted by(D ∗ p)-Bernoulli
noise. Note that the side information can be written as
y = ŝ ⊕ e⊕ v, wheree : = s ⊕ ŝ is the quantization noise,

andv ∼ Ber(p) is the channel noise. If the quantization noise
e were i.i.d. Ber(D), then the overall effective noisee ⊕ v

would be i.i.d.Ber(D ∗ p). In reality, the quantization noise
is not exactly i.i.d.Ber(D), but it can be shown [16] that it
can be treated as such for theoretical purposes.

In summary then, the overall transmission rate of this
scheme for the Wyner-Ziv problem is given by
(

m − k1

n

)
−

(
m − k1 − k2

n

)
= Hb (D ∗ p) − Hb (D) . (4)

Thus, by applying Theorems 1 and 2, we conclude that our
low-density scheme saturates the Wyner-Ziv bound.

D. Coding for Gelfand-Pinsker

The construction for the Gelfand-Pinsker problem is similar,
but with the order of the code nesting reversed. In particular,
the Gelfand-Pinsker problem requires a goodp-noise channel
code, and a nested subcode that is a goodw-distortion source
code. As before, we focus only on achieving rates of the
form Hb (w) − Hb (p). To encode a messagem with side
informationy, the channel input isw′G wherew is chosen
to minimize||y−w′G||1 subject toH1w = m. Details follow.
Source coding component:We begin by describing the
nested subcode for the source coding component. The idea
is to embed a message into the transmitted signal during the
quantization process. The first set ofk1 lower parity bits
remain fixed to zero throughout the scheme. On the other
hand, we use the remainingk2 lower parity bits to specify a
particular messagem ∈ {0, 1}k2 that the decoder would like
to recover. With the lower parity bits specified in this way, we
use the resulting code to quantize a given source sequences

to a compressed version̂s. If we choosen, m andk such that

R1 =
m − k1 − k2

n
= 1 − Hb (w) , (5)

then Theorem 1 guarantees that the resulting code is a good
w-distortion source code. Otherwise stated, we are guaranteed
that w.h.p, the errore : = s ⊕ ŝ in our quantization has
Hamming weight upper bounded bywn. Thus, transmitting
the errore ensures that the channel constraint is met.
Channel coding component:At the decoder, thek1 lower
parity bits remain set to zero; the remainingk2 parity bits,
which represent the messagem, are unknown to the coder.
We now choosek1 such that the effective code used by the
decoder has rate

R2 =
m − k1

n
= 1 − Hb (p) . (6)

In addition, the decoder is given a noisy channel observation
of the formy = e⊕ s⊕ v = ŝ⊕ v and its task is to recover
ŝ. With the channel coding rate chosen as in equation (6) and
channel noisev ∼ Ber(p), Theorem 2 guarantees that the
decoder will w.h.p. be able to recoverŝ. By design of the
quantization procedure, we have the equivalencem = ŝ H2 so
that a simple syndrome-forming procedure allows the decoder
to recover the hidden message. Thus, by applying Theorems 1
and 2, we conclude that our low-density scheme saturates the
Gelfand-Pinsker bound under ML encoding/decoding.



IV. PROOF OFTHEOREM 2

As described in the previous sections, Theorems 1 and 2
allow us to establish that the Wyner-Ziv and Gelfand-Pinsker
bounds can be saturated under ML encoding/decoding. The
source coding part—namely Theorem 1—was proved in our
earlier work [8]. Here we provide a proof of Theorem 2,
which ensures that these joint LDGM/LDPC constructions
are good channel codes. We consider a joint construction, as
illustrated in Fig. 1, consisting of a rateR(G) LDGM top
code, and a rateR(H) lower LDPC code. Recall that the
overall rate of this compound construction is given byRcom =
R(G)R(H). Note that an LDGM code on its own (i.e., without
the lower LDPC code) is a special case of this construction
with R(H) = 1. However, a standard LDGM of this variety
is not a good channel code, due to the large number of low-
weight codewords. Essentially, the following proof shows that
using a non-trivial LDPC lower code (withR(H) < 1) can
eliminate these troublesome low-weight codewords.

