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Abstract

We describe and analyze sparse graphical code constructions for the problems of source cod-
ing with decoder side information (the Wyner-Ziv problem), and channel coding with encoder
side information (the Gelfand-Pinsker problem). Our approach relies on a combination of low-
density parity check (LDPC) codes and low-density generator matrix (LDGM) codes, and pro-
duces sparse constructions that are simultaneously good as both source and channel codes. In
particular, we prove that under maximum likelihood encoding/decoding, there exist low-density
codes (i.e., with finite degrees) from our constructions that can saturate both the Wyner-Ziv and
Gelfand-Pinsker bounds.
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Abstract—We describe and analyze sparse graphical code saturating rate-distortion bounds requires that the igrell
constructions for the problems of source coding with decode constraint length be taken infinity [12]; consequently, the
side information (the Wyner-Ziv problem), and channel coding computational complexity of decoding, even using message-

with encoder side information (the Gelfand-Pinsker problen). - lorith tallv. It is theref
Our approach relies on a combination of low-density parity dieck passing —aigorithms, grows exponentially. IS theretore

(LDPC) codes and low-density generator matrix (LDGM) codes ©Of considerable interest to develop low-density graphical
and produces sparse constructions that are simultaneouslgood constructions for such problems. Past work by a number of

as both source and channel codes. In particular, we prove tha researchers [9], [13], [3], [10] has suggested that LDGM

under maximum likelihood encoding/decoding, there existdw-  ¢4qes which arise as the duals of LDPC codes, are well-
density codes (i.e., with finite degrees) from our constru@ns that ) . L
suited to various types of quantization.

can saturate both the Wyner-Ziv and Gelfand-Pinsker bounds

|. INTRODUCTION Our contributions: In this paper, we describe a sparse graphi-

hical cod icularlv low-densi _cal construction for generating nested codes that are t&imaH
Sparse graphical codes, particularly low-density pariy,q\y 4o0d as both source and channel codes. We build on our
check (LDPC) codes, are widely used and well understo

) T ) gevious work [8], in which we analyzed constructions, lohse
n appllc_atlo_n to channel C"d'”9 problems_ [11]._For oth n a combination of LDPC and LDGM codes, for the problem
communication problems, espeC|aI_Iy those mvolvm_g a‘sp_e(bf standard lossy compression. Here we prove that theré exis
of both channel and source coding, there remain VaroySriants of these joint LDPC/LDGM constructions with finite

open qu_est|ons as_somated with using low-density Co_%grees such that, when decoded/encoded using maximum
constructions. Two important examples are source codi Relihood, can saturate the Wyner-Ziv and Gelfand-Pinske
with side information (the Wyner-Ziv problem), and chann

. o i X ounds. Although ML decoding is not practically viable, the
‘309“”9 with side information (the (_Belfand-Plnsker _prOb)emlow-density nature of our construction means that they have
This paper focuses on the design and analysis of 1oy, gegree, and with high probability (w.h.p.) high girthcan

density codes—more specifically, constructions based @Q,.nsion all of which are important for the application of
a combination of LDPC and low-density generator matri fficient message-passing

(LDGM) codes—for source and channel coding with side The remainder of this paper is organized as follows.

information. It builds on our previqus work [8], in Whi(_:h Wesection Il provides background on source coding with side
proved that Iow-densny_construcnons and ML de_codlng CaRtormation (SCSI, or the Wyner-Ziv problem), and channel
saturate the rate-distortion bound for a symmetric Be"nouéoding with side information (CSSI, or the Gelfand-Pinsker
source. problem). Section Il introduces our joint LDGM/LDPC

o ) construction, and provides a high-level overview of its use
Related work: It is well-known that random constructions Offor the SCSI and CCSI problems. In Section IV, we prove

nested codes can saturate the Wyner-Ziv and Gelfand-Rinsfg,s oyr construction produces codes that are simultaheous

bounds [14], [16]. However, an unconstrained rand°$ood” for both source and channel coding. We conclude
construction leads to a high-density code, which is Qfih 4 discussion in Section V.

limited practical use. One practically viable approach to

lossy compression is trellis coded quantization (TCQ) [nx'lotation: Vectors/sequences are denoted in baidg( s),
A number of researchers have exploited TCQ as a quantizer,qom variables in sans serif foret.g, s), and random vec-
for the Wyner-Ziv and related multiterminal source COd'n%rs/sequences in bold sans sef, s). Similarly, matrixes

problems [2], [15] as well as for channel coding with o jenoted using bold capital lettersg, G) and random
side information [5]. A disadvantage of TCQ is thafnatrixes with bold sans serif capitals.g, G). We usel(-; ),

