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Abstract

This paper mainly focuses on applications for non-rigid contour tracking in heavily

cluttered background scenes. Based on the properties of non-rigid contour movements, a

cascading framework for estimating contour motion and deformation is proposed. We solve

the non-rigid contour tracking problem by decomposing it into three sub problems: motion

estimation, deformation estimation, and shape regulation. First, we employ a particle filter

to estimate the global motion parameters of the affine transform between successive frames.

Then we generate a deformation probabilistic map to deform the contour. To improve the

robustness, multiple cues are used for deformation probability estimation. Finally, we use a

shape prior model to constrain the deformed contour. This enables us to retrieve the occluded

parts of the contours and accurately track them while allowing shape changes specific to the

given object types. Our experiments show that the proposed algorithm significantly improves

the tracker performance.
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I. Introduction

Visual tracking is an essential component of many applications from intelligent robotics

to video surveillance. Basically, there are three groups of tracking methods: correspondence-

based, transformation-based, and contour-based. The first group of methods is based on

establishing correspondences between feature points. The second group performs tracking

by estimating object motion, in which the objects are usually assumed to be made of planar

shapes such as ellipses and rectangles. The last group achieves tracking by finding the object

contour in successive frames. It applies to cases when not only the location but also the

deformation of a target are desired during tracking. Some exemplary applications include

surveillance tracking for recognition purpose and echocardiography tracking for computer

aided diagnosis (CAD). The tracking approach proposed in this paper belongs to the group

of contour-based tracking methods.

A. Related Work

To appreciate the methodology, we briefly introduce some related work in contour track-

ing. A number of contour based tracking methods have been proposed in literature. As a

milestone in contour-based tracking research, CONDENSATION, a parameterized B-spline

contour tracking algorithm, was proposed by Isard and Blake [10]. It uses a particle filter

as the basic framework to track the global motion and the deformation. The algorithm

yields robust results when applied to rigid objects. However, it has no explicit criterion for

extracting the exact boundary of a non-rigid object in its observation model during track-

ing. In [16], Li et al. presented a particle filter for non-rigid object contour tracking. But

the algorithm lacks of an appropriate model for discriminating a real boundary from all the

detected edge points. Snakes [14, 15], also known as dynamic contours, is another common

approach that evolves an object boundary such that a weighted sum of external and internal
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energy terms is minimized. However, the methods are restricted to a relatively small range

of scenarios due to the fact that they rely on intensities inside objects to be fairly uniform.

Besides, their computational complexity makes them less suitable for real-time applications.

The level set approach is also a powerful method that deals with topological changes of the

moving level set function by using partial differential equations (PDE) that describe the

object motion, boundary and region-based information [19, 25, 26, 30]. But they also prefer

uniform intensity distributions inside objects.

Some other approaches closely related to non-rigid contour tracking include [11, 24, 29].

The concepts of motion and deformation were defined in [29]. Motion is parameterized

by a finite dimensional group action, and deformation is the total deformation of the

object contour (infinite dimensional group) modulo the finite dimensional motion group. By

incorporating the prior information of the system dynamics in the deformation framework,

[11] proposed a nonlinear dynamical model for tracking a slowly deforming and moving

contour, with the contour represented implicitly as the infinite-dimensional locus of zeros

of a given function. The algorithm suffers from the expensive computation due to the joint

minimization for both the group action and the deformation. The work in [24] extended

the ideas in [11]. It uses a particle filter to estimate the conditional probability distribution

of the motion and the contour, which formalizes the incorporation of a prior system model

along with an observation model. However, the algorithm also has limitations. It only

counts on appearance cue in the observation model and lacks of ability to handle the moving

background cases.

Our approach shares some similarities with [24]. We claim that tracking non-rigid objects

can be accomplished by estimating both translational (finite dimensional, Motion) and non-

translational movements (infinite dimensional, deformation) of objects. However, instead
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Fig. 1. Illustration of the proposed tracking system.

of estimating both motion and deformation in one step, we use a cascading framework. We

propose to first estimate the motion, then the deformation. The estimation of deformation

fulfill the operation of discriminating the real boundary from all the edge points, the majority

of which may be from the background. Robustness can be improved by constraining the

deformation by using a prior shape model. Therefore, we decompose the task of tracking

non-rigid object contour into three components:

• 2D Motion estimation It estimates the object-wise spatial rigid-body motion, in-

cluding translation and rotation parameters. Since the motion parameters are finite

dimensional, we use a particle filter to estimate them.

• 2D Shape deformation It captures the pose changes of non-rigid objects. Each

pixel on the boundary may have different but correlated deformations. We construct

a deformation probability map based on statistically analyzing different cues in each

frame. Deformation is determined according to boundary pixels with higher defor-

mation probabilities.

• Shape regulation It uses a trained shape subspace to restrict shape deformations.

Regulation also reconstructs the occluded parts of the contours. Our method adap-

tively integrates the off-line trained prior shape model with the object in the current

video sequence.

Figure 1 presents a schematic illustration of the proposed system. The rest of the
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paper is organized as follows. In section 2, we introduce some preliminary concepts of

the active contour tracking algorithm. In the next three sections, we describe the three

cascading stages in the non-rigid contour tracking algorithm, which are motion estimation,

deformation estimation and regulation. We present experimental results in section 6, followed

by conclusions and discussions in section 7.