If the codewordc is transmitted, then the receiver observes
y = c⊕v wherev is aBer(p) random vector. Our goal is to
bound the probability that maximum likelihood (ML) decoding
fails where the probability is taken over the randomness in
both the channel noise and the code construction. To simplify
the analysis, we focus on the following sub-optimal (non-ML)
decoding procedure:

Definition 2 (Decoding Rule:). With thresholdd(n) : = (p +
n−1/3)n, decode to codewordci ⇐⇒ ‖ci ⊕ y‖1 ≤ d(n),
and no other codeword is withind(n) of y.

(The extra factor ofn−1/3 in the thresholdd(n) is of theoreti-
cal convenience.) Due to the linearity of the code construction,
we may assume without loss of generality that the all zeros
codeword0n was transmitted (i.e., c = 0n). In this case,
the channel output is simplyy = v and so our decoding
procedure will fail if and only if either (i)‖v‖1 > d(n),
or (ii) there exists some codeword “middle layer codeword”
z ∈ {0, 1}m satisfying the parity check equation1 Hz = 0 and
corresponding to a codewordci = zG such that‖zG⊕v‖1 ≤
d(n). Using the following two lemmas, we establish that this
procedure has arbitrarily small probability of error, whence
ML decoding (which is at least as good) also has arbitrarily
small error probability.

Lemma 2. The probability of decoding error vanishes asymp-
totically provided that

R(G)A(v) − D (p||δ(v; γt) ∗ p) < 0 for all v ∈ (0, 1
2 ] (7)

where A(v) : = limm→+∞ Am(v) is the asymptotic log-
domain weight numerator of the LDPC code, withAm(v)
being the average log-domain weight enumerator defined as

Am(v) : =
1

m
log E card

{
z

∣∣ ||z||1 = vm
}
. (8)

1To be more precise, for the channel decoding step of the Wyner-Ziv
problem, the middle layer codeword must satisfyH1 z = 0 andH2 z = m

wherem is the output of the Wyner-Ziv encoder. For the channel decoding
step of the Gelfand-Pinsker problem, the middle layer codeword must only
satisfyH1 z = 0, sincem is unknown until decoding is complete.

Proof. Let N = 2nRcom denote the total number of codewords
in the joint LDGM/LDPC code. Then we can upper bound the
probability of error using the union bound as follows:

perr ≤ P[‖v‖1 > d(n)] +

N∑

i=2

P
[
‖zi G⊕ v‖1 ≤ d(n)

]
. (9)

By Bernstein’s inequality, the probability of the first error
event vanishes for largen. Now focusing on the second sum,
let us condition on the event that‖z‖1 = ℓ. Then Lemma 1
guarantees thatzG has i.i.d.Ber(δ( ℓ

m ; γt)) elements, so that
the vectorzG ⊕ v has i.i.d. Ber(δ( ℓ

m ; γt) ∗ p) elements.
Applying Sanov’s theorem yields the upper bound

P
[
‖zG⊕ v‖1 ≥ d(n)

∣∣ ‖z‖1 = ℓ
]

≤ 2−nD(p||δ( ℓ

m
;γt)∗p).

We can then upper bound the second error term (9) via

2nRcom

m∑

ℓ=0

P[‖z|1 = ℓ] 2−nD(p||δ( ℓ

m
;γt)∗p)

=

m∑

ℓ=0

2

n

nRcom+m
[
Am( ℓ

m
)−R(H)

]
−nD(p||δ( ℓ

m
;γt)∗p)

o

=

m∑

ℓ=0

2n{R(G)Am( ℓ

m
)−D(p||δ( ℓ

m
;γt)∗p)}

=

m∑

ℓ=0

2n{R(G)[Am( ℓ

m
)−A( ℓ

m
)+A( ℓ

m
)]−D(p||δ( ℓ

m
;γt)∗p)}

≤
m∑

ℓ=0

2n{R(G)|Am( ℓ

m
)−A( ℓ

m
)|++R(G)A( ℓ

m
)−D(p||δ( ℓ

m
;γt)∗p)}

where we have replacedRcom = R(G) with R(H) in the third
line and used the notation|x|+ to denotemax(0, x). Finally,
we notice that by the definition of the asymptotic weight
enumerator,A(v), the |Am(v) − A(v)|+ term converges to
zero uniformly2 for v ∈ [0, 1] leaving only the error exponent
(7), which is negative by assumption.