H(-), and D(:||-) to denote mutual information, entropy,
EM was supported by Mitsubishi Electric Research Labs andVMas ( ) ( || ) Py

supported by an Alfred P. Sloan Foundation Fellowship, aav@zkFoundation a_nd relative entropy (Ku"baCk'Le'bler d'Stan_CG)_' resm'
Research Grant, and NSF Grant DMS-0528488. Finally, we usecard{-} to denote the cardinality of a set,



|| - ||, to denote thep-norm of a vectorBer(¢) to denote a
Bernoulli distribution, andH, (t) to denote the entropy of a
Ber(t) random variable.

Il. BACKGROUND
A. Source and channel coding

We begin with definitions of “good” source and channel
codes that are useful for future reference.

Definition 1. (a) A code family is ggood D-distortion binary Fig. 1. lllustration of compound LDGM and LDPC code
symmetric source codi for any ¢ > 0, there exists a code  construction. The top section consists of (anm) LDGM

; ; ; ; code with generator matrixc and constant check degrees
with rate R < 1._ I.{b (D) + € that achleves dIStOI‘tIOIp. " o= 4 i?s rate is R(G) = Z. The bottom secgt]ion
(b) A code family is @yood BSCp)-noise channel codi for consists of(m, k1) and (m, k2) LBPC codes with degrees
any ¢ > 0 there exists a code with ra® > 1 — H, (p) — ¢ (y0,7:) = (3,6), described by parity check matricéd;
with error probability less thar. andH; and ratesR(H;) = 1 — & and R(H,) = 1 — &2

respectively. The overall rate of the compound constractio
B. Wyner-Ziv problem is Reom = R(G)R(H)), where R(H) = R(H.1) + R(Haz).

Suppose that we wish to compress a symmetric Bernouhie middle layer, and in turn these middle variable nodes are
sources ~ Ber(%) so as to be able to reconstruct it withconnected td = k; + ko parity checks in the bottom layer.
Hamming distortionD. By classical rate distortion theory [4], Random LDGM ensembl&he top two layers define gm, m)
the minimum achievable rate is given B(D) = 1— H, (D). LDGM code. We construct it by connecting each of the
In the Wyner-Ziv extension [14], there is an additional smur checks at the top randomly tg variable nodes in the middle
of side information about—say in the formy = s @ w where layer chosen uniformly at random. We uée € {0,1}™*"

w ~ Ber(6) is observation noise—that is available only at thto denote the resulting generator matrix; by construction,
decoder. In this setting, the minimum achievable rate tékes each column ofG has exactlyy; ones, whereas each row
form  Rwz(D,p) =l.c.e. {H, (D xp) — H, (D), (p,0)}, (corresponding to a variable node) has an (approximately)
wherel.c.e. denotes the lower convex envelope. Note th&toisson number of ones. An advantage of this regular-Roisso
in the special casp = % the side information is useless, saglegree ensemble is that the resulting distribution of a@end
that the Wyner-Ziv rate reduces to classical rate-distarti  codeword is extremely easy to characterize:

C. Gelfand-Pinkser problem Lemma 1. Let G € {0,1}"*" be a random generator
. . . . . matrix obtained by randomly placing; ones per column.
Now consider the binary information embedding problen}:hen for any vectorw € {0,1}™ with a fraction of v

the channel has the forp = u ® s © 2z, whereu is the o5 e distribution of the corresponding codewerd is
channel input,s is a host signal (not under control of theBernouIIi(d(v-'yt)) where

encoder), and: ~ Ber(p) is channel noise. The encoder is
free to choose the input vectar € {0,1}", subject to the §(v;ve) = 1. [1—(1—2v)"]. (1)
channel constrainful|; < wn, so as to maximize the rate 2

of information transfer. We writar = u,, wherem is the Random LDPC codeThe bottom two layers define a pair of
underlying message to be transmitted. The decoder wished-BPC codes, with parametefs:, k1) and(m, k2); we choose
recover the embedded message from the corrupted observatigse codes from a standard standeygl .)-regular LDPC
y. It can be shown [1] that the capacity in this set-up is givegnsemble originally studied by Gallager. Specifically,reat
by Rig(w, p)u.c.e. { H, (w) — Hy (p), (0,0)}, whereu. c.e. them variable nodes in the middle layer connectsytocheck

denotes the upper convex envelope. nodes in the bottom layer. Similarly, each of theheck nodes
in the bottom layer connects tg variable nodes in the middle
I1l. GENERALIZED COMPOUND CONSTRUCTION layer. For convenience, we restrict ourselves to even check

