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Abstract— We show that linear complexity capacity-
approaching information embedding codes exist for information
embedding problems. Specifically, we introduce the double-
erasure information embedding channel model, and show that
in at least some parameter regimes one can achieve rates
arbitrarily close to capacity using suitably defined codes on
graphs. Furthermore, we show that both encoding and decoding
can be implemented with linear complexity by exploiting belief
propagation techniques.

I. I NTRODUCTION

The information embedding problem of channel coding with
transmitter side information arises in a number of applica-
tions including coding for a memory with defects, broadcast
channels, inter-symbol interference channels, multi-antenna
channels, and digital watermarking; see, e.g., [11], [12].There
is a growing interest in understanding the complexity required
to approach capacity on such channels, and how to design
codes with such complexity.

Low density codes on graphs are compelling candidates for
the information embedding problem, which has both channel
and source coding aspects. Indeed, low density parity check
(LDPC) and low density generator matrix (LDGM) codes have
particularly attractive characteristics for channel coding [4]
and source coding [2], respectively. This paper develops such
a class of codes.

In closely related work, such codes have been used to
approach capacity of the noiseless broadcast channel [13],
[14], but some difficulties remain. For example, [13] requires
logarithmic (as opposed to constant) density in the block
length while [14] uses anO(n2) algorithm. Furthermore, it is
unclear how those approaches fare in the presence of channel
noise.

In this work, we consider what may be the simplest infor-
mation embedding channel model whose source and channel
coding aspects are both nontrivial. For this channel, whichwe
refer to as the “double-erasure” channel, we construct a class
of capacity-approaching linear complexity codes.

II. CHANNEL MODEL

Consider a general information embedding problem. A
channel state vectors consisting of n symbols from the
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alphabetS is selected according to the probability lawp(s).
The encoder takes as inputs as well as ak-bit message
m, and produces a channel input vectorx consisting ofn
symbols from the alphabetX. The channel takesx as input and
produces a channel output vectory consisting ofn symbols
from the alphabetY according to the probabilistic channel
law p(y|x, s). Finally, the decoder receivesy — which we
sometimes denote asy(x, s) to indicate the dependence on
the channel input and state — and attempts to determine the
messagem. The goal is to construct systems operating at rates
near capacity with low complexity encoders and decoders,
with the probability of decoding error vanishing asn → ∞.

Our “double-erasure” information embedding channel of
interest is a variant of the “memory with defects” channel
model [11]. Specifically,

X = {0, 1}, S = Y = {0, 1, ∗}, (1)

the states is independent and identically distributed (i.i.d.)
with

pS(s) =

{

(1 − es)/2, s = 0 or s = 1

es, s = ∗,
(2)

and the channel law is i.i.d. with

pY |S,X(y|s, x) =











ec, y = ∗
1 − ec, y = x ands = ∗
1 − ec, y = s ands 6= ∗.

(3)

Hence, the channel consists of two parts. The inputx and s
combine to produce

v =

{

x s = ∗
s s 6= ∗,

(4)

which is erased (i.e., replaced with∗) with probability ec to
producey.

III. C APACITY

The capacity of the double-erasure channel defined in
Section II is as follows.

Claim 1: The capacity of the double-erasure channel is

C = es − ec +(1 − es) HB(q)− (1− ec)HB(q(1− es)), (5a)



whereq satisfies

1 − q

q
=

(

1 − q(1 − es)

q(1 − es)

)(1−ec)

(5b)

andHB(·) denotes the binary entropy function.
Proof: To verify (5) it suffices to apply the Gel’fand-

Pinsker [7] expression for information embedding capacity

C = max
p(u|s),p(x|u,s)

I(U ;Y ) − I(U ;S).

A particular choice ofX andU yields (5). Specifically, let
the alphabet forU be U = {0, 1}, let p(u = 0|s = ∗) =
1/2, and letp(u = 0|s = 0) = p(u = 1|s = 1) = 1 − 2q.
Finally, let X = U ; the resulting marginal distribution forX
is symmetric. Optimizing over the choice ofq then gives (5).

To verify that these choices ofX and U give capacity, it
suffices to verify the optimality conditions in [6].

