MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Framework for Secure Speech Recognition

Paris Smaragdis, Madhusudana Shashanka
TR2007-057  April 01, 2007

Abstract

In this paper, we present a process which enables privacy-preserving speech recognition trans-
actions between two parties. We assume one party with private speech data and one party
with private speech recognition models. Our goal is to enable these parties to perform a
speech recognition task using their data, but without exposing their private information to
each other. We will demonstrate how using secure multiparty computation principles we can
construct a system where this transaction is possible, and how this system is computationally
and securely correct. The protocols described herein can be used to construct a rudimen-
tary speech recognition systm and can easily be extended for arbitrary audio and speech
processing.

IEEE Transactions on Audio, Speech and Language Processing

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright (© Mitsubishi Electric Research Laboratories, Inc., 2007
201 Broadway, Cambridge, Massachusetts 02139






1404

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

A Framework for Secure Speech Recognition

Paris Smaragdis, Senior Member, IEEE, and Madhusudana Shashanka, Student Member, IEEE

Abstract—In this paper, we present a process which enables pri-
vacy-preserving speech recognition transactions between two par-
ties. We assume one party with private speech data and one party
with private speech recognition models. Our goal is to enable these
parties to perform a speech recognition task using their data, but
without exposing their private information to each other. We will
demonstrate how using secure multiparty computation principles
we can construct a system where this transaction is possible, and
how this system is computationally and securely correct. The pro-
tocols described herein can be used to construct a rudimentary
speech recognition system and can easily be extended for arbitrary
audio and speech processing.

Index Terms—Gaussian mixture models, hidden Markov
model (HMM), secure multiparty computation (SMC), speech
recognition.

I. INTRODUCTION

HE WIDESPREAD use of networking technology today
has spawned an industry of online services. Business
models based on client—server interactions are common place
and increasingly more prominent. Speech recognition could
easily be a part of this trend where servers can provide speech
recognition services for remote clients. The private nature
of speech data however is a stumbling block for such a de-
velopment. Individuals, corporations, and governments are
understandably reluctant to send private speech data through a
network to another party that cannot be trusted. In this paper,
we address this issue and show how such a cooperative model
can be realized with no privacy leaks from any involved party.
We will specifically focus on the realization of a hidden
Markov model (HMM) in a secure framework that allows
training and classification between multiple parties, some
owning speech data, and some owning HMM models for
speech recognition. Our formulation is shaped in such a way
that the providers of the speech will not have to share any in-
formation about their data, and the providers of the HMM will
not share any information on their model. After evaluation, the
results will only be revealed to the parties that have provided
the data, and not to the parties that provide the HMM models,
thereby providing privacy at both the data and the semantic
levels.
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We will demonstrate the use of this idea using two scenarios.
One scenario will involve the training of HMMs from data pro-
vided by multiple parties, and the other will deal with evaluating
already trained HMMs on data from another party. The utility
of these scenarios in collaborative speech recognition projects
is easy to see. The first scenario can enable model training on
multiple speech databases without requiring the disclosure of
actual speech data, whereas the other scenario can enable speech
recognition as a service model to remote customers who wish to
maintain privacy on their data and their transcription from both
the service provider and malicious network intruders.

Strange as these constraints might seem, they can be satisfied
using secure multiparty computation (SMC) protocols. SMC is
a field of cryptography that provides means to perform arbi-
trary computations between multiple parties who are concerned
with protecting their data. The field of SMC originated from the
work of Yao [1] who gave a solution to the millionaire problem:
two millionaires want to find which one has a larger fortune,
without revealing any specific numbers to each other. Recently,
this concept has been employed for simple machine learning
tasks such as multiple parties performing k-means [2], compu-
tation of means and related statistics from distributed databases
[3], and rudimentary computer vision applications [4]. See [5]
for a detailed treatment of the topic. In this paper, we present an
SMC formulation of training and evaluating HMMs as applied
on speech data. To our knowledge, this is the first application
of SMC concepts for privacy-constrained speech technology.
We will consider HMMs where the observations are modeled by
mixtures of Gaussians as is common in speech recognition ap-
plications. The main contributions in this paper are the creation
of privacy-preserving protocols that support Gaussian mixture
model and HMM learning and evaluation, as well as a secure
method to combine these protocols so as to ensure data privacy.

The remainder of this paper is organized as follows. In
Section II, we formally introduce the problem at hand and in
Section III we introduce the secure computation primitives that
are employed for this task. Using these primitives, we deal with
the problem of secure classification using Gaussian mixtures
in Section IV, and in Section V we extend that to present
protocols for secure HMMs. We provide a brief discussion
about security and efficiency of our protocols in Section VI
Finally, in Section VII, we provide conclusions and directions
for future extensions.

