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Abstract

We use the distortion side information (DSI) framework to study the gains in information embed-
ding when the encoder exploits sensitivity of the source samples. Our study for Gaussian source
model extends the dirty paper coding result by Costa to the case of weighted power constraints
with the weights only known to the transmitter. A coding scheme based on fixed codebook
variable-partition codes is presented for this problem. We also present another coding scheme
that exploits the knowledge of DSI and is robust against intentional attacks. Finally, we study a
related problem of Wyner-Ziv coding with reliability side information (RSI) at the decoder. This
latter setup illustrates that fixed codebook variable-partition codes could also be fundamental in
systms that rely on conventional distortion measures.
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Abstract— We use the distortion side information (DSI) frame-
work to study the gains in information embedding when the
encoder exploits sensitivity of the source samples. Our study for
the Gaussian source model extends the dirty paper coding result
by Costa to the case of a weighted power constraint with the
weights only known to the transmitter. A coding scheme based
on fixed codebook variable-partition codes is presented for this
problem. We also present another coding scheme that exploits
the knowledge of DSI and is robust against intentional attacks.
Finally, we study a related problem of Wyner-Ziv coding with
reliability side information (RSI) at the decoder. This latter setup
illustrates that fixed codebook variable-partition codes could also
be fundamental in systems that rely on conventional distortion
measures.

I. I NTRODUCTION

The problem of information embedding (IE) has been
extensively studied in recent years. See e.g. [1]–[3]. These
works consider embedding a message onto a host signal known
to the encoder. The embedded signal satisfies a (single-letter)
distortion constraint. The focus is to characterize the maximum
rate at which information can be embedded so that it can be
reliably recovered after an attack. Attacks could be incidental
or intentional.

The present work extends these information theoretic mod-
els to take into account perceptual factors in the distortion
measure. The necessity of such extensions has already been
recognized. See e.g. [4]. The natural intuition is that the
higher embedding rates can be achieved if the encoder suit-
ably exploits the varying sensitivity of different samplesand
embeds information accordingly. Our approach is to quantify
such gains using the distortion side information (DSI) frame-
work introduced in [5]. In this framework, the DSI sequence
Qn specifies the sensitivity of samples in a host sequence
Sn by controlling the distortion measured(Si, Ŝi; qi), i =
1, 2, . . . , n. More sensitive samples naturally incur higher
distortion penalty than less sensitive samples.

We first present the (public) IE problem where the encoder
has access to a DSI sequence and the host sequence. The
decoder does not have access to either of these sequences.
We study the achievable rates for the Gaussian special case
in detail and observe that it extends of the dirty paper coding
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problem of Costa [6] to a weighted power constraint, with
the weights only known to the transmitter. Not surprisingly,
the nested coding framework for this problem relies on using
the fixed codebook variable-partition codes introduced (in
the quantization context) in [5], [7]. We next consider the
formulation where there is an active attacker as considered
in [3]. We present another coding scheme that exploits the
knowledge of DSI at the encoder and for which the worst case
attack can be characterized. Analysis of this scheme reveals
that in the high resolution limit, one does not incur significant
penalty even in the presence of an intentional attacker.

The information embedding with DSI problem is also
closely related to a variant of Wyner-Ziv coding. In this
formulation, the decoder has access to a noisy version of
the source, where the noise in each sample is a function of
a parameterQi. We call this thereliability side information
(RSI). Naturally, this sequence is only known to the decoder.
It turns out that the fixed codebook variable-partition codes
are also natural for exploiting RSI at the decoder. This setup
is particularly interesting since it shows that such codes
are fundamental even in scenarios that rely on conventional
distortion measures. Indeed we discuss several applications of
immediate interest that can benefit from such codebooks.