In the sequel we develop coding schemes that can approach
rate R− = es − ec. Whenec ≪ es, C ≈ R−, so our coding
schemes come close to capacity in this regime.

IV. CODING SCHEME

A coding scheme consists of a sequence of encoding
functions1 En : Sn × {0, 1}k 7→ Xn and decoding functions
Dn : Yn 7→ {0, 1}k for n = 1, 2, . . . .

Definition 1: A coding scheme isadmissiblefor the double-
erasure information embedding channel if i)En(s,m)i = si

wheneversi 6= ∗ for all messagesm (cf. (4)); and ii) for
a messagem drawn at random, and anyǫ > 0, there are
infinitely manyn such thatPr[Dn(y(En(s,m), s)) 6= m] ≤ ǫ.
The rate of an admissible coding scheme is defined asR =
lim sup(k/n).

Our encoder, illustrated in Fig. 1, is formed by combining
an (n + ñ, k̃) LDGM codeC1 and an(ñ, k) LDPC codeC2.2

A k-bit messagem is encoded into ann-bit channel inputx
as a function of then-bit channel states as follows:

1) Encodem usingC2, obtainingw = G2 ·m, whereG2

is the generator matrix forC2.
2) Use a modified version of belief propagation (BP) [2],

[8], [9] to find a codeword ofC1 denoted(s̃, w̃) such that
(s̃, w̃) matches(s,w) in as many non-∗ positions as pos-
sible. For example, this can be implemented by directly
applying the ERASURE-QUANTIZE algorithm of [2].
If ERASURE-QUANTIZE fails, randomly assign values
to all of the so-called unreserved variables [2], thereby
incurring some small number of errors. Then, solve for
the reserved variables as if ERASURE-QUANTIZE did
not fail.

3) The channel input is then-bit vectorx wherexi = si

if si 6= ∗, andxi = s̃i if si = ∗.

1We use the notationAb to denote theb-fold Cartesian product of a set
with itself andci to denote theith component of a vectorc.

2By LDGM and LDPC codes, we mean codes with a graphical representa-
tion havingO(r) edges, wherer denote the block length. In particular, this
definition allows codes that have unbounded maximum degree, aslong as the
average degree is bounded by a constant independent ofr.

w
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Fig. 1. Encoder structure. The message consists ofk bits, which are encoded
by codeC2 to produceñ outputs labeledw. After concatenatingw onto the
n-bit channel states, the encoder finds a codeword of the main codeC1 that
matches(s,w) in as many non-∗ positions as possible.
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Fig. 2. Decoder Structure. The arrows indicate the flow of information
through the decoder from the channel outputy to the final decoder output.

To understand the encoding algorithm, it helps to contrast
the ideal case where there exists a codeword ofC1 that exactly
matches(s,w) in all non-∗ positions with what actually
happens. Usually, there will be at least a few positions of
(s,w) that cannot be exactly matched by a codeword ofC1.
The encoding algorithm accounts for this in step 3 by changing
the positions of̃s that do not match the non-∗ positions ofs.
The decoder will need to correct these errors in addition to
the erasures in the channel output.

Fig. 2 illustrates the decoder for our codes. Decoding a
receivedn-bit channel outputy proceeds as follows:

1) Form the subgraph ofC1 obtained by ignoring the erased
positions of the received signaly and the last̃n positions
of C1.

2) Use BP on this subgraph as if the vectors̃ was corrupted
by a binary symmetric channel (BSC) to estimate the
information bits ofC1. Then, use the information bits to
compute an estimatêw of w.

3) DecodeC2 to recover the messagem from ŵ. 3

We first discuss the required properties ofC1.
Definition 2: A C1 code ensemble isgood if for some

choice of ǫs, ǫc, δs, δc it is (ǫs, ǫc, δs, δc)-good. The latter is
a family of C1 codes, with a probability distribution over
the family, mappingk̃ information bits ton + ñ code bits,
where membersC1 of the ensemble have the following two
properties:

1) Erasure Quantization: Lett ∈ Sn+ñ be arbitrary. If the
number of∗ symbols int exceedsn + ñ − k̃(1 − ǫs),

3In practice, one would probably want to use a codeC2 that would allow
BP decoding.



then with high probability, there exists a codewordc ∈
C1 such that|{i : ci 6= ti andti ∈ {0, 1} and i < n}| ≤
δsn and|{i : ci 6= ti andti ∈ {0, 1} and i > n − 1}| ≤
δsñ.