II. Preliminaries

A. B-spline Parametric Curves

In our contour tracking system, the tracking target is represented by the parametric

B-spline curve. The visual 2D curves outlining the objects are represented in terms of

parametric B-spline curves r(s) = [x(s), y(s)]T [8]. The coordinates [x(s), y(s)] are both

spline functions of the curve parameter s. Furthermore, we use a set of control points

Q = {q1, q2, . . . , qL} to represent the B-spline curve, where each control point is defined as

ql = (qx
l , q

y
l )

T and L is the number of control points. One important reason for using the

control point representation is because a set of Q can uniquely determine one B-spline curve.

If we define the dynamic model that describes the contour motion as an affine transform,

it is sufficient to apply the transform to the control points. Once the control points are

transformed, the B-spline curve is transformed in the same manner. The property not only

significantly improves the computational efficiency, but also helps to discretify the infinite

deformation parameters into finite deformation parameters, i.e., the deformation of the curve

can be approximated by the deformations on the control points.



A CASCADING FRAMEWORK OF CONTOUR MOTION AND DEFORMATION ESTIMATION 6

B. Particle Filter

The objective of motion tracking is to recursively estimate the state of the dynamic

model given some noisy visual observations, which allows us to formulate a Bayesian model:

p(θt|Y1:t) ∝ p(Yt|θt)

∫

p(θt|θt−1)p(θt−1|Y1:t−1)dθt−1, (1)

where θ denotes the state vector, Y the observation, p(Yt|θt) the likelihood function at time

instant t. Observation Y is referred as images, or, visual cues in images. All inferences of

the unknown state vector are based on the posterior probability in (1). The basic criterion is

to find the vector with the maximum posterior probability. Many techniques can be used to

achieve the goal, such as the Kalman filter [13] and the particle filter [7]. The former filter can

be used when the data are modelled by a linear Gaussian model. The latter one, also known

as the sequential Monte Carlo algorithm, is a set of simulation-based methods proposed to

handle more complex data of non-Gaussianity, high dimensionality and nonlinearity. Many

contour tracking algorithms use the particle filter algorithm because it is flexible, easy to

implement, parallelizable and applicable to general settings. We also use the particle filter

to estimate the state vector of the dynamic model.

In the particle filter algorithm, the prediction step samples new particles based on the

state transition probability p(θt|θt−1), and the previous posterior distribution p(θt−1|Y1:t−1),

while the update step is controlled by particle weights characterized by the likelihood function

p(Yt|θt):

ω
(j)
t ∝ p(Yt|θ(j)

t ), (2)

The algorithm approximates the current posterior distribution p(θt|Y1:t) by a set of weighted

particles St = {θ(j)
t , ω

(j)
t }J

j=1 with J representing the number of particles. To avoid the

potential of the particles collapsing into a few particles with high weights, sequential impor-

tance sampling (SIS) [2, 9] draws particles from a proposal distribution g(θ
(j)
t |θ(j)

t−1, Y1:t) and
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eliminates particles with lower weights. The weights are assigned as:

ω
(j)
t ∝ p(Yt|θ(j)

t )p(θj
t |θ(j)

t−1)

g(θ
(j)
t |θ(j)

t−1, Y1:t)
. (3)

The selection of proposal distribution depends on the properties of different applications.

III. Motion Estimation

A. Dynamic Motion Model

We use the parameters of 2D affine transform to represent the finite dimensional motion

of the object, which allows rotation, translation and is independent of scales. The contour

transform is given in terms of the homogeneous coordinates of the control points





ql,t−1

1



 = T ·





ql,t

1



 =









T11 T12 T13

T21 T22 T23

0 0 1









·





ql,t

1



 , (4)

where T ∈ R
3×3 represents an affine transform matrix with independent scale factors along

both x and y axes. Accordingly, the state vector of the dynamic model is defined as

θt = (T11 T12 T21 T22 T13 T23)
T . (5)

B. Estimate State Vector by Particle Filter

We use the particle filter to obtain the MAP (maximum a posterior) estimator of the

state vector θ.

B.1 Prediction Step

Rather than using a proposal distribution in prediction, we predict the configuration of

particles based on the following state transition model:

θt = θ̂t−1 + νt + Ut (6)
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with θ̂t−1 is the previous state estimate, νt as the predicted adaptive velocity in the motion

vector and Ut as the driving noise, assumed to be zero-mean Gaussian noise. The computa-

tion of νt entails the incorporation of the previous particle configuration in the prediction.

Therefore, the diversity of particles is not compromised.

The prediction of νt is based on the assumption of brightness invariance [32], which

means that there exists a θt such that the warping patch is similar to the previous image

patch. We denote Z(Qt) as the intensities (colors) of the control point set Qt (for robustness

purpose, we use the corresponding intensities of Gaussian smoothed image frames), there

exists θt that satisfies

Zt−1(T (θt) · Qt) = Zt−1(Q̂t−1)
1. (7)

where Q̂t−1 denote the control point set estimated at t− 1. We simplify (7) by T {Zt, θt} =

Ẑt−1, where Ẑt−1 is the corresponding intensities of Q̂t−1. Approximating T {Zt; θt} via a

first-order Taylor series expansion around θ̂t−1 yields:

T {Zt; θt} ' T {Zt; θ̂t−1} + Ct(θt − θ̂t−1) = T {Zt; θ̂t−1} + Ctνt, (8)

where Ct = ∂T /∂θ is the Jacobian matrix. Substituting Ẑt−1 into (8), we obtain:

Ẑt−1 ' T {Zt; θ̂t−1} + Ctνt (9)

νt ' −Bt(T {Zt; θ̂t−1} − Ẑt−1) (10)

where Bt is the pseudo-inverse of Ct. Using the differences in motion vectors and the obser-

vation matrix as inputs, we obtain a least square (LS) solution to Bt as:

Θδ
t−1 = [θ

(1)
t−1 − θ̂t−1, . . . , θ

(J)
t−1 − θ̂t−1] (11)

Zδ
t−1 = [Z

(1)
t−1 − Ẑt−1, . . . , Z

(J)
t−1 − Ẑt−1] (12)

Bt = (Θδ
t−1ZδT

t−1)(Zδ
t−1ZδT

t−1)
−1 (13)

1 More strictly, the affine transform on the LHS of (7) should be formulated as T (θt) ·

�
Qt 1 � T

.
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where Θδ
t−1 is the set of differences between all particle samples of {θ(j)

t−1}J
j=1 and the optimal

estimate θ̂t−1, Z
(j)
t−1 is the jth patch sample with state vector sample θ

(j)
t−1, and Zδ

t−1 is the set

of all intensity differences between samples of {Z (j)
t−1}J

j=1 and Ẑt−1. Obviously, the particle

configuration at t−1 is incorporated here for prediction.

B.2 Updating Step

The weight is updating based on the likelihood function p(Yt|θt). We follow the definition

of observation model in [10]. We search along the normal line nl on each control point ql,

which is determined by corresponding θ, and detect feature points {z(l)
j }Nl

j=1, where Nl is

the number of features detected along the normal. The existence of multiple feature points

is due to background clutter. Assuming that {z(l)
j } can be modeled as a spatial Poisson

distribution along the normal lines and the true control point is a Gaussian distribution, the

1-D measurement density along nl can be determined by the distances between the feature

points to the corresponding control point, formulated as

pl(z|ql) ∝ 1 +
1√

2πσψλ

Nl
∑

j=1

exp (−
(z

(l)
j − ql)

2

2σ2
), (14)

where ψ is the probability of non-detection, λ is the density of clutter in the Poisson dis-

tribution, σ is the standard deviation of the Gaussian distribution. Figure 2 is an intuitive

illustration of evaluating the likelihood function for one control point. With the assump-

tion that feature outputs on distinct control points are statistically independent, the overall

likelihood becomes:

p(Y |θ) =
L

∏

l=1

pl(z|ql). (15)
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Fig. 2. (a) The red line is the contour determined by the control points. Light lines are the normal lines
on the control points. The solid dots are feature points detected by the normal lines; (b) 1-Dimensional
measurement density along the line normal on one control point qj. d1,j , d2,j and d3,j are three distances
between the feature points to the corresponding control point. The vertical axis GEDGE represents the gradient
magnitude along the normal line nj.

IV. Deformation Estimation

After the MAP estimator θ̂ is obtained and the transformed control points Q̂ is acquired

based on θ̂, the transformed curve r̃ is determined. The next thing is to enforce local defor-

mation, i.e., find the real boundary points. [10] used a simple strategy that the exact contour

is determined by selecting feature points with maximum gradient magnitudes detected on

corresponding normal lines. In other words, the contour estimation only counts on the gra-

dient magnitudes. Unfortunately, this strategy does not always work, especially when the

background is heavily cluttered or the object undergoes shape deformations between frames.

In our algorithm, we identify the correct feature points by detecting the deformation

along the normal lines on transformed control points Q̂. Two elements are involved. One

relates to the assumption that real boundary points of an object are detected along the

orthogonal directions of the contour. It implies that the scanning range of normal lines

influences the probability of the real boundary being detected. The other is that the gra-

dient magnitudes are not sufficiently robust for exact contour delineation, especially when

contaminated by background clutters and object textures. Accordingly, our strategy for

deformation estimation contains two new features: (1) set normal lines adaptive; and (2)

integrate several statistical cues into a deformation confidence map.
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A. Set Normal Lines Adaptive

The scanning range of normal lines is determined by both the searching lengths and

centers. Earlier algorithms [10, 16, 17, 28, 30] set the search lengths and centers of normal

lines identical and fixed, which may result false detections due to lack of modeling shape

variations. We enforce adaptability of the normal lines to reduce the probability of false

detections.

A.1 Lengths of normal lines

Intuitively, a short normal line may miss the true boundary pixel while a long one may

intersect with edge points from background clutter. To reduce the possibility of a normal

line intersecting with background clutter without sacrificing the chance of finding the actual

boundary pixel, the lengths of normal lines are altered according to the pose variations of

the corresponding contour control points in training sequences. For example, in sequences

of walking humans, the relative positions of the head and trunk change slightly from frame

to frame; on the other hand, the sides, especially the legs and arms change their relative

positions more. Therefore, we should set the normal lines with large pose variations longer

than those of small pose variations. The pose variations of pixels can be learned offline

(for example, walking pedestrian samples from USF dataset [22], consisting of one thousand

120 × 80 binary images with aligned pedestrian silhouettes.) as:

ξ(l) = E‖qk
l − E(qk

l )‖2 (16)

u(l) ∝ Lmin log
ξ(l)

min(ξ(l))
(17)

Lmin is a constant representing the minimum length, and k denotes the index of training

samples.



