
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Designing with Distance Fields

Sarah F. Frisken, Ronald N. Perry

TR2006-054 July 2006

Abstract

Distance fields provide an implicit representation of shape that has advantages in many applica-
tion areas; in this overview, we focus on their use in digital design. Distance fields have been
used in Computer Aided Design since the 1970’s (e.g. for computing offset surfaces and for
generating rounds and filets). More recently, distance fields have been used for freeform design
where their dual nature of providing both a volumetric representation and a high-quality surface
representation provides a medium that has some of the properties of real clay. Modern computer
systems coupled with efficient representations and methods for processing distance fields have
made it possible to use distance fields in interactive design systems. This overview reviews pre-
vious work in distance fields, discusses the properties and advantages of distance fields that make
them suitable for digital design, and describes Adaptively Sampled Distance Fields (ADFs), a
distance field representation capable of representing detailed, high quality, and expressive shapes.
ADFs are both efficient to process and have a relatively small memory footprint.

ACM SIGGRAPH 2006

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2006
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

1. Introduction
Distance fields provide an implicit representation of shape that
has advantages in many application areas; in this overview, we
focus on their use in digital design. Distance fields have been used
in Computer Aided Design since the 1970’s (e.g., for computing
offset surfaces and for generating rounds and filets). More
recently, distance fields have been used for freeform design where
their dual nature of providing both a volumetric representation
and a high-quality surface representation provides a medium that
has some of the properties of real clay. Modern computer systems
coupled with efficient representations and methods for processing
distance fields have made it possible to use distance fields in
interactive design systems. This overview reviews previous work
in distance fields, discusses the properties and advantages of
distance fields that make them suitable for digital design, and
describes Adaptively Sampled Distance Fields (ADFs), a distance
field representation capable of representing detailed, high quality,
and expressive shapes. ADFs are both efficient to process and
have a relatively small memory footprint.

2. Distance Fields
An object’s distance field specifies, for any point in space, the
distance from that point to the boundary of the object. The
distance can be signed to distinguish between the inside and
outside of an object (see Figure 1a). Distance fields are a specific
example of implicit functions, which have a long history of use
and study (e.g., see [Bloomenthal 1997]). A distance field can be
represented by a scalar function dist(x) which maps x ∈ ℜn onto
ℜ. Typically, the boundary Ω of an object represented by a
distance field is located at the zero-valued iso-surface of the
distance function, i.e., Ω is the set of all points where dist(x) = 0.

The general form of a distance function is dist(x) = Norm(x –
S(x)), where Norm(u) is a metric that decreases monotonically
with ||u|| and S(x) is a point on the boundary Ω. A minimum
distance function is such that S(x) = s*, where s* is on Ω and
|Norm(s*)| ≤ |Norm(s)| ∀ s ∈ Ω. Such general forms of the
distance function have uses in various applications (e.g., distance
fields with non-vanishing gradients are used in Computer Aided
Design and Manufacturing (CAD/CAM) by [Biswas and Shapiro
2004]), but Euclidean distance (i.e., dist(x) = ±||x – s*||) is
frequently used because of its utility in a number of applications
(e.g., collision detection and surface offsetting).

2.1 Properties of Distance Fields
Distance fields have a number of useful properties. Unlike
boundary representations, a distance field representing an object is
defined everywhere in space and not just on the object’s surface.
With a distance field representation, it is trivial to determine
whether a point is inside, outside, or on the boundary of the
represented shape; the distance function is simply evaluated at a
query point and compared to the value of the iso-surface
representing the boundary. The gradient of the distance field (i.e.,
(δdist(x)/δx, δdist(x)/δy, δdist(x)/δz) in 3D) yields the surface
normal if the point x lies on the boundary Ω and the direction to

the closest point on the surface for points off of the boundary Ω.
Euclidean distance fields are C0 continuous everywhere in

space and C1 continuous except at boundaries of Voronoi regions
(see Figure 2). Discontinuities in the gradient occur near sharp
corners and along the medial axis of the shape and can be avoided
1) near the boundary Ω by filtering the boundary representation to
avoid sharp corners (e.g., see [Sramek and Kaufman, 1999]) or 2)
throughout the field by using alternatives to the Euclidean
distance function (e.g., see [Biswas and Shapiro 2004]).