We note that the information theoretic capacity expressions
for our formulations are straightforward extensions of [8], [9].
However, these general expressions conceal the interesting
dynamics between the signal side information (e.g. host se-
quence in IE and noisy source sequence in Wyner-Ziv) and
distortion/reliability side information. Our main contribution
is to develop an understanding of this interaction by studying
the achievable rates and code design of the Gaussian and
binary special cases. We note that while efficient codes for
dealing with signal side information inherently have a nested
structure (see e.g. [10]), efficient codes that take into account
either DSI or RSI must additionally support the variable-
partitioning property. Furthermore, with DSI (RSI) only known
at the encoder (decoder) the achievable rates we present incur
a penalty with respect to the capacity (rate-distortion) with
global knowledge except in the high SNR (high resolution)
limit since the signal side information cannot be appropriately
scaled before quantization.

A different generalization of the classical model appears
in [11], [12]. Here avector i.i.d. Gaussian source is considered
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Fig. 1. Information Embedding System Diagram. The encoder has access
to the host sequence and the DSI sequence. It embeds a messageW and
outputsXn, subject to a distortion constraint. The channel represents either
a memoryless channel or an intentional attacker.

which models, for example the block transform coefficients
in the images and a quadratic distortion measure is used.
Other authors (see e.g. [13]) have explored how classical
quantization index modulation codes could be modified to
account for perceptual measures when such information is
available to both the encoder and decoder.

The information embedding with DSI problem has also been
recently proposed independently in [14] as a byproduct of their
analysis on coding for the deterministic broadcast channels.
While the authors only report one special example for the IE
problem, our correspondence with them [15] revealed that they
were aware of the broader implications some of which appear
in Section II in the present paper. Our investigation for the
case of an intentional attacker in Section III as well as the
formulation of Wyner-Ziv with RSI problem in Section IV
have not been considered before to the best of our knowledge.

II. I NFORMATION EMBEDDING: INCIDENTAL ATTACKS

In this section, we present the information embedding
problem assuming that the channel is memoryless. We assume
that the host sequenceSn is drawn i.i.d. from distribution
pS(s) and is independent of the DSI sequenceQn drawn i.i.d.
according topQ(q). As shown in Figure 1, the encoder maps
the state sequenceSn, the DSI sequenceQn and the message
W into a sequenceXn subject to the distortion constraint:
E[ 1

n
d(Sn,Xn;Qn)] = 1

n

∑n

i=1 E[d(Si,Xi;Qi)] ≤ D. The
channel memoryless with a transition probabilityp(y|x). The
decoder attempts to decode the messageW from Y n.

We note that our model makes a simplistic assumption that
the DSI sequenceQn is i.i.d. and independent of the host
sequence. In practice the DSI sequence is context dependent
and such assumptions may not be always justified. While it
may be possible to extend our results to the case when the
sequenceQn is not i.i.d. we will note that even the i.i.d. model
is both challenging and interesting while studying the Gaussian
source models. Ultimately the model considered in this paper
could be a useful first step in quantifying the fundamental
gains from exploiting sensitivity of source samples.

We begin by writing down the capacity expression of
our information embedding with DSI setup. The result is
an immediate consequence of the Gelfand-Pinsker [8] result,
taking (Qn, Sn) as a composite state sequence.

Claim 1: The capacity of information embedding system
with distortion side information at the encoder is given by

Cenc = max {I(U ;Y ) − I(U ;S,Q)} (1)

where the maximum is taken over all distributionsp(U |S,Q)
and functionsX = g(U, S,Q) that satisfy the distortion
constraintE[d(X,S;Q)] ≤ D. The alphabetU of U satis-
fies appropriate cardinality bounds and the Markov relation
(U, S,Q) → X → Y holds.

It turns out in some situations that the IE capacity in (1) is
same as the capacity when the decoder is provided with the
additional knowledge of(Sn, Qn). One example is provided
in [14] where a specific choice ofQ and i.i.d. Gaussian source
model is considered. In what follows, we explore more such
situations.

A. Binary Case

Suppose thatSn,Xn, Y n ∈ {0, 1}n andpS(0) = pS(1) =
1/2. The channel is a binary symmetric channel with cross-
over probabilityp. Moreover,Q is binary as well withpQ(0) =
ε, pQ(1) = 1 − ε and thatd(s, x; q) = q(s ⊕ x) i.e. if q =
0, we do not incur any penalty in flipping the host sample,
while if q = 1, we incur a unit penalty. We refer to such a
distortion as erasure-Hamming distortion. Assume throughout
thatD/(1−ε) ≥ 1−2−h(p) so that time-sharing is not required
to achieve the information embedding capacity [2]. The IE
capacity of this system is given by:

CB
enc = CB

full = ε(1−H(p))+(1−ε)

(

H

(

D

(1 − ε)

)

− H(p)

)

.