II. PROBLEM FORMULATION

Hidden Markov models find use in a wide range of applica-
tions and have been successfully used in speech recognition.
There are three fundamental problems for HMM design,
namely: the evaluation of the probability (or likelihood) of a
sequence of observations given a specific HMM; the determi-
nation of a best sequence of model states; and the adjustment
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of model parameters so as to best account for the observed
signal. The first problem is one of scoring how well a given
model matches a given observation sequence. The second
problem is one in which we attempt to uncover the hidden part
of the model. The third problem is the problem of “training.”
Algorithms for the above three problems are well known and
described in detail in [6].

We will consider these problems using a transaction between
two parties named Alice and Bob. Suppose Bob has a trained
HMM with all the model parameters learned. Let the HMM be
characterized as follows.

* N states {S1,...,Sn}. Let the state at time ¢ be ¢;.

 The state transition probability distribution A = {a;;}

where
aij:P[Qt+1:Sj|Qt:Si]> 1<i,5<N. (D
* The observation symbol probability distribution in state j
given by a mixture of Gaussians

M

b;i(%) = Y cimN (Bjm: Zjm),

m=1

I<j<N (2

where x is the variable, c;,, is the mixture coefficient for
the rmth mixture in state j, and N (., X, ) is a Gaussian
with mean vector ;,, and covariance matrix ;.
¢ The initial state distribution = = {m;} where
71'1':]_)[(]1:51'] 1§LSN (3)
We use A to denote the entire parameter set of the model.

Consider the first two problems where Bob has a trained
HMM with all the model parameters learned. Let Alice have an
observation sequence X = Xi1Xo,...,Xp. We will show how
Alice can securely compute P(X|)), the probability of the
observation sequence given the model, using the forward—back-
ward procedure. We will also show how one can securely learn
the best sequence of model states using the viterbi algorithm.

Once there is a secure way of computing likelihoods, it is easy
to see how it can be extended to applications like speech recog-
nition. Suppose Bob has trained several HMMs which charac-
terize various speech sounds. Each HMM will correspond to a
speech recognition unit. Let Alice’s observation vector corre-
spond to a small snippet of speech sound (we assume that Alice
knows the features that Bob has used to train his HMMs on and
has represented her sound sample in terms of those features).
We then show how Alice and Bob can obtain additive shares of
the likelihood of Alice’s observation sequence for every speech
recognition unit of Bob and use them to find out the unit that
corresponds to Alice’s sound snippet.

Now consider the third problem of training. The problem of
security arises when Bob wants to train an HMM (or do data
mining in general) on combined data from private databases
owned by Alice and Charlie. We show how Bob can securely
reestimate parameters of his HMM without gaining knowledge
about the private data. The implicit assumption, of course, is that
Alice and Charlie are willing to let Bob learn about distributions
of their data.
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Fig. 1. Implementing an algorithm securely. The algorithm takes in private in-
puts a and b. Algorithm is split into steps that can be implemented as secure
primitives (shown as gray boxes). Intermediate results are distributed as random
additive shares and feed into the following steps. Final result ¢ is obtained by
both parties (or the designated receiver).

III. SECURE TWO-PARTY COMPUTATIONS—BACKGROUND

The speech-recognition example that we will present is a spe-
cific example of a secure two-party computation. Consider the
case where Alice and Bob have private data a and b, respec-
tively, and they want to compute the result of a function f(a, b).
Consider a trusted third-party who can take the private data,
compute the result ¢ = f(a,b), and intimate the result to the
parties. Any protocol that implements an algorithm to calculate
f(a, b) is said to be secure only if it leaks no more information
about a and b than what one can gain from learning the result ¢
from the trusted third-party. We assume a semi-honest model for
the parties where they follow the protocol but could be saving
messages and intermediate results to learn more about other’s
private data. In other words, the parties are honest but curious
and will follow the agreed-upon protocol but will try to learn as
much as possible from the data flow between the parties.!

To implement an algorithm securely, we will have to imple-
ment each step of the algorithm securely. If one of the steps is
insecurely implemented, either party could utilize the informa-
tion to work their way backwards to gain knowledge about the
other’s private data. In addition, one must also consider the re-
sults of intermediate steps. If such results of intermediate steps
are available, there is a possibility that one could also get back
to the original private inputs. To prevent this:

* we express every step of the algorithm in terms of a handful
of basic operations (henceforth called as primitives) for
which secure implementations are already known;

* we distribute intermediate results randomly between the
two parties such that neither party has access to the entire
result. For example, instead of obtaining the result z of a
certain step, the parties receive random additive shares z1
and 25 (21422 = 2). See Fig. 1 for a schematic illustration.