2.2 Operations on Distance Fields
Distance fields are particularly useful in design because they
make it fast and simple to combine preexisting shapes using
Boolean operations such as unioning, differencing, and
intersection (see Figure 3). Such Boolean operations are used in
Constructive Solid Geometry (CSG) to combine primitive solids
such as spheres, cylinders, and rectangular boxes to form complex
shapes. Boolean operations are often used in volumetric sculpting
systems because they can be used to add or subtract material to
the surface of an object along the swept path of a virtual sculpting
tool.

When objects are represented as distance fields, Boolean

Designing with Distance Fields

 Sarah F. Frisken Ronald N. Perry
 Tufts University MERL
 frisken@cs.tufts.edu perry@merl.com

Figure 2. a) The signed 2D distance field of this letter ‘D’ is C0

continuous everywhere and b) C1 continuous everywhere except
on the boundaries of Voronoi regions.

a) b)

a) b)

Outside

Boundary

Inside

Figure 1. a) A 2D shape and b) its 2D distance field. The shape’s
distance field represents its boundary, its interior (tinted brown
here for illustration) and the space in which it sits.

60

operations can be performed using simple min() and max()
operators (see Table 1). Although the resultant fields are not
strictly Euclidean (in particular, the combined field near sharp
corners is non-Euclidean), the fields are often a reasonable
approximation to the true Euclidean distance field close to the
object boundary.

Operation
Name

Symbolic
Representation

Combined Distance

Intersection dist(A ∩ B) min(dist(A), dist(B))
Union dist(A ∪ B) max(dist(A), dist(B))
Difference dist(A – B) min(dist(A), –dist(B))

Table 1. Boolean operations can be performed on objects
represented by distance fields using simple min() max() operators.
The functions listed in this table assume a signed distance field
with the object surface lying at the zero-valued iso-surface and a
sign convention that uses positive distances for points inside the
shape and negative distances for points outside of the shape.

2.3 Advantages of Distance Fields
Distance field have several advantages over boundary
representations for representing and rendering shapes. First,
distance fields represent more than just the boundary of the shape;
they also provide a representation of the object’s interior and the
space in which the object sits. This additional information is what
makes it easy to perform CSG on distance fields and also provides
important information for physical simulation (e.g., it can be used
to detect collisions and, if a collision occurs, to determine
penetration depth and the direction from the intersecting point to
the closest surface point).

Second, distance fields represent more than just a single
boundary. By changing the iso-surface value, we can obtain an
infinite number of offset surfaces. In contrast to boundary
representations, surface offsetting with distance fields handles
changes of topology robustly. This feature plays an important role
in the utility and success of Level Set approaches (e.g., see Osher
and Fedkiw 2002, and Sethian 1996) which use distance functions
to represent evolving boundaries.

3. Applications of Distance Fields
Distance fields have been used in many fields including
CAD/CAM, medical imaging and surgical simulation, modeling
deformation and animating deformable models, level set methods,

simulating fluid dynamics for modeling smoke and fluids, scan
conversion or ‘voxelization’, reconstructing shape from range
data, and robotics. See [Frisken and Perry, 2002] and [Jones et al.,
2006] for summaries of the use of distance fields in computer
graphics and computer vision.