(2)
whereCB

full denotes the IE capacity with(Sn, Qn) also known
to the decoder. Note that when the decoder has this extra
information, the encoder and decoder can without loss in
optimality use a different codebook for each value ofQ.
For Q = 0, the IE rate is1 − H(p) while for Q = 1 the
IE rate isH(D/(1 − ε)) − H(p). Multiplexing the two rates
establishes the the expression forCB

full. The achievability of
CB

enc follows by evaluating (1) withX = U = V ⊕ S,
where V is independent ofS with conditional distribution
pV (0|Q = 0) = pV (1|Q = 0) = 1/2 and pV (1|Q = 1) =
1−pV (0|Q = 1) = D/(1−ε). We omit this simple calculation.

Note that the test channelU = V ⊕ S is also the optimal
test channel for quantizing a binary symmetric source with
respect to an erasure-Hamming distortion [5]. This observation
suggests a natural counterpart to the nested coding framework
introduced in [2], [10]. The base code is a rate-distortion
optimal DSI-quantization code. Indeed arandom linear code
of rateRQ ≥ 1 − ε − (1 − ε)H(D/(1 − ε)) can be used for
this purpose. Cosets of this code can be used for information
embedding. The total number of codewords must not exceed
2nRC , whereRC < 1 − H(p) so that successful decoding is
possible. The achievable IE rateRC − RQ approaches (2).

B. Gaussian case

The host sequence is sampled i.i.d.N (0, σ2
s). The distortion

function is given byd(s, x, q) = q(s − x)2. The information
embedding channel is an AWGN channelY = X + Z, where
Z ∼ N (0, σ2

z). The alphabet ofQ can be either continuous
or discrete with the corresponding densitypQ(·). We assume
that the minimum value ofQ, Qmin is strictly greater than 0
to avoid certain technical difficulties.
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Fig. 2. Dirty paper coding channel equivalent of the Gaussian IE problem
with DSI. The sequenceQn is only revealed to the encoder and controls its
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It is well known (see e.g. [3]) that the Gaussian information
embedding setup with quadratic distortion is identical to the
celebrated dirty paper coding setup of Costa [6]. If we define
X̃

∆
= X − S, the channel model is given byY = X̃ + S + Z

with E[X̃2] ≤ D. In our DSI-IE extension, the channel model
is also given byY = X̃+S+Z, but the input power constraint
is of the formE[QX̃2] ≤ D. See Figure 2.

If both the encoder and decoder have access to the DSI
sequence, the capacity is given by

CG
full = E

[

1

2
log

(

1 +
D∗

Q

σ2
z

)]

, (3)

where the expression forD∗

Q is implicitly given by the

waterfilling equationD∗

Q =
[

1/λQ − σ2
z

]+
andλ is selected

to satisfy E[QD∗

Q] = D. If neither the encoder or decoder
know the DSI sequence then necessarilyX̃ is independent of
Q and our setup reduces to that of Costa with power constraint
E[X̃2] ≤ D/E[Q]. The corresponding capacity is given by

CG
none =

1

2
log

(

1 +
D

E[Q]σ2
z

)

. (4)

Characterizing the exact capacity expression when only the
encoder has knowledge of the DSI sequence is difficult even
when S ≡ 0. Hence we provide bounds on achievable
performance with encoder only DSI.