A CASCADING FRAMEWORK OF CONTOUR MOTION AND DEFORMATION ESTIMATION 12

A.2 Centers of normal lines

Earlier algorithms set the centers of scanning normal lines as the control points on the

estimated contour, which may cause the intertwining of normal lines, because the same point

may be selected twice along two normal lines and the output contour may end up looped.

Making the line centers adaptive by applying a distance transform (DT) [12] significantly

reduces the probability of normal line intersections inside the object. The detailed steps are

listed in Table I. The given algorithm only concerns close contours. For open contours, we

will force them to be closed by simply linking the first point and the last point. Figure 3

demonstrates the procedure of sketching adaptive normal lines along the estimated contour,

with which we are able to search for the real contour pixels with more flexibility.

TABLE I

Algorithm 1: set center of the normal line adaptive

1. Based on the transformed control points set Q̂t (the result from global motion estimation), construct
a binary image BI, set the region Ω circled by the contour r̃t to 1;
2. Apply DT to BI to obtain a distance map DI, which is defined as:

DI(x) =

{

miny∈r̃ dist(x,y), x ∈ Ω;
0, otherwise. (18)

3. On each control point q̂l, draw a normal line nl, find maximum distance value satisfying DI l =
maxx∈nl

DI(x). The lengths of the normal line on two sides of the control point are set as follows:

u(l)in = min(u(l)/2,DI l − d0) (19)

u(l)out = max(u(l)/2, u(l) − [DI l − d0]) (20)

where d0 represents a minimum safe distance to avoid contour loops. Here d0 = 2.

Fig. 3. An example of how to make a normal line scanning adaptive. (a) cropped original object; (b)
estimated contour; (c) distance transformed object; (d) normal lines on control points.
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B. Multi-cue Deformation Probability Map

To extract the real contour, we define a posterior deformation probability map as

Pt(Y |Q̂) based on the transformed control point set obtained by global motion estima-

tion with Y represents related visual cues. In the map, a high probability implies that the

corresponding pixel is more likely to be on the real contour and a low value implies a lower

likelihood. Instead of using edge magnitudes as the only visual cue, we integrate several cues

to evaluate the deformation probability.

B.1 Multi-cue Fusion

Fusion with respect to different cues can be interpreted as using multiple measure-

ment sources. Assume that we have M cues, the observation can be represented by Y =

(Y1, . . . , YM). We further assume that the observations are conditionally independent [20].

The deformation probability is therefore factorized as:

Pt(Y |Q̂) =
M
∏

i=1

Pt(Yi|Q̂) (21)

Scanning for pixels with maximum probability values (ML estimator) on adaptive normal

lines, we obtain the refined contour pixels, denoted as r̂. As an example, we show some prob-

ability maps from different cues on one processing frame in Figure 4, together with the fusion

map Pt(Y |Q̂). Apparently, the fusion result subdues noise from the gradient magnitude cue

inside the contour, which is caused by object textures. We introduce the computation of

probability maps from different cues in the rest of this section. It is worth nothing that

since the scanning range for each pixel is in one dimensional, the two dimensional defor-

mation probability map P can be further simplified to several one dimensional probability

vectors associated with each control point. Therefore, the calculation of the deformation

probabilities is limited to normal lines. This helps to improve the computational efficiency.



A CASCADING FRAMEWORK OF CONTOUR MOTION AND DEFORMATION ESTIMATION 14

0102030405060708090

0

20

40

60

80

100

120

140

160

0

0.5

1

(a)

0102030405060708090

0

20

40

60

80

100

120

140

160

(b)

0102030405060708090

0

20

40

60

80

100

120

140

160

0

0.5

1

(c)

0102030405060708090

0

20

40

60

80

100

120

140

160

0

0.5

1

(d)

0102030405060708090

0

20

40

60

80

100

120

140

160

0

0.5

1

(e)

Fig. 4. An illustration of fusion from different visual sources, including the probability maps of (a)gradient
Magnitude; (b) gradient Orientation; (c) shape Template; (d) foreground; (e) fusion.

B.2 Gradient Magnitude Cues

As shown in Figure 4.(a), gradient magnitude is an important feature for representing

an object boundary. However, when the object itself is not homogenous in color or intensity,

many edges are generated inside the object. We want to minimize the effect of inside edges.

Anisotropic diffusion is one possible approach to make the entire image to be more uniform

in color or texture, while still preserving the object boundaries [21]. Therefore it is highly

probable that points with high gradient magnitudes after diffusion belong to the boundary

of the target.

After the diffused feature map EI is extracted from the original image, a motion mask

4I indicating the possible area where motion could occur is applied to EI to further suppress

the background clutter. The masked map is then filtered by G, a smoothing Gaussian filter.
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(1) Using the regular edge map (2) Using the feature maps FI

Fig. 5. Performance comparisons on a cluttered scene. A stabilization step is applied to obtain the second
set of results to obtain FI because the sequence was acquired by a moving camera.

Eventually, we map the filtered map to a magnitude probability map P by:

Pt(Ym|Q̂) = αm(EI • 4I) ∗ G (22)

where αm is a normalizing coefficient, ∗ denotes convolution. Figure 5 demonstrates an

example of performance improvement when we utilize the diffusion edge map convolved

with the motion mask. Since the background and the tracker object are both moving, a

background stabilizing step [31] is applied to estimate the motion mask 4I. The stabilization

is based on the idea that the background movement can be modelled as a planar affine

transform.