2) Erasure Correction: Let̃C1 denote a punctured version
of C1 that keeps only the firstn code bits of every
codeword, and let̃c ∈ C̃1 correspond to a codeword
c ∈ C1. Form t by changing ≤ n − k̃(1 + ǫc)
positions of c̃ to ∗ symbols. With high probability,
we can compute a reconstructionw = f(t) such that
|{i : ci 6= wi and i > n − 1}| ≤ δcñ.

One class of codesC1 that can meet the conditions of
Definition 2 is an LT code [10], to which we restrict our
attention for the remainder of the paper. Following the notation
from [1], a (k̃,Ω(z)) LT code is one withk̃ information
bits and output degree distribution given by the generator
polynomial4 Ω(z). For our construction, we use, as in [1], a
modified version of the ideal soliton distribution. Specifically,
our distribution has generator polynomial

Ωµ,D(z) =
1

µ + 1

(

µz +

D−1
∑

i=2

zi

i(i − 1)
+

zD

D

)

,

where we have made the parametersµ and D explicit. We
truncate this LT code so that onlyn+ ñ outputs are produced.

For C2, we require only that the code 1) be of high-rate,
2) have efficient (linear complexity) encoding and decoding
algorithms, and 3) be a good error-correction code. With
respect to the latter, we require that the code be capable
of correcting a fixed fractionr of errors regardless of the
locations of these errors in the received signal. However, we do
not require that the code be capacity achieving. As an example,
one class of codesC2 that meets these requirements is that due
to Spielman [5].

The parameters of the LT code can be chosen to make
it suitable for our application. In particular, letǫs > 0 be
arbitrary, and letǫc = (2 ln(1/ǫs))

−1/ǫs . In turn, set the
C1 code parameters according toµ = ǫs/2 + (ǫs/2)2 and
D = ⌈1/ρ⌉, whereρ = ǫc/(4(1 + ǫc)). Furthermore, letδs =
10/Ω′

µ,D(1) < 10/ ln(1/ǫc), and letδc = 2(k̃/ñ)ρΩ′
µ,D(1).

Then we have the following:
Lemma 1:The ensemble of(k̃,Ωµ,D(z)) LT codes trun-

cated to lengthn + ñ is an (ǫs, ǫc, δs, δc)-good code forC1.
Finally, this C1 code, when combined with a suitably

parameterizedC2 code, yields an admissible coding scheme
for our channel in the sense of Definition 1. Specifically, we
have the following as our main result.

Theorem 1:SupposeC1 is chosen as in Lemma 1, andC2

is capable of correcting a fractionr = δs + δc of errors. Then
for the double-erasure information embedding channel with

es ≥ 1 − k̃ − ñ

n
+

k̃

n
ǫs,

4Recall that the probability of a degreei node is specified by the coefficient
of zi in a generator polynomialΩ(z). Thus the expected degree is given in
terms of this polynomial byΩ′(1).

and

ec ≤ 1 − k̃

n

(

1 + ǫc +
160

ln(1/ǫc)

)

,

our construction produces an admissible coding scheme with
rate lim sup k/n.
It follows immediately that our coding scheme is able to
achieve rates close toes − ec. Specifically, we have:

Corollary 1: For a double-erasure information embedding
channel with parameterses andec, we can choosek, k̃, n, ñ to
obtain an admissible coding scheme with rate arbitrarily close
to es − ec.

V. PROOFS

In this section, we prove Lemma 1 and Theorem 1.

A. Proof of Lemma 1

To prove Lemma 1, we verify the erasure quantization and
erasure correction properties separately.

The erasure quantization property is so named because it
essentially requires the code ensemble to be good for the
binary quantization problem [2]. To prove that this is true for
LT codes, we need the following lemma from [2].