Proposition 1: Suppose thatDQ is a function ofQ such
that E[QDQ] ≤ D. Then,

CG
enc ≥ RG

enc = E

[

1

2
log

DQ

σ2
z

]

+
1

2
log

(

1 +
σ2

z

E[DQ]

)

. (5)

Proof: We set U = X̃ + αS, where p(X̃|q) =
N (0,Dq) andX̃ is independent ofS. The distortion constraint
E[QX̃2] ≤ D is satisfied by our assumption onDQ. With
α = E[DQ]/(σ2

z + E[DQ]) we have,
Cenc ≥ I(U ;Y ) − I(U ;Q,S)

= h(U |Q,S) − h(U |Y )

= h(X̃|Q) − h(X̃ + αS|X̃ + S + Z)

=
1

2
E log 2πeDQ − h((1 − α)X̃ + αZ|X̃ + S + Z)

≥
1

2
E log 2πeDQ − h((1 − α)X̃ + αZ)

≥
1

2
E log 2πeDQ −

1

2
log 2πeE((1 − α)2X̃2 + α2σ2

z)

=E

[

1

2
log

(

DQ

σ2
Z

)]

+
1

2
log

(

1 +
σ2

Z

E[DQ]

)

= RG
enc.

The expression forRenc in (5) consists of two terms. The first

Fig. 3. Nested Coding structure for IE-DSI. The left figure shows a fixed
codebook variable partition code. The quantization regions for this code can be
adjusted depending on whether the horizontal or vertical coordinate is more
sensitive. The corresponding quantization regions are shown by the dashed
and solid lines respectively. The right figure shows the ‘fine’ code formed
from the union of four cosets of this code. Notice that the finecode is a good
channel code.

term is similar to the expression forCfull in (3) but without
the “1” in the logarithm. This is attributed to the ‘shaping-
loss” because the decoder does not have the knowledge ofQn

and hence cannot perform the appropriate MMSE scaling for
each component (which depends onDQ). However, part of
shaping-loss can be recovered by a choice ofα, independent
of Q. This gain is represented by the second term in (5). We
can show that in high SNR, DSI knowledge only at the encoder
is as good as knowing it at both the encoder and the decoder
and strictly better than not knowing it at the encoder.

lim
σ2

z
→0

CG
full − CG

enc = 0

lim
σ2

z
→0

CG
enc − CG

none ≥
1

2
E

[

log
E[Q]

Q

] (6)

Our achievability proof in Proposition 1 lends itself to a
nested coding framework. Figure 3 shows such a code in two
dimensions. The left figure shows a DSI-Quantization code
which supports variable-partition regions. If the horizontal
coordinate is more sensitive, the quantization regions marked
by the dashed line will used; if the vertical coordinate is more
sensitive the regions marked by the solid line will be used. The
figure on the right shows the fine code formed from the union
of four cosets of the quantization code. The encoder selects
one of the four cosets for quantization and thus embeds two
bits of information. The decoder simply maps the received
symbol vector to the nearest point in the fine code. Note that
the fine code has good minimum distance. Higher dimensional
constructions can also be obtained by a similar coset extension
of the quantization codes presented in [7].

III. WATERMARKING : INTENTIONAL ATTACKS

We use a game theoretic model to study the achievable rates
in the presence of intentional attacks. Accordingly, we replace
the “channel” in Figure 1 with an active attacker who observes
the sequenceXn and produces an outputY n = An(Xn; ΘA)
whereΘA is a source of randomness available to the attacker.
The attack function must almost surely satisfy a distortion
constraint1

n

∑n

i=1 d(Xi, Yi;Qi) ≤ DA . We also assume that
attacker is ignorant of the codebook. The attack function can



be arbitrary apart from these two constraints. Our model is
along the lines of [3].

We note that the coding scheme for the binary setup in
previous section the rate in (2) is also achievable in the
presence of intentional attacks. It can be easily shown (along
the lines by Cohen [16, sec. 6.2.2]) that the optimal attack
is indeed modelled by a BSC with crossover probability
DA/(1 − ε).

On the other hand, the analysis of the coding scheme
in Proposition 1 for the Gaussian model is difficult in the
presence of intentional attacks because a) The codewords are
not Gaussian sinceU = X̃ + αS where X̃ is a Gaussian
mixture; b) the transmitted sequenceXn is not statistically
independent ofQn, so the attacker can learn it upon observing
Xn and use its knowledge to attack the less sensitive samples.
Hence we propose and analyze another coding scheme for
which the worst cast attack model can be found more easily.