B.3 Gradient Orientation Cues

An gradient orientation map OI provides the orientations of edges. Gradient orientation

is a useful feature to discriminate the real object boundaries from all the detected edges,

especially when background clutter is present. If we denote the normal orientation of the true

boundary as φ, it is expected that the local normal orientation should present a Guassian

distribution with mean equal to φ [5]. While the normal orientation distributions of pixels

not on the boundary tend to be a uniform distribution between [0, 2π). Figure 4.(b) visually

illustrates the different distributions presented by the pixels on the contour and those not
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on the contour. This leads to the definition of the orientation probability map as:

Pt(Yo|Q̂) ∝ exp(−(OIt(x) − φ̂t−1(l))
2

σ2
o

) ∀x ∈ R(nl), (23)

where R(nl) defines a proximity region to nl:

R(nl) , {y ∈ R(nl) : dist(y,nl) ≤ dist(y,nk), k 6= l} (24)

B.4 Shape Template Cues

The shape of tracked object always has certain pattern. Therefore, the shape template

could be used as one cue, indicating the probability that each image pixel belongs to the

real object contour. Our shape template is different from the static shape energy proposed

by Cremers et al. [6], which is pretrained and kept unchanged during tracking. We use

an online model that incorporates a dynamic part that varies according to the observations

(transformed contour by global motion estimation). Denoted Ys as the shape template

observation, it contains the shape prior model AS and the dynamic template AQ̂. The

former is a static template created from the training data, and the latter follows a Gaussian

distribution, the mean of which is set to the transformed contour Q̂. The probability is given

by:

Pt(Ys|Q̂) = atAS + (1 − at)AQ̂ (25)

where 0 < at < 1 is the weight that controls the integration of AS and AQ̂. The construction

of AS is straightforward based on how frequently it appears as 1 in the training data. Figure

4.(c) is one example of the probability map from the shape template cue. We show more

examples of probability templates in Figure 6.

B.5 Foreground Cues

To suppress the contamination from the background clutter, we use a foreground prob-

ability map Pt(Yf |Q̂) that estimates the likelihood of a pixel belonging to the tracked object
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Fig. 6. Illustrations of adaptive probability shape templates for pedestrian. (1),(2): shape training samples;
(3): shape prior model; (4),(5),(6): examples of probability shape templates in different frames.

or not. This map is calculated by comparing the current frame to a set of background models

representing the static parts of the scene. The pixel-wise background models are adapted

directly by the previous values for static camera setups. For moving cameras, these models

can be fit after consecutive frames are aligned on a mosaic by global motion estimation.

We define the background as layers of multivariate Gaussian functions {(µi
t,Σ

i
t, κ

i
t, υ

i
t)}i=1..K

where µi
t is the posterior mean, Σi

t is the marginal posterior covariance, υi
t is the degrees

of freedom, κi
t is the number of prior measurements of the ith layer, and K is the num-

ber of layers in 3D color space. At each frame, we update the layer parameters using an

online Bayesian estimation method as described in [23]. We order the layers according to

confidence scores. Our confidence measure is inversely proportional to the determinant of

covariance. Then, we select the layers having confidence value greater than a layer threshold.

We measure the Mahalanobis distance of observed color I(x) from the layers

di(x) = (I(x) − µi
t−1)

T (Σi
t−1)

−1(I(x) − µi
t−1) (26)

and, update the parameters of the confident layers. Pixels that are outside of 99% confidence

interval of all confident layers of the background are considered as foreground pixels. After

the update, the foreground probability map at a pixel is determined as

Pt(Yf |Q̂) = α exp(−
K

min
i=1

di(x)) (27)

where α is a normalizing constant. Figure 4.(d) is one example of the probability map based

on the foreground cue.
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V. Regulation on Shape Deformation

Based on the estimated global motion and local deformation, we could track the contour

from frame to frame. However, what if the deformation estimate is severely corrupted by

noise? For example, the exact contour points may not always coincide with maximum

probability pixels, but may be present at weaker secondary pixels. In such cases, shape

regulation is important to serve as a constraint to recover from errors. The intuition is

that learning the prior shape knowledge of the object from the training set could help for

delineation. Ideally, the training samples should cover all deformation variations. If an

object in one frame exhibits a particular type of deformation not present in the training set,

the system searches for the deformation in the subspace that is closest to the target, i.e. the

system projects any deformation onto the subspace. The regulation is therefore achieved.

A. Generic Shape Model

There are several approaches for subspace construction. One of them was introduced by

Cootes et al., the active shape model (ASM) [3] by using the points distribution model (PDM)

was described in [4] for obtaining the shape subspace. Our training method is based on the

idea of PDM. A shape model is defined in terms of x and y coordinates of every “landmark”

point lying on the outline of the target. The number of “landmark” points is fixed at equal

intervals along the contours. The control points of B-splines are regarded as these “landmark”

points. Table II gives the steps for training a prior model from a set of N samples, each

represented by a set of columnized L control points Qs
i = {q(i,j)

s |1 ≤ i ≤ N, 1 ≤ j ≤ L}.