3.1 Distance Fields in Digital Design
Early work using distance fields for digital design was done in
CAD/CAM for offsetting (e.g., Ricci 1973 and Breen 1991),
tolerancing (e.g., Requicha 1983), and generating rounds and
filets (Rockwood 1989). Freeform design using distance fields has
been done in the context of implicit surface modeling (e.g.,
Bloomenthal and Wyville 1990, Cani Gascuel 1993) and volume
graphics (e.g., Galyean and Hughes 1991, Wang and Kaufman
1995, and Avila and Sobierajski 1996). These early freeform
modeling systems typically produced ‘blobby’ models, i.e.,
organic models without sharp edges, corners, or other fine detail,
thereby limiting the utility of such systems. More powerful
computers coupled with the use of spatial data structures for
reducing the memory requirements of sampled distance fields
have recently enabled the development of systems that can
produce higher resolution models (e.g., Sensable Technologies’
Freeform modeling system, Baerentzen 1998, Perry and Frisken
2001, Museth et al. 2002, and Blanch et al. 2004).

4. Representing Distance Fields
4.1 Implicit vs. Sampled Representations
The distance field of simple geometric shapes such as spheres,
rectangular boxes, conics, and ellipsoids can be represented
implicitly. For example, the distance field of a sphere centered at
the origin can be written using the implicit expression
distSphere(x,y,z) = R – (x2 + y2 + z2)½. Processing implicit shape
representations (e.g., for rendering, modeling via CSG operations,
or performing collision tests) requires evaluating the implicit
expression at query points as needed.

Implicit functions for more complex shapes are often very
difficult to specify and/or too costly to evaluate, thus making an
implicit representation of an object’s distance field impractical.
For this reason, distance fields are often represented as sampled
volumes, where each sample in the volume measures the distance
from the corresponding sample point to the object. The distance
from an arbitrary point to the object is reconstructed from local
sampled values using an interpolation function. For example, in a
regularly sampled rectilinear volume, tri-linear interpolation is
often used to reconstruct the distance at an arbitrary point from
the 8 nearest sampled values of the volume. Figure 4 illustrates

A B A B A B

Figure 3. Distance fields can be trivially combined and edited using Boolean operations such as union, difference, and intersection.
These Boolean operations can be expressed as simple min() and max() operators.

Union: A ∪ B
dist(A ∪ B) = max(dist(A), dist(B))

Difference: A – B
dist(A – B) = min(dist(A), –dist(B))

Intersection: A ∩ B
dist(A ∩ B) = min(dist(A), dist(B))

61

sampled distances to a 2D shape.
As long as the maximum curvature of an object is not too

high, a sampled distance field can provide a reasonably good
representation of the object’s surface. As was shown in [Gibson
1998a], the surface of a sphere can be represented with a very
small volume of samples, especially when both the distance and
the gradient of the distance field are stored for each sample point
(see Figure 5). However, for detailed models, the distance field
must be sampled at high enough rates to avoid aliasing during
reconstruction and rendering. Large models that have even small
regions with high detail have very high memory requirements
and/or limited resolution when the distance field is stored in a
regularly sampled volume. Because generating the sampled
representation requires evaluating the distance function at every
sample point in the volume, regularly sampled volumes are also
slow to generate and process.

4.2 Improving Efficiency
There has been a significant amount of effort made to speed up
the generation of regularly sampled distance fields. Many of these
approaches are summarized in [Jones et al. 2006]. Researchers at
the University of North Carolina [Hoff et al. 1999, Hoff et al.
2001, and Sud et al. 2004] have used graphics hardware to speed
up the distance computation in 2D and later in 3D. Others reduce
processing by restricting evaluation of the distance field to a
‘shell’ or ‘narrow band’ around the object surface [Curless 1996,
Jones 1996, Desbrun and Cani-Gascuel 1998, and Whitaker
1998]. In some cases, accurate distance values evaluated in the
shell are then propagated to voxels outside the shell using fast
distance transforms [Jones and Satherley 2001, Zhao et al. 2001]
or fast marching methods from level sets [Kimmel and Sethian
1996, Breen et al. 1998, Whitaker 1998, and Fisher 2001].
[Szeliski and Lavalle 1996, Wheeler 1998, and Strain 1999]
evaluate distance values at cell vertices of a classic or ‘3-color’
octree (i.e., an octree where all cells containing the surface are
subdivided to the maximum octree level) to reduce the number of
distance evaluations over regular sampling.