Proposition 2: For the Gaussian model in Proposition 1,
suppose we constrainU andX in Claim 1 as follows i)U is
Gaussian ii)X is statistically independent ofQ. For anyDQ

such thatE[QDQ] ≤ D and forσ2
s larger thansupQ DQ, the

following rate is achievable:

Renc,G = E

[

1

2
log

DQ

σ2
z

]

+ E

[

1

2
log

(

1 −
DQ

4σ2
s

)]

. (7)

Proof: First note that sinceQmin > 0, supQ DQ < ∞ so
the set of validσ2

s is non-empty. We setX = U = γQS + V ,
whereγQ = 1 − DQ/2σ2

s and V is independent ofS with
p(V |q) = N (0, βq), for βQ = DQ

(

1 − DQ/4σ2
s

)

. Note that
both γq ≥ 0 andβq ≥ 0 by our assumption onσ2

s .

E[Q(X − S)2] = E[Q((γQ − 1)S + V )2]

= E[Q((γQ − 1)2σ2
s + βQ)] = E[QDQ] ≤ D

Thus the distortion constraint is satisfied. Also since
E[U2|Q] = E[(γQS + V )2|Q] = γ2

Qσ2
s + βQ = σ2

s we
have thatp(U |q) ∼ N (0, σ2

s) and thus U (and hence X) are
independent ofQ. Finally we evaluate:

I(U ;Y ) − I(U ;Q,S) = h(U |Q,S) − h(U |Y )

= h(V |Q) − h(U |U + N) ≥ h(V |Q) − h(N) = Renc,G

In the above analysis we use the boundh(U |U + N) <
h(N) = 1/2 log 2πeσ2

z to get the achievability rate. While it
is possible to tighten this step, we instead note that the above
rate is also achievable for a different channel model.

Corollary 1: For the Gaussian channel model in Proposi-
tion 1, consider instead a channelY = β1X + N1, where
β1 = 1− σ2

z/σ2
s andN1 ∼ N (0, σ2

zβ1). Then the rateRenc,G

is still achievable using the same choice ofU andX.
Proof: Note that h(U |Y ) = h(U |β1U + N1) =

1/2 log 2πeσ2
z . So I(U ;Y ) − I(U ;S,Q) still evaluates to

Renc,G.
We can now analyze the worst case attack for the under the
constraints in Proposition 2. Note that sinceX is independent
of Q, Y is necessarily independent ofQ. With some effort,
we can show that ifQ is over a discrete alphabet, the attacker
needs to satisfy the distortion constraint

∑n

i=1(Xi − Yi)
2 ≤

.

Index: I
Encoder

Xn

(Y n, Qn)

Decoder

∑

n

i=1
E[(Xi − X̂i)

2] ≤ nD

X̂n = g(I, Y n, Qn)

Fig. 4. Wyner-Ziv coding with reliability side information at the decoder. The
sourceX is i.i.d. N (0, σ2

s). (X, Y ) are jointly Gaussian given the reliability
parameterQ. The realization ofQn is only known to the decoder. The lattice
coding framework for this problem relies on the use of variable-partition
quantizers.

nDA/E[Q] almost surely. The Gaussian coding scheme in
Proposition 2 can be modified for analysis for the worst case
attack by using the approach of Cohen and Lapidoth [3]. By
introducing an equivalent encoder with codewords selected
uniformly on a n-dimensional sphere of radius

√

nσ2
s and

a decoder that selects the codeword with maximum inner
product with the received sequence, we can show that the
worst attack is given byY = (1 − σ2

z/σ2
s)X + Z, where

Z ∼ N (0, σ2
z(1 − σ2

z/σ2
s) andσ2

z = DA/E[Q]. Since this is
precisely the channel analyzed in Corollary 1,Renc,G is also
achievable in the presence of an active attacker.

As a final comment note thatlimσ2
z
→0 CG

full − Renc,G =
E

[

−1/2 log
(

1 − DQ/4σ2
s

)]

> 0.Thus there is a loss in the
achievable rate in the presence of an active attacker even in
the high SNR limit. However in the regimeσ2

s → ∞ which
is often of practical interest, the loss approaches zero.

