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Abstract

We show that linear complexity, capacity approaching information embedding codes exist for
information embedding problems. Specifically, we introduce the double erasure information
embedding channel model, and show that in at least some parameter regimes one can achieve
rates arbitrarily close to capacity using suitably defined codes on graphs. Furthermore, we show
that both encoding and decoding can be implemented with linear complexity by exploiting belief
propagation techniques.
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Abstract—We show that linear complexity capacity- alphabet$ is selected according to the probability laxs).
approac_hing information emb'e_dding code§ exist for information The encoder takes as inpst as well as ak-bhit message
embedding problems. Specifically, we introduce the double- m, and produces a channel input vectorconsisting ofn

erasure information embedding channel model, and show that .
in at least some parameter regimes one can achieve ratessymbOIS from the alphabét. The channel takes as input and

arbitrarily close to capacity using suitably defined codes on Produces a channel output vectprconsisting ofn symbols
graphs. Furthermore, we show that both encoding and decoding from the alphabety according to the probabilistic channel

can be implemented with linear complexity by exploiting belief |aw p(y|x,s). Finally, the decoder receives — which we
propagation techniques. sometimes denote ag(x,s) to indicate the dependence on
I. INTRODUCTION the channeITirr:put a?q ?tate _t an:d att:empts to d?terminetthe
: . . . _messagen. The goal is to construct systems operating at rates
The information embedding p_roble!”n of channel coding W't ear capacity with low complexity encoders and decoders,

: . ) . . ith the probability of decoding error vanishing as— oc.
tions including coding for a memory with defects, broadcast j Y . .
Our “double-erasure” information embedding channel of

channels, inter-symbol interference channels, multana interest is a variant of the “memory with defects” channel
channels, and digital watermarking; see, e.g., [11], [ITBEre model [11]. Specifically,

is a growing interest in understanding the complexity resgli

to approach capacity on such channels, and how to design X =1{0,1}, 8§=Y={0,1,%}, (1)

codes with such complexity. o ) ] o o
Low density codes on graphs are compelling candidates fBre states is independent and identically distributed (i.i.d.)

the information embedding problem, which has both chann\Mth
and source coding aspects. Indeed, low density parity check ps(s) = {(1 —e)/2, s=00rs=1 2
(LDPC) and low density generator matrix (LDGM) codes have Cs) S =%
particularly attractive characteristics for channel eadi4] 5n4 the channel law is i.i.d. with
and source coding [2], respectively. This paper developh su
a class of codes. €e, y==x
In closely related work, such codes have been used to  Py|s,x(¥[5,2) =q1—e, y==xands=x 3)
approach capacity of the noiseless broadcast channel [13], l—e., y=sands#x

[14], but some difficulties remain. For example, [13] reasir
logarithmic (as opposed to constant) density in the blo
length while [14] uses afd(n?) algorithm. Furthermore, it is

ence, the channel consists of two parts. The inpand s
combine to produce

unclear how those approaches fare in the presence of channel T §=—%
noise. v = 4)
s S,

In this work, we consider what may be the simplest infor-
mation embedding channel model whose source and chanmbich is erased (i.e., replaced wi#) with probability e. to
coding aspects are both nontrivial. For this channel, wiieh producey.
refer to as the “double-erasure” channel, we construct sscla

of capacity-approaching linear complexity codes.
I11. CAPACITY

Il. CHANNEL MODEL

Consider a general information embedding problem. A The capacity of the double-erasure channel defined in
channel state vectos consisting ofn symbols from the Section Ilis as follows.