4.3 Adaptively Sampled Distance Fields
More recently, it was observed that substantial savings both in
memory requirements and in the number of distance evaluations
required to represent an object could be made by adaptively
sampling the object’s distance field according to the local
complexity of the distance field rather than whether or not a
surface of the object was present. [Gibson 1998a] noted that the
distance field near planar surfaces can be reconstructed exactly
from a small number of sample points using trilinear
interpolation. This observation led to Adaptively Sampled
Distance Fields (ADFs) [Frisken et al. 2000], which use detail-
directed sampling, i.e., high sampling rates where there are high
frequencies in the distance field and low sampling rates where the
distance field varies smoothly. As illustrated in Figure 6, this
approach results in a substantial reduction in the number of
distance evaluations and significantly fewer stored distance values
than would be required by a 3-color quadtree. ADFs are a
practical representation of distance fields that provide high quality
surfaces, efficient processing, and a reasonable memory footprint.
[Perry and Frisken 2001] demonstrate the practical utility of

Figure 4. a) A 2D shape and 3 signed sampled distance values. b)
A regular sampling of the distance field.

a) b)

-30

10
-20

a) b)

c) d)

Figure 5. The surface of a sphere is well represented by a sampled
distance field even at very low resolution. a) radius = 30 sample
points, b) radius = 3 sample points, c) radius = 2 sample points,
d) radius = 1.5 sample points.

Figure 6. Quadtree representations for storing a sampled distance
field of a 2D shape. a) is a boundary-limited (i.e., 3-color)
quadtree in which cells are subdivided to their maximum level if
they contain the shape’s boundary. a) is an ADF with a
biquadratic reconstruction function in which cells are subdivided
according to local detail in the distance field. The ADF requires
significantly fewer distance samples to achieve the same
representation quality.

a) b)

62

ADFs in a 3D sculpting system that provides real time volume
editing and interactive ray casting on a desktop PC (Pentium IV
processor) for volumetric models that have a resolution equivalent
to a 2048x2048x2048 volume.

While there are various instantiations of ADFs (see Figure 7
for some examples) [Frisken et al. 2002], this paper is primarily
focused on quadtree and octree-based ADFs which subdivide the
space enclosing an object into rectilinear cells whose size depends
on the local detail of the distance field (see Figure 6b). A set of
sampled distance values are stored for each leaf cell of the
quadtree or octree. Distances and gradients of the distance field at
arbitrary points within a cell can be reconstructed by interpolating
the sampled values stored for the cell (and possibly neighboring
cells). We currently use trilinear interpolation for reconstructing
3D distance fields from distances sampled at the eight corners of
3D ADF leaf cells and biquadratic interpolation for reconstructing
2D distance fields from nine sample points stored in 2D ADF leaf
cells. Note that ADFs essentially subdivide space into small
regions over which we have a local implicit function that is
defined by the sample points associated with that region and the
interpolation function. This subdivision of the globally implicit
distance field into spatially-limited local implicit fields provides
efficient querying and processing of the field.

Recently, we have implemented an improved 2D ADF
representation that uses a biquadratic interpolation function for
better quality and more efficient representation of curved edges
(see Figures 6b and 8a) and specialized ADF cells that provide a
compact and exact representation of the distance field near
corners and thin sections of a 2D shape (see Figure 8b) [Perry and
Frisken 2003, Frisken and Perry 2004].

5. Processing Adaptively Sampled Distance Fields
5.1 ADF Generation
Octree-based ADFs can be generated using a top-down tiled
generation algorithm described in [Perry and Frisken 2001].
Starting with a geometric description of an object (e.g., a triangle
model) and the root cell of the ADF, cells of the ADF are
recursively subdivided until the field within a cell is well
represented by the cell’s sampled distance values and its
reconstruction function. For example, for an octree-based ADF
using trilinear interpolation, distances from the object to each cell
vertex and distances to a set of test points within the cell are
computed. The distances at cell vertices are used to reconstruct
estimates of the distances at the test points; if the estimates do not
match the computed distances at the test points, the cell is further
subdivided. Additional data structures are used to avoid
recomputing distances whenever possible and to ensure that
shared distances (i.e., the distance value of a vertex that is shared
by several cells) are only stored once.