IV. W YNER-ZIV CODING WITH RSI

We now consider a related problem involving Wyner-Ziv
coding illustrated in figure 4. The source sequenceXn is i.i.d.
N (0, σ2

s) which needs to be described to the decoder with a
quadratic distortion

∑n

i=1 E[(Xi − X̂i)
2] ≤ nD where X̂n

is the reconstruction at the decoder. The decoder observes
a “noisy” version of the source, sayY n where the noise
is governed by a reliability side information (RSI) sequence
Qn. We assume that conditioned onQ, X andY are jointly
Gaussian, i.e.X = γQY + V , wherep(V |q) ∼ N (0, βq) is
independent ofY given Q. FurthermoreQn is i.i.d. drawn
from distribution pQ(·) and is independent ofXn. Also
assume thatβinf = infq βq > 0.

There are several natural applications where the decoder has
access to reliability side information. For example the Wyner-
Ziv video codec (see e.g. [17]) uses the previous frames as side
information. The decoder can naturally estimate the relative
motion in different parts of the frame and this governs the
reliability of side information. As another example, sensor
networks collecting data in a time varying environment may
have some additional information in the background noise and
may estimate the reliability of different samples.

If (Qn, Y n) are also available to the encoder, then the
encoder simply needs to describeV n with quadratic distortion
D. The R(D) curve is obtained via classical water-filling
solution. In particular, ifD ≤ βinf , we have

Rfull = E

[

1

2
log

βQ

D

]

, if D ≤ βinf (8)



Fig. 5. Fixed-codebook variable partition codes for the Wyner-Ziv with RSI
scenario. The fine quantization code on the left is a union of four cosets of a
variable partition codes on the right. The construction is dual to the IE-DSI
problem in Figure 3.

To develop an achievable rate for the case when only the
decoder knows(Qn, Y n), we first note the rate distortion
function of this setup in the general discrete memoryless
case which is a straightforward extension of the Wyner-Ziv
scheme [9].

Claim 2: The rate distortion function for Wyner-Ziv coding
with reliability side information at the decoder is given by:

RWZ(D) = min I(X;U |Y,Q) (9)
where the minimization is over all probability dis-
tributions p(U |X) and function g(U, Y,Q) such that
E[d(X, g(U, Y,Q))] ≤ D. The cardinality of the alphabet of
U is suitably upper bounded andU → X → (Y,Q) holds.

To evaluate an achievable rate for the Gaussian case, we set
U = αX + E, whereα = 1 − D/E[βQ] andE ∼ N (0, αD)
is independent ofX. It suffices to setg(U, Y,Q) = U since
E[(U − X)2] = E[((α − 1)X + E)2] = D.

Rdec = h(U |Q,Y ) − h(U |X) = h(αV + E|Q) − h(E)

= E

[

1

2
log

(

βQ

D
+ 1 −

βQ

E[βQ]

)]

We note that the above scheme is optimal in high-resolution
lim

D→0
Rdec − Rfull = 0. (10)

The result in Claim 2 relies on the decoder finding aUn

jointly typical with (Y n, Qn) in the bin index specified by the
encoder. How can the decoder exploit the knowledge ofQn

in the lattice framework? The natural solution is to use a fixed
codebook variable-partition codes. Figure 5 illustrates such a
code in two dimensions. The fine quantization code on the left
is a union of four cosets of a variable partition codebook on the
right. The encoder quantizes the source symbol pair(X1,X2)
to the nearest point in the fine lattice and sends the coset index
of this point. The decoder upon receiving the coset index,
constructs the partition regions of the corresponding lattice
using the knowledge of(Q1, Q2). It creates the regions marked
by the solid lines if the vertical coordinate is more reliable
or the regions marked by the dashed lines if the horizontal
coordinate is more reliable. It reconstructs the center of the
cell in which (Y1, Y2) lies as the corresponding reconstruction
point.

Note that this code construction is the dual of the informa-
tion embedding with DSI problem. Another situation where
fixed codebook variable partition codes are used is fading
channels with receiver only channel state information [18,sec
5.4.4]. Indeed efficient practical code constructions for such
channels is an active area of research.