Secure protocols are often analyzed for correctness, security,
and complexity. Correctness is measured by comparing the pro-
posed protocol with the ideal protocol using a third party. If the
results are indistinguishable, the protocol is correct (note that

In a malicious model, no such assumptions are made about the parties’ be-
havior. If both parties are malicious, security can be enforced by accompanying
the protocols with zero-knowledge proofs that protocols are being followed. If
only one of the parties is malicious, the other party can use conditional disclo-
sure of secrets protocols [7] to make sure he/she receives valid inputs from the
malicious party.
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one can use secure approximation to an ideal algorithm). All the
protocols we present are exact protocols. For security, one needs
to show what can and cannot be learned from the data exchange.
For complexity, one shows the computational and communica-
tion complexity of the secure algorithm. Based on the choice of
primitives used and how they are implemented, one can achieve
different levels of security and computational/communication
efficiency. To evaluate the efficiency of protocols we propose in
later sections, we provide measures in terms of efficiency of the
primitives instead of absolute measures. Next, we describe the
primitives that we use and briefly discuss about their implemen-
tations.

A. Secure Inner Products (SIP)

The primitive which we use most often is for computing se-
cure inner products. If Alice has vector x and Bob has vector y,
a secure inner product protocol produces two numbers a and b
such that a + b = xT'y. Alice will get the result a, and Bob will
get the result b. To simplify notation, we shall denote a secure
inner product computation x*'y as STP(x,y).

Many protocols have been proposed and they can be cate-
gorized as cryptographic protocols (e.g., [8], [9]) and algebraic
protocols (e.g., [10]-[14]). They provide different levels of se-
curity and efficiency. Most of the algebraic protocols leak some
information but are more straightforward and efficient than their
cryptographic counterparts. The properties and weaknesses of
some of these algebraic protocols have been analyzed in detail
([3], [9]). In this paper, we will be using cryptographic proto-
cols as they tend to be more secure. In Appendices I and II,
we provide a description of two of the cryptographic protocols
we have used. We have also included an algebraic protocol in
Appendix III for comparison.

B. Secure Maximum Index (SMAX)

Let Alice have a vector x = [z1,...,x4] and Bob have the
vector y = [y1,...,yaq]; they would like to compute the index
of the maximum of x +y = [(x1 + ¥1), - - -, (T4 + Yq)]- At the
end of the protocol, Alice (and/or Bob) will receive the result,
but neither party will know the actual value of the maximum.
Notice that the same protocol can be used to compute the index
of the minimum. We denote this as j = SMAX (x,y).

For this primitive, we use the permute protocol proposed by
[15] (see Appendix IV). The protocol enables Alice and Bob to
obtain additive shares, q and s, of a permutation of the vector
x +y, m(x +y), where 7 is chosen by Alice, and Bob has no
knowledge of . The idea is for Alice to send q — r, where r
is a random number chosen by her, to Bob. Bob sends back the
index of the maximum element of q + s — 7 to Alice who then
computes the real index using the inverse of the permutation 7.
Neither party learns the value of the maximum element and Bob
does not learn the index of the maximum element.

If the security requirements of Alice are more strict, she can
encrypt elements of q using a homomorphic encryption scheme
and send them to Bob along with the public key. Bob can make
comparisons among the encrypted values of w(x + y) using
protocols for Yao’s millionaire problem (e.g., [16], [17]) and
send back the index of the maximum element.
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C. Secure Maximum Value (SVAL)

Let Alice have a vector x = [z1, ..., x4] and Bob have the

vector y = [y1,...,ya]; they would like to compute the value
of the maximum element in z = x + y. After the protocol,
Alice and Bob receive additive shares of the result, ¢ and b,
but neither party will know the index of the maximum element.
Notice that the same protocol can be used to compute the value
of the minimum. Let us denote this as a + b = SVAL(x,y).

For this protocol, we can use the idea presented in [15]. Let
us first consider a naive approach. Notice that z; > z; <=
(x; —x;) > (yj — ;). Alice and Bob can do such pairwise
comparisons and mimic any standard maximum finding algo-
rithm to learn the value of the maximum. To perform the com-
parisons securely, they can use a protocol for Yao’s millionaire
problem [1].

However, if Alice and Bob follow the above naive approach,
both will be able to also find the index of the maximum. Hence,
the idea is for Alice and Bob to obtain two vectors whose sum is
a random permutation of z. Neither Alice nor Bob should know
the permutation. They can then follow the above naive approach
on their newly obtained vectors to compute additive shares of
the maximum element. See Appendix IV for a description of
the permutation protocol.

D. Secure Logsum (SLOG)

This primitive, unlike the other three which we have intro-
duced above, is not a cryptographic primitive. The main reason
we introduce it is because it simplifies the presentation of many
of the protocols we propose in future sections.