B. Adaptive Shape Model

The constructed shape model is a generic model that can apply to all cases as long as

a target belongs to the corresponding object category. However, what we really need is a
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TABLE II

Algorithm 2: Construct Prior Shape Model

(a) Align the set of examples into a common frame of reference, xi=aligned(Qs

i) [4];
(b) Calculate the mean of the aligned examples x̄, and the deviations δxi = x

i − x̄;

(c) Calculate the eigensystem of the covariance matrix of the deviations, C = 1
L

∑M

i=1(δx
i)(δxi)T .

(d) The first t principal eigenvectors of the eigensystem are used to generate x = x̄ + Pb, where b is
a t-element vector of shape variation parameters and P is a 2L × t matrix of t eigenvectors, which
composes the estimated shape subspace. We denote the eigenvalue diagonal matrix as Λt, which is a
t× t matrix.

deformation model which can more accurately represent the shape variations in the sequence

being considered. One solution is to update the existing PCA model with the initial contour

of the current sequence (either manually marked or automatically detected) [33]. Denote

x0 as the aligned initial contour, vector bs = PT (x0 − x̄) as the subspace component, the

projection residue is obtained as:

xr = x0 − x̄− Pbs. (28)

The residue part represents the shape variation not being covered in the prior model, so

the generic subspace (x̄,P,Λt) is updated corresponding to the residue by the following

equations:

x̄∗ = βx̄ + (1 − β)xr (29)

er =
x

T
r

‖xr‖
(x0 − x̄) (30)

C∗ = β





Λt 0

0T 0



 + β(1 − β)





bsb
T
s erbs

erb
T
s e

2
r



 (31)

where β is the update weight. By applying SVD to (31), we obtain (P∗,Λ∗
t+1

) satisfying

P∗Λ∗
t+1

(P∗)T = C∗. For brevity, we still use (x̄,P,Λt) to denote the updated shape subspace

in the rest of the paper.
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C. Subspace Projection

The projection of deformation can be described as representing the deformed contour

by a linear combination of basis in the shape subspace. We first align the deformed contour

point vector set r̂t to xt, and then apply

xp,t = PPT (xt − x̄) + x̄, (32)

where xp,t is a linear combination of subspace basis. It is possible that some control points

on ~r may be occluded, or not detected along the normal lines. Let us denote the index set of

detected points as Id = {i1, i2, . . .}. We can recover a complete projected contour as follows:

xp,t = PP
†
Id

(xId,t − x̄Id
) + x̄ (33)

P
†
Id

= (PT
Id
PId

)−1PT
Id

(34)

A projection example is demonstrated in Figure 7 with a comparison between tracking results

with and without shape regulation. Apparently, using the subspace can preclude the contour

from deforming to an irregular shape.

D. Alignment

The usage of alignment is to normalize the contour, because the shape subspace is

constructed from normalized training samples. It follows the method for rigid shape matching

proposed by Cootes et al. [3]. The basic idea is to find a transform matrix (containing the

Fig. 7. Comparisons between tracking results with and without subspace regulation. (a) and (c) are without
regulation, (b) and (d) are with regulation.
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(1) (2) (3) (4)

Fig. 8. One frame from an MRI sequence. The target of interest is the articular cartilage layer. (1) depicts
the detected contour pixels. (2) shows the recovered contour pixels using the shape subspace projection. (3)
depicts the contour pixels after alignment. (4) the final result.

rotation, translation and scale coefficients) and match the processing contour to the mean of

the shape model. An example is shown in Figure 8. The sequence is collected by magnetic

resonance imaging (MRI) of human knees. Our primary interest is in the articular cartilage

layer. 8.(1) depicts the detected contour pixels. There are some pixels that are too obscure to

be detected. 8.(2) shows the projected contour using the shape subspace without alignment.

8.(3) depicts the contour pixels after alignment, and 8.(4) gives the final result.

VI. Implementation and Experiments

A. Algorithmic Implementation

A summary of the complete contour tracking algorithm is given in Table III. We want

to further discuss the initialization. The easiest way to acquire the initial contour to start

tracking is by manually sketching it around the object of interest in the first frame. The

pixels along the contour are sorted in the clockwise order. The control points are then

selected based on the uniform arc length rule which becomes the initial contour. We can

also apply automatic shape detection methods, such as the direct use of probability shape

template to detect pedestrians [18]. A nice property of our tracking algorithm is that it has a

high tolerance to localization errors in the initial contours. In our experiments, we observed

that a very approximate but reasonable initial guess can evolve to capture the real boundary
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frame 1 frame 2 frame 3 frame 4 frame 5 frame 6

Fig. 9. An example of starting tracking using a very rough initial contour. After tracking for six frames, we
find that the contour has been attached to the object fairly precisely.

of the object of interest after tracking for three to six frames, as one example demonstrated

in Figure 9.

B. Experimental Results

We have applied the cascading contour tracker to different sets of outdoor surveillance

video sequences, containing moving people and vehicles. All the objects of interests are

assumed to be objects moving in non-rigid forms. In most cases, the backgrounds contain

clutter that undermines the tracker’s performance. Among them, four sets of sequences were

captured by moving cameras, which means that when computing the probability maps, the

foreground cue is not involved. The other two sets of sequences were captured using static

TABLE III

Algorithm 3: Active Contour Tracking

Step1. Initialization: Draw a set of particles from the prior p(θ0) to obtain {θ(j)
0 , ω

(j)
0 }, j = 1, . . . , J ,

where J is the number of the particles. Get the initial control point set {Q(j)
0 } from θ0. Set t = 1.