Lemma 3. For any p ∈ (0, 1) and total rate Rcom : =
R(G)R(H) < 1 − Hb (p), it is possible to choose the code
parametersγt, γc and γv such that(7) is satisfied.

Proof. For brevity, letF (v) = R(G)A(v) − D (p||δ(v; γt) ∗ p).
It is well-known that a regular LDPC code with rate
R(H) = γv

γc
< 1 has linear minimum distance; in particular,

there exists a thresholdν∗ = ν∗(γv, γc) such thatA(v) ≤ 0
for all v ∈ [0, ν∗]. Hence, forv ∈ (0, ν∗], we haveF (v) < 0.

Turning now to the interval[ν∗, 1
2 ], consider the function

G(v) : = RcomHb (v) − D (p||δ(v; γt)) .

SinceA(v) ≤ R(H)Hb (v), we haveF (v) ≤ G(v), so that it
suffices to upper boundG. Observe thatG(1

2 ) = Rcom− (1−
Hb (p)) < 0. Therefore, it suffices to show that, by appropriate
choice ofγt, we can ensure thatG(v) ≤ G(1

2 ). Noting that
G is infinitely differentiable and taking derivatives (details

2The definition of A(v) implies pointwise convergence of|Am(v) −
A(v)|+ for v ∈ [0, 1]. But since the domain is compact, pointwise
convergence implies uniform convergence.
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Fig. 2. Plots of different terms in error exponent (7). The combinedcurve must remain negative for allω in order for the error
probability to vanish asymptotically. (a) A LDGMγt = 4 construction without any LDPC lower code: here the weight enumerator
A is given by Hb (ω), and it dominates the Kullback-Leibler term for lowω. (b) The sameγt = 4 LDGM combined with a
(γv, γc) = (3, 6) LDPC lower code: here the LDPC weight enumerator is dominated for all ω by the KL error exponent.

omitted), it can be shown thatG′(1
2 ) = 0 and G′′(1

2 ) < 0.
Hence, a second order Taylor series expansion yields that
G(v) ≤ G(1

2 ) for all v ∈ (µ, 1
2 ] for someµ < 1

2 . It remains
to boundG on the interval[ν∗, µ]. On this interval, we have
G(v) ≤ RcomHb (µ)−D (p||δ(ν∗; γt)). By examining (1), we
see that choosingγt sufficiently large will ensure that on the
interval [ν∗, µ], the RHS is less thanRcom − (1 − Hb (p)) as
required.

Theorem 2 follows by combining the previous lemmas.
At first glance, Lemma 3 may seem unsatisfying, since it

might require a very large top degreeγt. Note, however, that
this degree does not depend on the block length, hence our
claim that good low density codes can be constructed with
finite degree. Of course, for the claim of finite degree codes
to be practically meaningful, the degree required forγt should
be reasonably small. To investigate this issue, we plot the
error exponent (7) for rateRcom = 0.5, LDGM top degree
γt = 4, and different choices of lower code withR(H) in
Figure 2. Without any lower LDPC code, thenR(H) = 1 and
the effective asymptotic weight enumerator is simplyHb (ω).
Panel (a) shows the behavior in this case: note that the error
exponent exceeds zero in a region aroundv = 0 where
the weight enumerator dominates the negative KL term. In
contrast, panel (b) shows the case of a(γv, γc) = (3, 6)
LDPC code, where we have used the results of Litsyn and
Shevelev [6] in plotting the asymptotic weight enumerator.
This code family has a linear minimum distance, so that the
log-domain weight enumerator is negative in a region around
v = 0. Thus, the error exponent (7) remains negative for all
v ∈ [0, 0.5]. Thus, provided that a(3, 6) lower LDPC code is
used, a very reasonable top degree ofγt = 4 is sufficient.

V. D ISCUSSION

We have established that sparse graphical constructions that
exploit both LDGM and LDPC codes can saturate fundamental
bounds for problems of source coding with side informa-
tion, and channel coding with side information. Although the
present results are based on ML encoding/decoding, the spar-
sity and graphical structure of our constructions render them

suitable candidates for practical message-passing schemes,
which remains to be investigated in future work.
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