V. CONCLUSION

We have extended the framework of distortion side infor-
mation and fixed codebook variable partition codes, originally
proposed for quantization problems in [5] to information
embedding with distortion side information and Wyner-Ziv
coding with reliability side information. Our analysis forin-
formation embedding under a Gaussian source model extends
Costa’s dirty paper coding result to the case of a weighted
power constraint with weights only known to the encoder.
Coding schemes which exploit encoder only DSI and are
robust against intentional attackers are also developed. The
Wyner-Ziv problem with reliability side information at thede-
coder reveals the importance of variable-partition codebooks in
situations which rely on conventional distortion measures. We
discuss some immediate applications of this setting and hope
that it sparks further interest in understanding the structure and
properties of fixed codebook variable-partition codes.

REFERENCES

[1] P. Moulin and J. O’Sullivan, “Information-theoretic analysis of informa-
tion hiding,” IEEE Trans. Inform. Theory, vol. 49, pp. 563–593, Mar.
2003.

[2] R. J. Barron, B. Chen, and G. W. Wornell, “The duality between
information embedding and source coding with side informationand
some applications,”IEEE Trans. Inform. Theory, vol. 49, 2003.

[3] A. S. Cohen and A. Lapidoth, “The Gaussian watermarking game,” IEEE
Trans. Inform. Theory, vol. 48, pp. 1639–1667, June 2002.

[4] A. Sequeira and D. Kundur, “Communication and Information Theory
in Watermarking: A survey,” inSPIE, Denver, Aug. 2001, pp. 216–227.

[5] E. Martinian, G. W. Wornell, and R. Zamir, “Source Coding with
Encoder Side Informaton,”submitted to IEEE Trans. Inform. Theory,
Dec. 2004. [Online]. Available: http://arxiv.org/abs/cs.IT/0412112

[6] M. H. Costa, “Writing on dirty paper,”IEEE Trans. Inform. Theory,
vol. 29, pp. 439–441, May 1983.

[7] E. Martinian, “Dynamic information and constraints in source and
channel coding,” Ph.D. dissertation, Mass. Instit. of Tech., 2004.

[8] S. I. Gel’fand and M. S. Pinsker, “Coding for channels with random
parameters,”Problems of Control and Information Theory, vol. 9, pp.
19–31, 1980.

[9] A. D. Wyner and J. Ziv, “The rate-distortion function forsource coding
with side information at the decoder,”IEEE Trans. Inform. Theory,
vol. 22, pp. 1–10, Jan. 1976.

[10] R. Zamir, S. Shamai, and U. Erez, “Nested codes: an algebraic binning
scheme for noisy multiterminal networks,”IEEE Trans. Inform. Theory,
vol. 42, June 2002.

[11] M. Mihack and P. Moulin, “The parallel-Gaussian watermarking game,”
IEEE Trans. Inform. Theory, vol. 50, pp. 272–289, Feb. 2004.

[12] A. Cohen and A. Lapidoth, “The capacity of the vector Gaussian
watermarking game,” inProc. Int. Symp. Inform. Theory, Washington
DC, June 2001, p. 4.

[13] C. K. Wang, M. L. Miller, and I. J. Cox, “Using perceptualdistance to
improve the selection of dirty paper trellis codes for watermarking,” in
IEEE Int. Workshop on Multimedia Signal Processing, 2004, pp. 147–
150.

[14] E. Haim and R. Zamir, “Quantization with variable resolution and
coding for deterministic broadcast channels,” inAllerton Conference on
Communication, Control, and Computing, 2005.

[15] R. Zamir, “Personal communication.” 2006.
[16] A. Cohen, “Information theoretic analysis of watermarking systems,”

Ph.D. dissertation, Mass. Instit. of Tech., 2001.
[17] R. Puri and K. Ramchandran, “PRISM: A video coding paradigm based

on motion-compensated prediction at the decoder,”IEEE Trans. on
Image Processing, submitted.

[18] D. Tse and P. Viswanath,Fundamentals of Wireless Communication.
Cambridge University Press, 2005.


	Title Page
	Title Page
	page 2


	Information Embedding with Distortion Side Information
	page 2
	page 3
	page 4
	page 5
	page 6