5.2 Direct Rendering
3D ADFs can be rendered in several ways: directly via ray tracing
and indirectly by first generating a surface representation (e.g.,
points or triangles) that can be rendered via a traditional graphics

Figure 8. Improved ADFs for more accurate and efficient 2D
shape representation. a) a 2D ADF with a biquadratic
interpolation function for reconstructing distance values and b) an
ADF with special cell representations for corners and thin
sections of the shape.

Figure 9. An ADF
rendered as points at
two different scales.

a) b)

Figure 7. Various ADF instantiations: a) a 2D shape and its b) quadtree-based ADF, c) wavelet-based ADF, and d) multi-resolution
triangulation-based ADF.

a) b) c) d)

63

pipeline (e.g., OpenGL). For direct rendering, a ray is cast into the
ADF in the view direction for each pixel. Cells that might contain
the surface (as indicated by the cell’s distance values) are tested in
front to back order for ray-surface intersections. If an intersection
occurs, the intersection point and the gradient of the distance field
at the intersection point are determined and used to compute the
color of the pixel. Secondary rays (e.g., shadow rays or reflection
rays) can be spawned at each intersection point for higher quality
rendering. An adaptive ray casting approach can be used to
achieve reasonable full-image rendering rates and fast local
updates of regions that are being interactively edited [see Perry
and Frisken 2001 for details].

5.3 Point-based Rendering
The octree data structure lends itself well to point-based rendering
approaches [Perry and Frisken 2001]. To generate a point-based
model of the surface, leaf cells of the octree that contain the
surface are seeded with a set of randomly generated points. A
uniform distribution of points over the surface can be achieved by
seeding leaf cells with a number of points that is proportional to
the size of the leaf cell (i.e., large leaf cells are seeded with more
points than small leaf cells). Once the seeded points are placed in
each leaf cell, they are relaxed onto the surface by following the
gradient of the distance field until they reach the surface. The
points can be optionally shaded using the gradient of the distance
field at their final locations. This approach is quite fast, allowing
800,000 Phong-shaded points to be generated in 1/5 of a second
on a Pentium II processor in 2001. Figure 9 shows a point-base

model rendered via OpenGL at two different sizes.

5.4 Tessellation
ADFs can also be converted to triangle models which can be
rendered interactively using graphics hardware. We use a
modified SurfaceNets triangulation algorithm [Gibson 1998b,
Perry and Frisken 2001] (later relabeled as Dual Contouring in [Ju
et al. 2002]) to create topologically consistent, high quality
triangle models on the fly. The octree data structure of the ADF
can be exploited for creating Level-of-Detail triangle models (see
Figure 10). The tesselation algorithm is very fast and handles
adjacent octree cells whose sizes differ by greater than a factor of
two. The method was able to generate 200,000 triangles in 0.37
seconds on a Pentium II processor in 2001 and is considerably
faster on today’s workstations.

5.5 Concept Modeling
Building on prior work in implicit modeling (see e.g.,
[Bloomenthal 1997]), modeling with generalized cylinders (e.g.,
[Crespin et al. 1996] and [Aguado et al. 1999]), and sketched-
based input (e.g., [Cohen et al. 2001] and [Grimm 1999]), we
have implemented a prototype system for creating expressive and
detailed 3D creatures and other organic models via a simple and
intuitive interaction method. Leveraging off of traditional 2D
drawing, this system incorporates three design stages: 1) free-
hand sketching of skeleton curves that rough out the basic shape
of the object, 2) fleshing out the geometry of the creature by
specifying a set of 2D cross-sectional profiles that are lofted along
the skeleton, and 3) editing the lofted surface to add high
resolution geometric detail via a brush-based carving metaphor.
These three stages are illustrated in Figure 11.