Step2. Global motion estimation:

Step2.1 Prediction: Estimate the state vector shift νt, draw particles {θ(j)
t } and accordingly

the control point set samples {Q(j)
t }, j = 1, . . . , J .

Step2.2 Update: Calculate the likelihood function L(Yt|θ(j)
t ) and the posterior π

(j)
t =

p(θ
(j)
t |Y1:t) for each sample, then normalize {π(j)

t } and update {θ(j)
t , ω

(j)
t }, j = 1, . . . , J . Find

the MAP estimator of the global motion θ̂t = θ
arg maxj∈{1,...,J} π

(j)
t

t and the corresponding Q̂t.

Step3. Local Deformation Estimation: Based on the estimated Q̂t, generate the deformation
probability map Pt. The deformed contour r̂t can be determined by scanning along the adaptive
normal lines nl,t for pixels with maximum deformation probabilities.
Step4. Regulation: Project r̂t onto the shape subspace to acquire the final estimated contour.
Step5. t → t + 1, go to step.2.
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cameras, so the foreground cue is used for generating the deformation probability map. The

algorithm speed implemented by C++ code are 6-10 fps (frames per second) on a 1.5GHz PC

running Windows XP. In our experiments, most comparisons are made between our method

and the traditional method described in [10].

B.1 Experiment on Stationary Camera Data

Figure 10 shows a sequence (the frame size is 437×90×3) acquired by a stationary cam-

era. It contains a pedestrian walking through the scene. The traditional active contour

tracker works not well due to two possible reasons: (1) the normal lines on some of the

control points do not detect the edge points; and (2) in some frames the contour gets in-

tertwined. Our proposed method takes advantage of the adaptive normal-line strategy to

avoid intertwined contour, and the subspace projection to recover missing edge points. The

proposed method achieves satisfactory result throughout 159 frames where the object is

presented.

Fig. 10. Pedestrian tracking performance with a stationary camera. The thick yellow lines represent the
final tracked contours.

B.2 Experiments on Moving Camera Data

Figures 11, 12, 13 and 14 demonstrate some typical results for moving camera sequences.

Figure 11 shows a sequence (the frame size is 543×814×3) capturing a moving SUV by

a camera from another vehicle following it. Although the rear view of the vehicle is a rigid

object, the surrounding disturbances and small view changes throughout the video lead to
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failures when the traditional rigid-object trackers are used. Two major distractions are from

plain road marks and the sudden appearance of another vehicle in front of our target. Still,

we obtain good results due to the usage of a deformation map based on several statistical

cues.

Fig. 11. The results of tracking a vehicle from the rear view. The comparison result is given in Figure 5.

Figure 12 and 13 illustrate two challenging sequences with walking pedestrians crossing

the road. The frame size in both sequences is 541×818×3. Tracking difficulties arise due

to the following facts: 1) the camera is moving forward very fast and, therefore, the global

motion of the pedestrian not only includes translation and rotation, but zoom as well; 2)

the background is full of road marks and shadows. The traditional contour trackers get

distracted by these background clutters; 3) the pedestrian in Figure 12 wears a white shirt

and a black pant. The strong contrast between two parts usually leads to the tracking result

shrinking to either the upper part or the lower part of the body; and (4) the object has very

similar color with respect to the background (woods) in Figure 13. The results of our tracker

are satisfactory. We notice that the poses of the pedestrians vary significantly from frame

to frame in both sequences. However, the tracking remains robust.

Fig. 12. A sequence with both background and object moving. The challenges of processing this sequence are
due to: 1) camera motion; 2) background clutter; 3) the pants and the shirt that the pedestrian is wearing
are of very different colors.

Figure 14 gives an example with a sequence containing a moving truck (the frame size
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(1) Results from the traditional algorithm

(2) Results from the proposed algorithm

Fig. 13. A sequence with both background and object moving. The background is heavily cluttered, and the
intensity of the tracking pedestrian is very similar to the background color.

is 480×720×3). Although a truck can not be taken as a non-rigid object, we still observe

2D shape deformation on the truck due to its 3D rotation. This sequence demonstrates

the advantage of using contour-based tracking. The truck in the sequence changes views

from the back view to the side view, which means that some of corresponding points on

the object may disappear in the scene. Such a view change will strongly undermine the

result of a regular 2D appearance-based tracker unless a 3D appearance model applies.

As mentioned in section I, contour-based tracking can always yield robust results without

requiring correspondences and 3D reconstruction. The results are promising even with the

presence of many challenges, such as obscure boundaries, low color contrast, nonstationary

camera and background clutter.

B.3 Experiments on Occlusion Data

We exploit the application of shape regulation to recover occluded contours, the results

of which are shown in Figure 15. This sequence (the frame size is 576×768×3) contains

walking humans acquired by a stationary camera. In the last several frames, the pedestrian



A CASCADING FRAMEWORK OF CONTOUR MOTION AND DEFORMATION ESTIMATION 26

Fig. 14. An airborne sequence with a white truck moving on the ground. The truck shows a back view in
frames (1) and (2), then shows the back-right view in frame (3), a side view in (4) and (5) and a front-right
view in frame (6). This experiment demonstrates that the contour-based tracker can give satisfactory results
on sequences containing 3D object rotations.

is partially occluded by trees. With subspace projection, we see that the occluded parts have

been reconstructed. In this sequence, the clutter is heavy due to the presence of parked cars

and trees in the scene.