In this section, we describe a compound construction tHéggreesy.. Dividing the k check bits into two subsets, of
produces codes that are simultaneously “good”, in the sen§&ze k1 andk, with respective parity check matricé$, and
previously defined, as source and channel codes. We tHdp. allows for the construction of nested codes, which will be
describe how the nested codes generated by this compolggded for both the Wyner-Ziv and Gelfand-Pinsker problems
construction apply to the SCSI and CCSI problems. B. Good source and channel codes

A. Code construction The key theoretical properties of this joint LDGM/LDPC

Consider the compound code construction iIIustratecé)nsum:tIon are summarized in the following results:

in Fig. 1, defined by a factor graph with three layers. The topheorem 1 (Good source code)With appropriate finite
layer consists of: bits, each attached to an associated paritlegrees, there exisin, m, k) constructions that areD-good
check. These parity checks connectrtovariable nodes in source codes for all rates abov®(D) =1 — H;, (D).



Theorem 2 (Good channel code)With appropriate finite andv ~ Ber(p) is the channel noise. If the quantization noise
degrees, there existn, m, k) constructions that are goog- e were i.i.d. Ber(D), then the overall effective noise ® v
channel codes for all rates below capacity=1— H, (p).  would be i.i.d.Ber(D « p). In reality, the quantization noise

. . ._is not exactly i.i.d.Ber(D), but it can be shown [16] that it
Theorem 1 on source coding was proved in our previous

L. . . an be treated as such for theoretical purposes.
work [8], whereas a proof of Theorem 2 is given in Section Ve In summary then, the overall trangmigsion rate of this
We now describe how these two theorems allow us to establis& ’

that our low-density construction achieves the Wyner-Zid a stheme for the Wyner-Ziv problem is given by
Gelfand-Pinsker bounds. At a high level, our approach_ m— kl) _ (m — k11— k2) = Hy(D*p)— Hy (D). (4)
closely related to standard approaches to SCSI/CSCI cpdi n n

the key novelty is that appropriately nested codes can ®Rus, by applying Theorems 1 and 2, we conclude that our

construction using low-density architectures. low-density scheme saturates the Wyner-Ziv bound.
C. Coding for Wyner-Ziv D. Coding for Gelfand-Pinsker
We focus only on achieving rates of the forh, (D * p) — The construction for the Gelfand-Pinsker problem is simila

Hy (D), as any remaining rates on the Wyner-Ziv curve caput with the order of the code nesting reversed. In particula
be achieved by time-sharing with the poipt 0). To do this, the Gelfand-Pinsker problem requires a ggedoise channel

we use the compound code in Fig. 1. Specifically, a soureede, and a nested subcode that is a goetistortion source

s is encoded toH,w wherew is chosen to minimize the code. As before, we focus only on achieving rates of the
distortion||s—w’G||; subject to the constraint thef,w = 0. form H;, (w) — H, (p). To encode a messaga with side
Theorems 1 and 2 show that maximum likelihood decodirigformationy, the channel input isv'G wherew is chosen

of How using side informatiory approaches the Wyner-Ziv to minimize|ly—w’G/|; subject toH; w = m. Details follow.
bound in the sense that this construction yields a gded Source coding component:We begin by describing the
distortion binary source code, and a nested subcode that i8ested subcode for the source coding component. The idea
good D * p-noise channel code. Details follow. is to embed a message into the transmitted signal during the
Source coding component:The D—distortion source code quantization process. The first set bf lower parity bits
component of the construction involves thevariable nodes remain fixed to zero throughout the scheme. On the other
representing the source bits, theintermediate variable nodes,hand, we use the remainirig lower parity bits to specify a
and the subset of, lower layer check nodes. This subgraptparticular messagen € {0, 1} that the decoder would like
represented by the generator matehand parity check matrix to recover. With the lower parity bits specified in this wag w
H;, (see Fig. 1), define a code (on thevariable nodes) with Use the resulting code to quantize a given source sequence

effective rate to a compressed versian If we choosen, m andk such that
_k _ m—Fky —k
Rlzzm(1 ) _m—k ) Ri = 7; 2 = 1-H,(w), ®)
n n

Choosing the middle and lower layer siz@sandk; such that then Theprem 1 guarantees that_ the resulting code is a good
-distortion source code. Otherwise stated, we are guadnte

Ri1 =1- H, (D) guarantees (from Theorem 1) the existenc P o
- . . . . that w.h.p, the errole := s @& s in our quantization has
of finite degrees such that that this code is a gbbdistortion . . o
source code Hamming weight upper bounded hyn. Thus, transmitting
: ) the errore ensures that the channel constraint is met.
Channel coding component:Now suppose that the sourse . :
: . . Channel coding component:At the decoder, the:; lower
has been quantized, and is represented (up to distofipn : . . ) . . .
. m : parity bits remain set to zero; the remainikg parity bits,
by the compressed sequenkec {0,1}™. We transmit the :
which represent the message, are unknown to the coder.