Claim 1: The capacity of the double-erasure channel is
This work was supported in part by NSF under Grant No. CCFs089,
and by HP through the MIT/HP Alliance. C=es—e.+(1—es)Hp(q) — (1 —ec)Hp(q(1 —es)), (5a)



whereq satisfies Message

(1—ec) Channel State s Output of G, w

1-— 1—q(1— e
4 _ < 4l )> (5b) 0 * 1 * 10 1

q Q(l - 65)

and Hi(-) denotes the binary entropy function.
Proof: To verify (5) it suffices to apply the Gelfand-
Pinsker [7] expression for information embedding capacity

C = max I(U; y) _ [(U; S). Fig. 1. Encoder structure. The message consiskshifs, which are encoded
p(uls),p(z|u,s) by codeC; to producen outputs labeledwv. After concatenatingv onto the
. . . . n-bit channel stats, the encoder finds a codeword of the main céiethat
A particular choice ofX andU yields (5). Specifically, let matches(s, w) in as many non- positions as possible.

the alphabet fol be U = {0,1}, let p(u = 0O|s = %) =
1/2, and letp(u = 0]s = 0) = p(u = 1|s = 1) = 1 — 2q¢. input
Finally, let X = U; the resulting marginal distribution fak' !
. . P . . 0 1 * *eee 0 1
is symmetric. Optimizing over the choice gfthen gives (5). l l l l l l
To verify that these choices of and U give capacity, it 5 1 L .
ignore W

suffices to verify the optimality conditions in [6]. B e
In the sequel we develop coding schemes that can approakssks
J Computew
using information bits

Final De?oder Output

rate R~ = e — e.. Whene, < e, C = R~, so our coding
schemes come close to capacity in this regime.

information bits

IV. CODING SCHEME

2. Decoder Structure. The arrows indicate the flow obrimfation

A COdmg scheme consists of a sequence of enCOdIE 'ugh the decoder from the channel outpub the final decoder output.

functiong E,, : 8" x {0,1}* — X" and decoding functions
D, :Y"— {0,1}F forn=1,2,....

Definition 1: A coding scheme iadmissiblefor the double-  To understand the encoding algorithm, it helps to contrast
erasure information embedding channel iff),(s,m); = s; the ideal case where there exists a codewor@,chat exactly
whenevers; # x for all messagesn (cf. (4)); and i) for matches(s,w) in all non+ positions with what actually
a messagem drawn at random, and any > 0, there are happens. Usually, there will be at least a few positions of
infinitely manyn such thar[D,,(y(E, (s, m),s)) # m] <e. (s, w) that cannot be exactly matched by a codeword®qf
The rate of an admissible coding scheme is definedfas-  The encoding algorithm accounts for this in step 3 by changin
lim sup(k/n). the positions of that do not match the nonpositions ofs.

Our encoder, illustrated in Fig. 1, is formed by combininghe decoder will need to correct these errors in addition to
an (n+n, k) LDGM codeC; and an(7, k) LDPC codeC,.?  the erasures in the channel output.

A k-bit messagem is encoded into am-bit channel inputx Fig. 2 illustrates the decoder for our codes. Decoding a

as a function of thex-bit channel state as follows: receivedn-bit channel outpuy proceeds as follows:
1) Encodem usingCs, obtainingw = G, - m, whereG, 1) Form the subgraph @f; obtained by ignoring the erased
is the generator matrix fo€s. positions of the received signgland the last positions

2) Use a modified version of belief propagation (BP) [2], of C;.
[8], [9] to find a codeword of; denoteds, w) such that ~ 2) Use BP on this subgraph as if the vectavas corrupted

(8, w) matchegs, w) in as many none- positions as pos- by a binary symmetric channel (BSC) to estimate the
sible. For example, this can be implemented by directly  information bits ofC;. Then, use the information bits to
applying the ERASURE-QUANTIZE algorithm of [2]. compute an estimaté of w.