Lemma 2:A linear block codeC can recover from a
particular erasure sequence (under ML decoding) if and only
if the dual codeC⊥ can quantize the dual sequence, i.e., the
sequence where all the erased symbols have been turned into
unerased symbols and vice versa. Also, ifC can recover from
an erasure sequence using BP decoding, thenC⊥ can quantize
the dual sequence using a dualized form of BP.

In Lemma 2, “recover” includes the case where BP decoding
can only determine some of the information bits. For a
particular erasure sequence, suppose BP decoding can recover
l information bits. Then, the dualized form of BP applied to
C⊥ and the dual sequence can quantize the dual sequence such
that at leastl unerased positions are matched.

Now we prove that(k̃,Ωµ,D(z)) LT codes satisfy the
erasure quantization property.

Lemma 3:A truncated(k̃,Ωµ,D(z))) LT code with param-
eters as specified in Section IV matches, with high probability,
a fraction1−δs of any subset of̃k(1−ǫs)+1 unerased output
symbols.

Proof: From Lemma 2, it follows that to prove Lemma 3
we only need to show that the dual of a truncated(k̃,Ωµ,D(z))
LT code is good on the BEC. More precisely, we must show
that if all the inputs to the dual code are erased, we can recover
all but aδs fraction of the erased symbols.

The analysis of the dual code is similar to the proof
of [1, Lemma 4]. Let ω(z) and ℓ(z) be the generat-
ing functions for the edge degree distributions with re-
spect to the variable and check nodes of the dual LT
code. 5 From [1], ω(z) = Ω′

µ,D(z)/Ω′
µ,D(1), and ℓ(z) =

5The dual code can be obtained by replacing all check nodes with variable
nodes and vice versa. This follows because the graphical representation of
C1 given in figure 1 shows the generator matrix forC1. The graphical
representation of the dual should use the generator matrix ofC1 as the parity
check matrix, and this can be achieved by swapping the variable nodes with
the check nodes.



(1−Ω′
µ,D(1)(1 − z)n(1 − ec))

n(1−ec)(1−ǫs). Using the density
evolution method, to prove Lemma 3 we must show that
ω(1−ℓ(1−z)) < z,∀z ∈ [δs, 1]; our argument differs from that
of [1] only in that [1] provesℓ(1−ω(1−z)) < z,∀z ∈ [δs, 1],
i.e., our argument proves that we can interchangeω andℓ and
preserve the inequality.

Now ω(1 − ℓ(1 − z)) < z reduces toΩ′
µ,D(1 − ℓ(1 −

z)) < Ω′
µ,D(1)z. Using the formula forΩ′

µ,D(z) given in
[1], some algebra shows thatΩ′

µ,D(1− ℓ(1− z)) < Ω′
µ,D(1)z

for sufficiently small ǫc. In particular, it suffices to choose
ǫc < (ln(1/ǫs)) + O(1))−1/ǫs .

Lemma 3 shows that(k̃,Ωµ,D(z)) LT codes satisfy the
erasure quantization property because the LT code generates
every output bit i.i.d. Thus, the unmatched positions are
uniformly distributed throughout then + ñ output positions,
and we can consider the firstn positions separately from the
last ñ positions. (In fact, since all the erasures are in the firstn
positions, the fraction that are incorrect in the firstn positions
is upper bounded byδs(1 − es)).

The erasure correction property follows from the following
lemma, given in [1, Lemma 4].

Lemma 4:With a truncated(k̃,Ωµ,D(z))) LT code with
parameters as specified in Section IV one can, with high
probability, recover all but a fractionρ of the k̃ inputs from
any subset of̃k(1 + ǫc/2) + 1 output symbols.