. b k . . :
as_somated seque.nﬁ_gx €{0,1} 2 of parity bits asksomated We now choosék; such that the effective code used by the
with the codeHs,; doing so requires rat®,.,s = “2. The

n decoder has rate

task of the decoder is as follows: given thdseparity bits

as well as thek; zero-valued parity bits, the decoder seeks to Ry, = m — ky =1—-Hy(p). (6)
recover the quantized sequencen the basis of the observed N no ) .
side-informationy. Note that from the decoder’s perspectivél addition, the decoder is given a noisy channel obsemvatio
the effective code rate is given by of the formy =e®s®v = s® v and its task is to recover
s. With the channel coding rate chosen as in equation (6) and
Ry, = m—ki— ks (3) channel noisev ~ Ber(p), Theorem 2 guarantees that the
n decoder will w.h.p. be able to recovér By design of the

Suppose that we chooge such thatR, = 1 — Hy, (D xp); quantization procedure, we have the equivalemce s H; so

then Theorem 2 guarantees that the decoder will (w.h.p.) theat a simple syndrome-forming procedure allows the detode
able to recover a codeword corrupted by * p)-Bernoulli to recover the hidden message. Thus, by applying Theorems 1
noise. Note that the side information can be written and 2, we conclude that our low-density scheme saturates the
y=8Sd®ed®v, wheree := s @ s is the quantization noise, Gelfand-Pinsker bound under ML encoding/decoding.



IV. PROOF OFTHEOREM 2 Proof. Let N = 2nficom denote the total number of codewords

As described in the previous sections, Theorems 1 andnethe joint LDGM/LDPC code. Then we can upper bound the
allow us to establish that the Wyner-Ziv and Gelfand-Pinskgrobability of error using the union bound as follows:
bounds can be saturated under ML encoding/decoding. The N
source coding part—namely Theorem 1—was proved in oup.,.. < P[||v]|1 > d(n)] + ZP[”ZZ' G vl <dn)]. (9)
earlier work [8]. Here we provide a proof of Theorem 2, i=2
which ensures that these jOint LDGM/LDPC ConStrUCtiorBy Bernstein’s inequa"ty, the probab|||ty of the first arro
are good channel codes. We consider a joint construction,efnt vanishes for large. Now focusing on the second sum,
illustrated in Fig. 1, consisting of a ratg(G) LDGM top |et us condition on the event thék|, = ¢. Then Lemma 1
code, and a rate?(H) lower LDPC code. Recall that theguarantees thatG has i.i.d.Ber(6(-£;~;)) elements, so that
overall rate of this compound construction is given®y,., = the vectorzG @ v has i.i.d. Ber(6(-£;7) * p) elements.

R(G)R(H) Note that an LDGM code on its own (i.e., W|th0UtApp|y|ng Sanov’s theorem y|e|ds the upper bound
the lower LDPC code) is a special case of this construction

with R(H) = 1. However, a standard LDGM of this variety P[[|zG @ v[1 > d(n) | ||z, =¢] < 2P (PlI8G)+),
is not a good channel code, due to the large number of |O\Q/\—/e can then upper bound the second error term (9) via
weight codewords. Essentially, the following proof shotvatt
using a non-trivial LDPC lower code (witiR(H) < 1) can gnReom iP[HZ| "y o—nD(pl8(57)%p)
eliminate these troublesome low-weight codewords. prd !
If the codewordc is transmitted, then the receiver observes
y = c @ v wherev is aBer(p) random vector. Our goal is to — Z 2{chom+m [Am (&)~ R(H)] *"D(P”‘s(#%)*i’)}
bound the probability that maximum likelihood (ML) decodin =0
fails where the probability is taken over the randomness in m
both the channel noise and the code construction. To siymplif= Z on{ Al
the analysis, we focus on the following sub-optimal (nonyML  ¢=0

decoding procedure: _ i 9 { R(G)[Am (£)—A(£)+AGE)] =D (plI8(5 70)+p) }
Definition 2 (Decoding Rule:) With thresholdd(n p+ =0

=
~1/3)n, decode to codeword;, < ||c; ® <d(n), m
o tn v @yl = < 3 MA@ ARG AGD I +R@AGD =D (pIIS G +r) )
=0

G) A (£)=D(pll8(Ev)*p) }

and no other codeword is withid(n) of y.