If ERASURE-QUANTIZE fails, randomly assign values 3) DecodeC, to recover the messaga from w. 3
to all of the so-called unreserved variables [2], thereby we first discuss the required propertiesf

incurring some small number of errors. Then, solve for pefinition 2: A €, code ensemble igood if for some
the reserved variables as if ERASURE-QUANTIZE dighoice of,, e, ds, de it iS (e, €c, 0s, .)-good. The latter is

not fail. a family of @, codes, with a probability distribution over
3) The channel input is the-bit vectorx wherex; = s;  the family, mappingk information bits ton + 7 code bits,
if s; #*, andx; = 5; if 5; = . where member€; of the ensemble have the following two
properties:

1We use the notatiotd? to denote theb-fold Cartesian product of a set : [P, n+n ;
with itself andc; to denote theth component of a vectat. 1) Erasure Quantlzatlon' Late be arblt[ary' If the

2By LDGM and LDPC codes, we mean codes with a graphical reptasen number ofx symbols int exceeds: + 7 — k(1 — €),
tion having O(r) edges, where denote the block length. In particular, this
definition allows codes that have unbounded maximum degrdengsas the 3In practice, one would probably want to use a cdethat would allow
average degree is bounded by a constant independent of BP decoding.



then with high probability, there exists a codeward and

€y suchthat{i : ¢; # t; andt; € {0,1} andi < n}| < e.<1_ﬁ<1+6 L 160 )
ssnand|{i:c; # t; andt; € {0,1} andi >n —1}| < c- T In(l/e) )’
Os. our construction produces an admissible coding scheme with

2) Erasure Correction: Let; denote a punctured versionate i sup k/n.
of €, that keeps only the firsu code bits of every |t follows immediately that our coding scheme is able to
codeword, and le¢ € €, correspond to a codewordachieve rates close i@ — e.. Specifically, we have:
c € €. Form t by changing< n — k(1 + ) Corollary 1: For a double-erasure information embedding
positions of ¢ to  symbols. With high probability, channel with parameters ande., we can choosé, k, n, 7i to
we can compute a reconstruction = f(t) such that gptain an admissible coding scheme with rate arbitraribgel
{i:c; #w; andi >n — 1} < dcn. to e, — ee.

One class of code®; that can meet the conditions of
Definition 2 is an LT code [10], to which we restrict our
attention for the remainder of the paper. Following the tiote
from [1], a (k,Q(z)) LT code is one withk information A. Proof of Lemma 1
bits and output degree distribution given by the generator
polynomiaf Q(z). For our construction, we use, as in [1], &
modified version of the ideal soliton distribution. Spedifiy,
our distribution has generator polynomial

V. PROOFS
In this section, we prove Lemma 1 and Theorem 1.

To prove Lemma 1, we verify the erasure quantization and
rasure correction properties separately.
The erasure quantization property is so named because it
essentially requires the code ensemble to be good for the
1 D-1 i D binary quantization problem [2]. To prove that this is troe f
Qup(z)=—— (uz + Z — + —) , LT codes, we need the following lemma from [2].
ptl i1y D Lemma 2:A linear block code@ can recover from a
where we have made the parametgraind D explicit. We particular erasure sequence (under ML decoding) if and only
truncate this LT code so that only-+ 7 outputs are produced. if the dual code€* can quantize the dual sequence, i.e., the
For C,, we require only that the code 1) be of high-ratesequence where all the erased symbols have been turned into
2) have efficient (linear complexity) encoding and decodinignerased symbols and vice versa. Alsd? i€an recover from
algorithms, and 3) be a good error-correction code. Wi erasure sequence using BP decoding, €tegan quantize
respect to the latter, we require that the code be capaB}é dual sequence using a dualized form of BP.
of correcting a fixed fraction of errors regardless of the InLemmaz2, “recover”includes the case where BP decoding
locations of these errors in the received signal. Howeverges can only determine some of the information bits. For a
not require that the code be capacity achieving. As an exgmglarticular erasure sequence, suppose BP decoding carerecov
one class of code®, that meets these requirements is that dginformation bits. Then, the dualized form of BP applied to
to Spielman [5]. ¢+ and the dual sequence can quantize the dual sequence such
The parameters of the LT code can be chosen to mdkét at least unerased positions are matched.
it suitable for our application. In particular, let > 0 be ~ Now we prove that(k, €2, p(z)) LT codes satisfy the
arbitrary, and lete, = (2In(1/e))~Y/%. In turn, set the €rasure guantization property. .
e, code parameters according o = /2 + (/2)? and Lemma 3:A.trur?cated('k;,Q,L,D(z))) LT co.de vylth param-
D = [1/p], wherep — e,/ (4(1 + ¢.)). Furthermore, les, — ©ters as specified in Section IV matches, with high protigibili
10/, p(1) < 10/In(1/ec), and leté. = Q(E/ﬁ)pgit L(1). a fraction1 — & of any subset of(1 —¢) + 1 unerased output
Then we have the following: 7 symbols. _
Lemma 1:The ensemble O(];,Q%D(z)) LT codes trun- Proof: From Lemma 2, it follows that to prove Lemma 3
cated to length + i is an (e, cc, &, 3. )-good code forC; . we only need to show that the dual of a truncated?,, p(z))