In the second design stage, the user fleshes out the geometry
by lofting 2D cross-sectional profiles along the skeleton. The
profiles are represented as 2D ADFs and are edited using a new
2D profile editor that provides a seamless interface between pixel-
based (painting) and vector-based (curve drawing) metaphors.
Because lofting is performed as an implicit blend, the cross
sections can have arbitrary topology. A new robust lofting method
that exploits ADFs is used to produce high resolution models that
accurately reflect the detailed shape of the 2D profiles.

5.6 Detailed Carving
ADFs provide a significant improvement over regularly sampled
distance fields and distance fields stored in 3-color octrees (i.e.,
octrees subdivided based on the presence of an object’s surface

Figure 10. The octree data structure can be exploited for
generating level-of-detail triangle models. a) a low resolution
triangle model and b) a medium resolution model generated from
an ADF.

Figure 11. a) A skeleton curve defining the basic shape and a set of 2D profiles that are placed perpendicular to the skeleton to define the
surface of the shape. Note that the profiles can have arbitrary topology. In b) the profiles have been lofted along the skeleton producing an
expressive concept model. In c) detail has been added to the surface of the shape using a brush-based carving tool.

a) b)

a) b) c)

64

rather than on detail in the distance field) because the smaller
memory size and faster processing times of ADFs enable
interactive carving at very high resolution. Carving is
accomplished by performing Boolean operations (e.g.,
differencing or unioning) between the carving tool and the object
being carved. For practical purposes, the effect of the carving tool
is limited to a bounding region surrounding the tool. ADF cells of
the object that lie within this bounding region are regenerated; the
distance field in the regenerated cells is computed by applying the
appropriate Boolean operation to the distance field of the tool and
the distance field of the object.

[Perry and Frisken 2001] describe Kizamu, a system for
sculpting detailed characters that uses ADFs. This system
provides a means for generating ADF models from various
sources such as stock distance functions (e.g., spheres, rectilinear
boxes, cones, and cylinders), CSG combinations of stock distance
functions, height fields and range data, extrusion and revolution of
2D ADFs, lathing of existing ADFs, and triangle models. Kizamu
(i.e., “to carve” in Japanese) allows users to perform detailed
carving of the surfaces of these ADF models using a pressure
sensitive pen and a brush-based metaphor. The carving tool can be
applied perpendicular to the viewing direction or in a direction
normal to the local object surface. The system maintains a history
of operations during carving and provides infinite undo and redo
operations. Figures 11c, 12, and 13 show several parts generated
using Kizamu, illustrating that ADFs can be used to produce
smooth, organic surfaces with high quality edges and corners and
intricate geometric detail.

6. Summary
The use of distance fields for representing and processing shape
has application in many fields. In particular, distance fields
provide an intuitive representation for digital design because they
can be intuitively and efficiently combined using Boolean
operations and they can be edited and manipulated in ways that
resemble real clay. More efficient algorithms and efficient
representations of distance fields (such as ADFs) have facilitated
several systems that use distance fields for design. In this
overview, we have discussed properties and advantages of
distance fields for representing shape, reviewed previous work
using distance fields in digital design, and described methods for
representing and processing ADFs together with two systems that
use ADFs for concept modeling and detailed carving.

7. References
AGUADO, A., MONTIEL, E., AND ZALUSKA, E., 1999. Modeling

Generalized Cylinders via Fourier Morphing. ACM
Transactions on Graphics, 18(4), pp. 293-315.

AVILA R. AND SOBIERAJSKI L. 1996. A Haptic Interaction Method
for Volume Visualization. Proc. IEEE Visualization, pp. 197-
204.

BAERENTZEN J., 1998. Octree-based volume sculpting. Proc. Late
Breaking Hot Topics, IEEE Visualization, pp. 9–12.