(The extra factor of,~'/3 in the thresholdi(n) is of theoreti- , , ]
cal convenience.) Due to the linearity of the code consisagt Where we have replace@.o,, = 1(G) with Z(H) in the third

we may assume without loss of generality that the all zerljg® @nd used the notatiorr| ™ to denotemax(0, z). Finally,
codeword0” was transmittedif., ¢ = 07). In this case, W€ notice that by the definition of the asymptotic weight
the channel output is simply — v and so our decoding nUmeratorA(v), the [ A, (v) — A(v)|" term converges to
procedure will fail if and only if either (i)||v|[; > d(n), Z&0 umfor_mlf for v e [0,1] Ieavmg only the error exponent
or (ii) there exists some codeword “middle layer codeword™): Which is negative by assumption. 0

z € {0, 1} satisfying the parity check equatibhlz = 0and |emma 3. For any p € (0,1) and total rate Reom :=
corresponding to a codewoed = z G such thaljz G@v|s <  R(G)R(H) < 1— H, (p), it is possible to choose the code
d(n). Using the following two lemmas, we establish that thigarametersy,, . and~, such that(7) is satisfied.

procedure has arbitrarily small probability of error, when )
ML decoding (which is at least as good) also has arbitrariE/m_Of' For brevity, let"(v) = R(G)A(v) — D (pl[6(vi ) * p)-
It is well-known that a regular LDPC code with rate

small error probability. . 2 : ) .
R(H) = 2> < 1 has linear minimum distance; in particular,
Lemma 2. The probability of decoding error vanishes asympere exists a thresholdt — v*(7Vv,7e) Such thatA(v) < 0

totically provided that for all v € [0, v*]. Hence, forv € (0,*], we haveF(v) < 0.
R(G)A(v) — D (p||d(v;v) *p) < 0 forall ve (0,3] (7) Turning now to the intervaly*, 3], consider the function
where A(v) := limy, o0 An(v) is the asymptotic log- G(v) 1= ReomHy (v) — D (pl|6(v; 1)) -

domain weight numerator o_f the_ LDPC code, W'Lmn_(v) Since A(v) < R(H)H, (v), we haveF(v) < G(v), so that it
being the average log-domain weight enumerator defined a8 ffices to upper bound. Observe tha€/(L) = Reom — (1 —
. 2 - com

An(v) = L logEcard {z | ||z|[y =vm}.  (8) H, (_p)) < 0. Therefore, it suffices to show that, by gppropriate
m choice ofv;, we can ensure tha¥(v) < G(%). Noting that

1T0 be more precise’ for the channel decoding Step of the \A&'ner G |S |nf|n|te|y dlﬁerentlable and taklng derlvatIVGS (dml

problem, the middle layer codeword must sati#ly z = 0 andHzz = m

wherem is the output of the Wyner-Ziv encoder. For the channel degpd ~ 2The definition of A(v) implies pointwise convergence dfA,(v) —
step of the Gelfand-Pinsker problem, the middle layer cadéwnust only A(v)|T for v € [0,1]. But since the domain is compact, pointwise
satisfy Hy z = 0, sincem is unknown until decoding is complete. convergence implies uniform convergence.
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Fig. 2. Plots of different terms in error exponent (7). The combimedve must remain negative for all in order for the error
probability to vanish asymptotically. (a) A LDGM: = 4 construction without any LDPC lower code: here the weighineerator
A is given by H (w), and it dominates the Kullback-Leibler term for low. (b) The samey: = 4 LDGM combined with a
(Yv,7ve) = (3,6) LDPC lower code: here the LDPC weight enumerator is domihéte all w by the KL error exponent.

omitted), it can be shown tha#’(1) = 0 andG”(3) < 0. suitable candidates for practical message-passing ssheme
Hence, a second order Taylor series expansion yields tldtich remains to be investigated in future work.

G(v) < G(3) for all v € (u, 3] for somep < 1. It remains
to boundG on the intervallv*, u]. On this interval, we have

G(v) < ReomHy (1) — D (p||6(v*; 7). By examining (1), we [1] Rf J. Barron, Bt;ia:jnd_Chen,dand G. W. zj/yornel_l.h T_sze c_iu]:’sllitytvmg
. TP . information embedding and source coding with side inforomatan
see that choosing; sufficiently large will ensure that on the some applications.IEEE Trans. Info. Theory49(5):1159-1180, May
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