Finally, this ¢, code, when combined with a suitablyi‘r;r f;d?l E‘ gi(;od tont trt‘ﬁ BdECI- Mgfe F:recisely(,jwwe muit sho\\;v
parameterized, code, yields an admissible coding schema 2, "' @l the INputs o the dual code are erased, we can eco

for our channel in the sense of Definition 1. Specifically, wg” but a4, fra<_:t|on of the erased SymbOI.S‘ .
. . The analysis of the dual code is similar to the proof
have the following as our main result.

i . . of [1, Lemma 4]. Letw(z) and {¢(z) be the generat-
. Theorem 1.Suppo§e(31 IS chgsen as in Lemma 1, art) ing functions for theedge degree distributions with re-
is capable of correcting a fraction= d, + d. of errors. Then

: ) . ... spect to the variable and check nodes of the dual LT
for the double-erasure |nfo~rmat|on t::tmbeddlng channel W'thcode. 5 From [1], w(z) — QL,D(Z)/QL,D(U, and ((z) —
k—n k

+ —€s, 5The dual code can be obtained by replacing all check noddsvaiiable

n nodes and vice versa. This follows because the graphicaéseptation of

C1 given in figure 1 shows the generator matrix f@i. The graphical

4Recall that the probability of a degremode is specified by the coefficient representation of the dual should use the generator mati® afs the parity

of 2% in a generator polynomidR(z). Thus the expected degree is given incheck matrix, and this can be achieved by swapping the variabtles with
terms of this polynomial by’ (1). the check nodes.

es > 1—

n



(1=, p(1)(1 = 2)n(1 - e.))™(1—ee)(1=<) Using the density the encoding property of Definition 1.

evolution method, to prove Lemma 3 we must show that Proof: The encoding algorithm given in Section IV

w(1-£(1-2)) < z,Vz € [ds, 1]; our argument differs from that guarantees that we satisfy the encoding property, singe ste

of [1] only in that [1] proves/(1 —w(1—2)) < z,Vz € [ds, 1], 3 of the algorithm ensures that the encoding matches all

i.e., our argument proves that we can interchangsd? and non- positions. However, we can make a stronger statement

preserve the inequality. than this. Lemma 1 guarantees that a large fraction of the sta
Now w(l — £(1 — 2)) < =z reduces tof2, (1 — £(1 — positions are matched after step 2 on the encoding algarithm

z)) < ), p(1)z. Using the formula for®2) ,(z) given in Thus, step 3 only changes a small)(fraction of unmatched

[1], some algebra shows the¥, (1 —¢(1—2)) <€ ,(1)z positions to get the final encoding. This will be importantemh

for sufficiently smalle.. In particular, it suffices to choosewe analyze the decoder. [ ]

€. < (In(1/es)) + O(l))‘l/fs. | In the sequel, we refer to the encoding computed after step
Lemma 3 shows thatk,, p(z)) LT codes satisfy the 2 as thepreliminary encoding

erasure quantization property because the LT code gemerateNow we prove that our construction satisfies the decoding

every output bit i.i.d. Thus, the unmatched positions afgoperty. Specifically, we have the following result, whose

uniformly distributed throughout the + 7 output positions, proof requires us to show that our code can correct the

and we can consider the firat positions separately from theerasures made by the channel, and the errors introduced by

last? positions. (In fact, since all the erasures are in the firstthe preliminary encoding.