BISWAS, A. AND SHAPIRO, V. 2004. Approximate Distance Fields
with Non-Vanishing Gradients. Graphical Models, 66(3), pp.
133-159.

BLANCH, R., FERLEY, E., CANI, M-P., AND GASCUEL, J., 2004.
Non-Realistic Haptic Feedback for Virtual Sculpture. Research
report 5090, INRIA, France.

BLOOMENTHAL, J. AND WYVILLE, B. 1990. Interactive Techniques
for Implicit Modeling. Computer Graphics, 24(2), pp. 109-116.

BLOOMENTHAL, J. (ED.), 1997. Introduction to Implicit Surfaces.
Morgan Kaufman Publishers.

BREEN, D., 1991. Constructive Cubes: CSG Evaluation for
Display Using Discrete 3D Scalar Data Sets. Proc.
Eurographics, pp. 127-141.

BREEN, D., MAUCH, S., AND WHITAKER, R., 1998. 3D Scan
Conversion of CSG Models into Distance Volumes. Symp. on
Volume Visualization, pp. 7-14.

COHEN, J., MARKOSIAN, L., ZELEZNIK, R., AND HUGHES, J., 1999.
An Interface for Sketching 3D Curves. Proc. Interactive 3D
Graphics, pp. 17-21.

CRESPIN, B., BLANC, C., AND SCHLICK, C., 1996. Implicit Swept
Objects. Proc. Eurographics, pp. 165-174.

CURLESS, B. AND LEVOY, M., 1996. A Volumetric Method for
Building Complex Models from Range Images. ACM
SIGGRAPH, pp. 303-312.

DESBRUN, M. AND CANNI-GASCUEL, M-P., 1998. Active Implicit
Surface for Animation. Graphics Interface, pp. 143-150.

FISHER, S. AND LIN, M., 2001. Fast Penetration Depth Estimation
for Elastic Bodies Using Deformed Distance Fields. IEEE/RSJ
International Conference on Intelligent Robots and Systems.

FRISKEN, S., PERRY, R., ROCKWOOD, A., AND JONES, T., 2000.
Adaptively Sampled Distance Fields: a General Representation
of Shape for Computer Graphics. ACM SIGGRAPH, pp. 249-
254.

FRISKEN, S. AND PERRY, R., 2002 Efficient Estimation of 3D
Euclidean Distance Fields from 2D Range Images. Proc. IEEE
Symposium on Volume Visualization, pp. 81-89.

FRISKEN, S., PERRY, R., AND JONES, T., 2002 Detail-Directed
Hierarchical Distance Fields. U.S. Patent 6,396,492.

Figure 12. Detailed ADFs created using the Kizamu sculpting
system. a) a 3D surface of revolution created from a sculpted 2D
ADF and b) a part extruded from a 2D ADF with 3 punched
holes.

Figure 13. Highly detailed ADFs created from range data using
the Kizamu sculpting system. a) stones and sand and b) tree bark.

a) b)

a) b)

65

FRISKEN, S. AND PERRY, R., 2004. Method for Generating an
Adaptively Sampled Distance Field of an Object with
Specialized Cells. U.S. Patent Pending.

GASCUEL, M-P. 1993. An implicit Formulation for Precise
Contact Modeling between Flexible Solids. ACM SIGGRAPH,
pp. 313-320.

GALYEAN T. AND HUGHES J., 1991. Sculpting: an Interactive
Volumetric Modeling Technique. ACM SIGGRAPH, pp. 267-
274.

GIBSON, S. 1998a. Using DistanceMaps for Smooth Surface
Representation in Sampled Volumes. Symp. Volume
Visualization, pp. 23-30.

GIBSON, S. 1998b. Constrained Elastic SurfaceNets: Generating
Smooth Surfaces from Binary Segmented Data. Proceedings
MICCAI.

GRIMM, C., 1999. Implicit Generalized Cylinders using Profile
Curves. Proc. Implicit Surfaces.