Fig. 15. An example of an occluded contour being recovered by shape subspace reprojection. In the last three
frames, the pedestrian is partially occluded by surrounding trees. Our tracking result recovers the partially
occluded contour. Red arrows indicate the occluded parts. We may also note that parked cars contribute to
background clutter.

B.4 Experiments on medical sequence

The MRI sequence in our experiment consists of 2D image slices that form a 3D image

cube for subsequent 3D visualization, in which we are particularly interested in the articular

cartilage layer (a very thin, white, crescent-like layer). The difficulties of tracking these layers

are due to the following facts: the surrounding tissues often have similar intensity values,

which leads to some boundary points becoming nearly undetectable; the sequence is of low

resolution due to the preprocessing step that enlarges the original image. The traditional

active contour method is not effective in this case, because it lacks means to handle edge

point occlusion. The “snake” method also has difficulty in finding the correct boundary due

to the similar intensity values between the cartilage layer and the tissues surrounding it. Our
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TABLE IV

Comparison of tracking results in heavy-cluttered background sequences and non-rigid object

sequences. MSSD is the Mean Sum of Squared Distance, VAR is the variance of the distances, ACT

is the traditional active contour tracking algorithm.

ACT Cascading Tracker
MSSD VAR MSSD VAR

heavy-cluttered background 14.7584 74.4052 7.9129 12.5602
non-rigid object 9.9741 24.6597 6.0571 8.5222

method works well in this scenario. Figure 16 demonstrates the tracking results of applying

the proposed algorithm to the MRI sequence, in which the frame size is 584×584. As a

comparison, we also provide a set of tracking results using the traditional contour tracker.

B.5 Performance Evaluation

We use the Mean Sum of Squared Distance (MSSD) [1] measure to evaluate the tracking

performance of different algorithms. For a sequence with K frames, where contour rk in each

frame has L control points, {(xk,1, yk,1), . . . , (xk,m, yk,m)}, we define:

MSSD =
1

K

K
∑

k=1

1

L

L
∑

j=1

(xk,j − x0
k,j)

2 + (yk,j − y0
k,j)

2 (35)

where [x0, y0] represents the corresponding ground truth. We compare the proposed al-

gorithm with the active contour tracking method for two cases: sequences with heavily-

cluttered backgrounds and sequences with strong non-rigid movements. Table IV shows the

values of MSSD and variance of squared distance in these two cases respectively. From all the

experimental results and the comparison table, we find that the cascading tracker performs

well in most of the cases.

VII. Discussion

The cascading contour tracker we have presented is motivated by the fact that the non-

rigid movement can be decomposed to global motion and local deformation. The algorithm
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(1) Results from the traditional algorithm

(2) Results from the proposed algorithm

Fig. 16. Magnetic resonance imaging scans of human knees. The area of interest is the articular cartilage
in each image. The upper row demonstrates the results by applying the traditional algorithm. The middle
and bottom rows show the results by applying our proposed method.

contains three major steps: motion estimation, deformation estimation and shape regulation.

The following discussion covers the major aspects of the algorithm.

Multi-step vs. Single-step Compared with most methods using single-step estima-

tion [10, 16, 24] to obtain the non-rigid contour movement with motion and deformation

simultaneously, we choose a cascading framework to estimate motion and deformation sep-

arately. One-step estimation presents more systematic formulas, but it suffers from high

dimensional computation and poor efficiency. Fortunately, the multi-step approach charac-

terizes an efficient solution. The explanation is as follows: we use an affine transform to

model the global motion. Therefore, the motion state vector is only six-dimensional, which

eases the burden of the particle filter. We interpret shape deformation by the deformations

occurred on control points, which approximates the infinite dimensional by finite dimen-

sional. Since the processing is carried out in a successive manner and a rough contour is

obtained by motion estimation, the deformation is searched only in a proximate region of
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the rough contour and does not involve numerical simulations (particle filter). Thus, the

entire computation complexity is reduced.

Multi-cue vs. Single-cue Although gradient magnitude is a very strong cue to

estimate the boundary pixels, sometimes it is not robust. In our method, estimating defor-

mation counts on more visual cues with the aim to render contour detection more robust.

We could further improve the fusion method by associating adaptive fusion weights with

different cues [27].

Adaptive vs. Non-adaptive Normal Line We adaptively set the scanning nor-

mal lines according to the prior shape pose variations and previous shape estimate. The

advantage of adaptability is: (1) it reduces the probability of loop occurrence; and (2) set-

ting appropriate lengths of normal lines increases the possibility of correct detection for real

boundary pixels, while reduces the chance for false detection.

Regulation vs. Non-regulation Regulation is important for non-rigid contour

tracking. It not only constrains shape deformation, corrects estimating errors, but recovers

the occluding contour pixels as well. Therefore, the method is more applicable to scenarios

with non-rigid object movements and heavily-cluttered backgrounds.

Our method can successfully track non-rigid objects and get tight contours enclosing

the changing shapes of the targets throughout the sequences. We are currently working on

extensions of the algorithm to the multi-target tracking problem. Model regulation is also

worth further exploiting. We only use shape prior knowledge as constraint in this paper.

However, training samples contain not only shape, but appearance and motion information

as well. Constructing a prior model based on all information to improve the robustness of

tracking will be an interesting problem.
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