positions, the fraction that are incorrect in the fitgpositions Lemma 6:For the choices of2;, G,, state, and channel

is upper bounded by(1 — es)). distributions given in Theorem 1, our construction satisfie
The erasure correction property follows from the followinghe decoding properties of Definition 1.
lemma, given in [1, Lemma 4]. To prove Lemma 6, we first need the following Lemma,

Lemma 4:With a truncated(k, €2, p(z))) LT code with which implies that a truncated version 6f can be decoded
parameters as specified in Section IV one can, with higbliably over BSC4,).
probability, recover all but a fractiop of the & inputs from Lemma 7:For the choice of parameters given in Theo-
any subset of(1 + €./2) + 1 output symbols. rem 1, assume that the first bits of a codeword of2; are

Proof of Lemma 1: Lemma 3 proves the erasure quansent ove3SC(J,), and then over the erasure channel specified

tization property. To complete the proof of Lemma 1, Weh Theorem 1. Then, BP can be used to recover the level 1
need to turn the bound on the number of unrecovered inpytgiable nodes with high probability, in the sense that astmo
given in Lemma 4 into a bound on the number of unrecovergdfraction of the nodes are not recovered correctly.
outputs in the lasf positions. With high probability at most |n order to prove Lemma 7, we will make use of the
2kp variable nodes o€, are unrecovered (we need the 2 fofollowing result from [3, Thm. 4.2] relates the performance
Lemma 6 to come later). These unrecovered variable no@fsa code on the BEC to its performance on any binary input-
induce at mosekp(Y), (1) unrecovered check nodes in thesymmetric channel (BISC). The Bhattacharya parameter of
last 72 positions ofC; with high probability. This is becausea BISC is defined as\ = E[e~~/2], where L is the log-
the number of unrecovered check nodes in thegsbsitions  |ikelihood ratio of the input given the channel output.
is upper bounded by _; deg(i), wheredeg(i) is the degree | emma 8:Let A(C) be the Bhattacharya parameter of an
of node: in the subgraph induced by the lastcheck nodes arpitrary BISCC. If BP can decode an ensemble of codes
of €;, and the sum ranges over all the variables nodes thgler BEC(A(C)), then BP can also decode reliably owr
are in error. Because the check nodes choose their neighbofge remark that the proof of Lemma 8 given in [3] actually
independently at random, this sum is tightly concentratggloyes the stronger statement that if the fraction of unreco
around its expected value, which §&, ,,(1)7p. Thus, with ered inputs oveBEC(A(C)) < 4, then the fraction of inputs
high probability we do not see more thakpQ;, (1) unre- which are recovered incorrectly ovéris also less thad. ’
covered check nodes in the lastpositions® Note that this Proof of Lemma 7: We prove that the subgraph &%
analysis would hold even if we made errors in the variablermed by only considering the positions that were not etase
nodes instead of just not recovering certain nodes. This{§ the erasure channel is good BBC(d,). Let ¢ > 0 be a
important when we prove Lemma 6 to come. B parameter we determine later. Say we recdije + ¢) bits,
but ad, fraction of these bits are incorrect. From Lemma 4,
we know that this subcode df, can recover from erasures

We prove, in order, that our construction satisfies both thgovided that:(1+¢./2) unerased outputs are available. Thus,
encoding and decoding properties of an admissible codiag can tolerate an erasure probabilityéof (€ —e.)/(1 + €).
scheme.

The former is established by the following Lemma. "Density evolution typically looks at the values passed @ledges of the

Lemma 5:For the choices of2;, @, state, and channel graph. To turn this into a bound on inputs, it suffices to prétéhat each

distributi . in Th 1 . i variable nodes has an “extra” edge leaving which is not h&ddo any other
Istributions given in Theorem 1, our construction satsfigjes The value of this edge is updated using the same denwsilytion

_ equations, and the value on this edge determines the valle aissociated
SWe assume: > 7. variable.