Proof of Lemma 1: Lemma 3 proves the erasure quan-
tization property. To complete the proof of Lemma 1, we
need to turn the bound on the number of unrecovered inputs
given in Lemma 4 into a bound on the number of unrecovered
outputs in the last̃n positions. With high probability at most
2k̃ρ variable nodes ofC1 are unrecovered (we need the 2 for
Lemma 6 to come later). These unrecovered variable nodes
induce at most2k̃ρΩ′

µ,D(1) unrecovered check nodes in the
last ñ positions ofC1 with high probability. This is because
the number of unrecovered check nodes in the lastñ positions
is upper bounded by

∑

i deg(i), wheredeg(i) is the degree
of nodei in the subgraph induced by the lastñ check nodes
of C1, and the sum ranges over all the variables nodes that
are in error. Because the check nodes choose their neighbors
independently at random, this sum is tightly concentrated
around its expected value, which isΩ′

µ,D(1)ñρ. Thus, with
high probability we do not see more than2k̃ρΩ′

µ,D(1) unre-
covered check nodes in the lastñ positions.6 Note that this
analysis would hold even if we made errors in the variable
nodes instead of just not recovering certain nodes. This is
important when we prove Lemma 6 to come.

B. Proof of Theorem 1

We prove, in order, that our construction satisfies both the
encoding and decoding properties of an admissible coding
scheme.

The former is established by the following Lemma.
Lemma 5:For the choices ofC1, C2, state, and channel

distributions given in Theorem 1, our construction satisfies

6We assumẽk ≥ ñ.

the encoding property of Definition 1.
Proof: The encoding algorithm given in Section IV

guarantees that we satisfy the encoding property, since step
3 of the algorithm ensures that the encoding matchess at all
non-∗ positions. However, we can make a stronger statement
than this. Lemma 1 guarantees that a large fraction of the state
positions are matched after step 2 on the encoding algorithm.
Thus, step 3 only changes a small (δs) fraction of unmatched
positions to get the final encoding. This will be important when
we analyze the decoder.

In the sequel, we refer to the encoding computed after step
2 as thepreliminary encoding.

Now we prove that our construction satisfies the decoding
property. Specifically, we have the following result, whose
proof requires us to show that our code can correct the
erasures made by the channel, and the errors introduced by
the preliminary encoding.

Lemma 6:For the choices ofC1, C2, state, and channel
distributions given in Theorem 1, our construction satisfies
the decoding properties of Definition 1.

To prove Lemma 6, we first need the following Lemma,
which implies that a truncated version ofC1 can be decoded
reliably over BSC(δs).

Lemma 7:For the choice of parameters given in Theo-
rem 1, assume that the firstn bits of a codeword ofC1 are
sent overBSC(δs), and then over the erasure channel specified
in Theorem 1. Then, BP can be used to recover the level 1
variable nodes with high probability, in the sense that at most
a fractionρ of the nodes are not recovered correctly.

In order to prove Lemma 7, we will make use of the
following result from [3, Thm. 4.2] relates the performance
of a code on the BEC to its performance on any binary input-
symmetric channel (BISC). The Bhattacharya parameter of
a BISC is defined asλ = E[e−L/2], where L is the log-
likelihood ratio of the input given the channel output.

Lemma 8:Let λ(C) be the Bhattacharya parameter of an
arbitrary BISCC. If BP can decode an ensemble of codes
over BEC(λ(C)), then BP can also decode reliably overC.

We remark that the proof of Lemma 8 given in [3] actually
proves the stronger statement that if the fraction of unrecov-
ered inputs overBEC(λ(C)) < δ, then the fraction of inputs
which are recovered incorrectly overC is also less thanδ. 7

Proof of Lemma 7: We prove that the subgraph ofC1

formed by only considering the positions that were not erased
by the erasure channel is good forBSC(δs). Let ǫ̃ > 0 be a
parameter we determine later. Say we receivek̃(1 + ǫ̃) bits,
but a δs fraction of these bits are incorrect. From Lemma 4,
we know that this subcode ofC1 can recover from erasures
provided that̃k(1+ǫc/2) unerased outputs are available. Thus,
we can tolerate an erasure probability ofẽ = (ǫ̃− ǫc)/(1+ ǫ̃).

7Density evolution typically looks at the values passed along edges of the
graph. To turn this into a bound on inputs, it suffices to pretend that each
variable nodes has an “extra” edge leaving which is not attached to any other
nodes. The value of this edge is updated using the same densityevolution
equations, and the value on this edge determines the value of the associated
variable.