HOFF III, K., CULVER, T., KEYSER, J., LIN, M. AND MANOCHA, D.,
1999. Fast Computation of Generalized Voronoi Diagrams
Using Graphics Hardware. ACM SIGGRAPH, pp. 277-285.

HOFF III, K., ZAFERAKIS, A., LIN, M., AND MANOCHA, D., 2001.
Fast and Simple 2D Geometric Proximity Queries Using
Graphics Hardware. Symp. Interactive 3D Graphics.

JONES, M., 1996. The Production of Volume Data from Triangular
Meshes Using Voxelization. Computer Graphics Forum, 15(5),
pp. 311-318.

JONES, M. AND SATHERLEY, R., 2001. Shape Representation
Using Space Filled Sub-Voxel Distance Fields. Int. Conf.
Shape Modeling and Applications, pp. 316-325.

JONES, M., BAERENTZEN, J. A., AND SRAMEK, M., 2006. 3D
Distance Fields: A Survey of Techniques and Applications,
accepted for IEEE Transactions on Visualization and Computer
Graphics.

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J., 2002. Dual
Contouring of Hermite Data. ACM SIGGRAPH, pp. 339-346.

KIMMEL, R. AND SETHIAN, J. 1996. Fast Marching Methods for
Computing Distance Maps and Shortest Paths. CPAM Report

669, Univ. of California, Berkeley.
MUSETH, K., BREEN, D., WHITAKER, R., AND BARR, A., 2002.

Level set surface editing operators. ACM SIGGRAPH, pp. 330-
338.

PERRY R. AND FRISKEN, S. 2001. Kizamu: A System for Sculpting
Digital Characters. ACM SIGGRAPH, pp. 47-56.

PERRY R. AND FRISKEN S., 2003. Method for Generating a Two-
Dimensional Distance Field within a Cell Associated with a
Corner of a Two-Dimensional Object. U.S. Patent 7,034,830.

RICCI, A., 1973. A Constructive Geometry for Computer
Graphics. Computer Journal, 16(2), pp. 157-160.

REQUICHA, A., 1983. Toward a theory of geometric tolerancing.
International Journal of Robotics Research, 2(4), pp. 45-60.

ROCKWOOD, A., 1989. The Displacement Method for Implicit
Blending in Solid Models. ACM Trans. Graphics, 8(4), pp.
279-297.

SRAMEK, M. AND KAUFMAN, A., 1999. Alias-free voxelization of
geometric objects. IEEE Trans. on Visualization and Computer
Graphics, 3(5), pp. 251-266.

STRAIN, J., 1999. Fast Tree-based Redistancing for Level Set
Computations. J. Comp. Physics, 152, pp. 648-666.

SUD, A., OTADUY, M. A., AND MANOCHA, D., 2004 DiFi: Fast 3D
Distance Field Computation Using Graphics Hardware.
Computer Graphics Forum 23(3), pp.557-566.

SZELISKI, R. AND LAVALLE, S., 1996. Matching 3-D anatomical
surfaces with non-rigid deformations using octree-splines. Int.
J. Computer Vision, 18(2), pp. 171-186.

WANG S. AND KAUFMAN A., 1995. Volume sculpting, Symposium
on Interactive 3D Graphics, pp. 151-156.

WHEELER, M., SATO, Y., AND IKEUCHI, K., 1998. Consensus
surfaces for Modeling 3D Objects from Multiple Range
Images. Int. Conf. Computer Vision.

WHITAKER, R., 1998. A Level-Set Approach to 3D Reconstruction
from Range Data. Int. J. Computer Vision, pp. 203-231.

ZHAO, H-K., OSHER, S., AND FEDKIW, R., 2001. Fast Surface
Reconstruction using the Level Set Method. 1st IEEE
Workshop on Variational and Level Set Methods, pp. 194-202.

66

	Title Page
	Title Page
	page 2

	Designing with Distance Fields
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