B. Proof of Theorem 1



Applying Lemma 8, it follows that ifé; satisfiesA(ds) =

24/0s(1 — d5) < ¢, then we can correct & fraction of errors.
This inequality is satisfied if we chooge= ¢.+160/In(1/¢.). nodes: errors caused because our definition of failure allow
m for a 2p fraction of errors in the variable nodes, and errors

It remains to confirm that2; can correct enough of the caused because during encoding we may not be able to match
errors from the preliminary encoding th@ can correct those a d; fraction of the check nodes. In total, with high probability

that remain. the two sources of error induce at most a fractign- . of

Proof of Lemma 6: We first define a new chann€l., errors in the last: check nodes, which can be corrected given

of check nodes which are not recovered properly after decod-
ing C;. There are two sources of error for the lasttheck

which models the positions whose bits we need to chantiee choice ofC,.

after the preliminary encoding in order to satisfy the ericgod
property. LetI" be the number of unmatched positions after
the preliminary encoding, so th&, introducesI’ errors to

VI. CONCLUDING REMARKS

We have described a coding scheme for the double-erasure

form the final encoding. Because the LT code generates ed#@rmation embedding channel with linear-time encoding a
output symmetrically, and because the state distribut®yn @ecoding algorithms. The key ingredient in the construrcto
is symmetric, it follows that givel' = ~, the v positions a code that is good for both BEQ and the BEC. In our construc-
flipped by C. are equally likely to be anyy positions. tion, because. is so small compared tq, the complexity of
Thus, conditioned on the number of errofs, has the same encoding and decoding scales with/e;) InIn(1/¢s)). Thus,

distribution as a BSC.

our choice of2,, p(x) allows us to prove the asymptotic result,

Lemma 1 guarantees th&t< §;n with high probability. Let but the dependence oy makes it difficult to get close to
7 be the expected value &f (our proof of Lemma 3 shows €s — €. We believe that by using techniques similar to those
7 < &5, but we can calculate to any desired accuracy usingemployed in [1] we can find choices féi(z) with a lower
density evolution). Then, a standard martingale arguméht [value of €’(1), which still perform well for BEQ and BEC.

shows that there exists a constghsuch that for any > 0,

Pr[T — 7] > ¢ < e P<n. (6)
8 (1]

Let D(-||-) denote the Kullback-Leibler distance betweeni2]
two Bernoulli random variables. For any particular vakie
and sufficiently largen, we know that the probability?,
that a realizatioBSC(y) of the BSC makes, for some> 0,
a fraction + € errors inn transmissions is lower bounded by [4]

e—nD(v+ell7)

(3]

P,o>—— (7y B
2mn
and a similar statement is true for— e. [6]

We say that BP decoding of (a truncated version}pfails
if the fraction of level 1 variable nodes that are not receder
correctly is greater thakp. Using martingale arguments, one [7]
can show that Lemma 7 implies

(8]
El

Pr[BP decoding fails for BS@,)] < e ",  (8)

for a suitable constantv > 0. Choosinge such thato
D7 £ €|[5) — ap® < 0, then combining (6), (7), (8), and the
fact that conditioned on the number of errors, the distribut [10]
of a BSC andC, is the same, we obtain

Pr[BP decoding fails folC,] < e=7"/2mn + e €™, (11]

Thus, the probability that BP decoding ©f fails is exponen-
tially small even when the errors are introduced @y

To complete the proof, we need to correct the small fracticH]S]

(12]

8In deriving equation 6, it is important that the encoder ubesaigorithm
specified in Section V. Specifically, the unreserved vdeiatmeed to be as-
signed randomly. This allows us to conclude that about hathefunreserved
checks are not satisfied. Then, we can multiply the densityutoa value
for the number of unreserved checks Byto get7, and the concentration
result in equation 6 follows easily.

(14]

This is the subject of future work.
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