Applying Lemma 8, it follows that ifδs satisfiesλ(δs) =
2
√

δs(1 − δs) < ẽ, then we can correct aδs fraction of errors.
This inequality is satisfied if we chooseǫ̃ = ǫc+160/ ln(1/ǫc).

It remains to confirm thatC1 can correct enough of the
errors from the preliminary encoding thatC2 can correct those
that remain.

Proof of Lemma 6: We first define a new channelCe,
which models the positions whose bits we need to change
after the preliminary encoding in order to satisfy the encoding
property. LetΓ be the number of unmatched positions after
the preliminary encoding, so thatCe introducesΓ errors to
form the final encoding. Because the LT code generates each
output symmetrically, and because the state distribution (2)
is symmetric, it follows that givenΓ = γ, the γ positions
flipped by Ce are equally likely to be anyγ positions.
Thus, conditioned on the number of errors,Ce has the same
distribution as a BSC.

Lemma 1 guarantees thatΓ ≤ δsn with high probability. Let
γ be the expected value ofΓ (our proof of Lemma 3 shows
γ ≤ δs, but we can calculateγ to any desired accuracy using
density evolution). Then, a standard martingale argument [4]
shows that there exists a constantβ such that for anyǫ > 0,

Pr[|Γ − γ| > ǫ] < e−βǫ2n. (6)

8

Let D(·‖·) denote the Kullback-Leibler distance between
two Bernoulli random variables. For any particular valueγ
and sufficiently largen, we know that the probabilityPγ,ǫ

that a realizationBSC(γ) of the BSC makes, for someǫ > 0,
a fractionγ + ǫ errors inn transmissions is lower bounded by

Pγ,ǫ ≥
e−nD(γ+ǫ‖γ)

√
2πn

, (7)

and a similar statement is true forγ − ǫ.
We say that BP decoding of (a truncated version) ofC1 fails

if the fraction of level 1 variable nodes that are not recovered
correctly is greater than2ρ. Using martingale arguments, one
can show that Lemma 7 implies

Pr[BP decoding fails for BSC(δs)] ≤ e−αρ2n, (8)

for a suitable constantα > 0. Choosingǫ such thatσ =
D(γ ± ǫ||γ) − αρ2 < 0, then combining (6), (7), (8), and the
fact that conditioned on the number of errors, the distribution
of a BSC andCe is the same, we obtain

Pr[BP decoding fails forCe] ≤ e−σn
√

2πn + e−βǫ2n.

Thus, the probability that BP decoding ofC1 fails is exponen-
tially small even when the errors are introduced byCe.

To complete the proof, we need to correct the small fraction

8In deriving equation 6, it is important that the encoder uses the algorithm
specified in Section IV. Specifically, the unreserved variables need to be as-
signed randomly. This allows us to conclude that about half ofthe unreserved
checks are not satisfied. Then, we can multiply the density evolution value
for the number of unreserved checks by.5 to get γ, and the concentration
result in equation 6 follows easily.

of check nodes which are not recovered properly after decod-
ing C1. There are two sources of error for the lastñ check
nodes: errors caused because our definition of failure allows
for a 2ρ fraction of errors in the variable nodes, and errors
caused because during encoding we may not be able to match
a δs fraction of the check nodes. In total, with high probability
the two sources of error induce at most a fractionδs + δc of
errors in the last̃n check nodes, which can be corrected given
the choice ofC2.

VI. CONCLUDING REMARKS

We have described a coding scheme for the double-erasure
information embedding channel with linear-time encoding and
decoding algorithms. The key ingredient in the construction is
a code that is good for both BEQ and the BEC. In our construc-
tion, becauseǫc is so small compared toǫs, the complexity of
encoding and decoding scales with(1/ǫs) ln ln(1/ǫs)). Thus,
our choice ofΩµ,D(x) allows us to prove the asymptotic result,
but the dependence onǫs makes it difficult to get close to
es − ec. We believe that by using techniques similar to those
employed in [1] we can find choices forΩ(z) with a lower
value of Ω′(1), which still perform well for BEQ and BEC.
This is the subject of future work.
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