Let Alice have a vector x = [z1,...,24] and Bob have
the vector y = [y1,...,yq] such that x + y = Inz =
[Inz1,...,In z4]. They would like to compute additive shares

q and s such that ¢ + s = In (Zle zz) Let us denote this

secure computation as ¢ + s = SLOG(X,y).
One can compute logarithm of a sum from the logarithms of
individual terms as follows:

d d
In <Zzi) =l (Ze“”f)- )

=1 =1

This suggests the following protocol.

1) Alice and Bob compute the dot product between vectors
€*~? and eY using STP(e*~%,eY) where ¢ is a random
number chosen by Alice. Let Bob obtain ¢, the result of
the dot product.

2) Notice that Bob has s = In¢p = —q + In (ijl o +y]~),
and Alice has q.

In step 1), Bob receives the entire result of a dot product.
However, this does not reveal any information to him about x
due to the presence of the random number ¢. In no other step
does either party receive the complete result of an operation.
Thus, the protocol is secure. In terms of efficiency, this primitive
is equivalent to using the SIP primitive once.

IV. SECURE CLASSIFICATION: GAUSSIAN MIXTURE MODELS

Alice has a d-component data vector x and Bob knows multi-
variate Gaussian distributions of N classes w;,7 = {1,..., ,N}

’ )
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that the vector could belong to. They would like to engage in a
protocol that lets Bob classify Alice’s data, but neither of them
wants to disclose data to the other person. We propose protocols
which enable such computations.

The idea is to evaluate the value of the discriminant function

9i(x)

for all classes w; and assign x to class w; if g;(x) > g;(x) forall
j # i. Here, p(x|w;) is the class-conditional probability density
function, and P(w;) is the a priori probability of class w;. We
consider two cases where 1) each class is modeled as a single
multivariate Gaussian, and 2) each class is modeled as a mixture
of Gaussians.

= Inp(x|w;) + In P(w;) 3)

A. Case 1: Single Multivariate Gaussian

We assume that the distribution of data is multivariate
Gaussian i.e., p(x|w;) ~ N(m;,X;), where p; is the mean
vector, and X; is the covariance matrix of class w;. Hence, the
log-likelihood is given by

In p(x|wi) = — (% — i) — gm o — %m =)
(6)

Ignoring the constant term (d/2) In 27, we can write (5) as

- w)'s

1 1
i) = — 5 (%= ) B (= i) = 5 In Bl +1n Pwi). (7)

Simplifying, we have

gi(x) = xTW,x + Wi x + wio ®)
where
= 11 _ -1
Wi:_§21 s W,:27 7%
and

Wio = ——;1,12 p,,——ln|2 |+ In P(w;). )

Let us create the (d+ 1)-dimensional vectors X and w; by ap-
pending the value 1 to x and appending w;o to W;. By changing
W, into a (d + 1) x (d + 1) matrix W; where the first d com-
ponents of the last row are zeros and the last column is equal to

wl', we can express (8) in a simplified form

gi(x) = )_(TW,L')_(.

Expressing X as x for simplicity, we can write the above equa-
tion as

gi(x) = xTW,;x. (10)
Henceforth, we shall use x to denote a (d + 1)-dimensional

vector with the last component equal to 1 unless otherwise men-
tioned.
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1) Protocol SMG: Single Multivariate Gaussian:

Input: Alice has Vector x,Bobhas W, for: =1,2,...,, ,N.
Wd"'l] where

WY is the jth column of W
Output: Alice learns I such that gI( ) > gj(x) for all

j # I.Bob learns nothing about x.
1) For: = 1,2,...,N
a) Forj = ,d 4 1, Alice and Bob
perform ST P(x W] ) to obtain the vectors
a; = [al,. d+1] and b; = [b},... 6%,
respectively. Ahce then computes a;x
b) Alice and Bob perform STP(b;,x) to obtain q; and
i, respectively.
2) Alice has vector A = [(a1x+q1), . - -
Bob has vector B = [rq,...,7N].
3) Alice and Bob perform the secure maximum index
protocol between the vectors A, and B and Alice obtains
I=SMAX(A,B).

,(anx+¢qn)], and

Correctness: In step 1), a; and b; are vectors such that
a; + b; = xTW,. Also, b;x = ¢; + ;. Hence, xT W;x is
given by a;x + ¢; + r;. I is the value of i for which x” W;x
1S maximum.

Efficiency: For a given + = I, the above protocol has
(d 4 2) SIP calls. Hence, it would take N (d + 2) SIP calls
and one call of SMAX.

Security: If Bob gets to know the dot products of d different
vectors with x, he can learn x completely. However, we see
that neither Bob nor Alice ever learn the complete result of
any dot product. Hence, if the protocols for SIP and SMAX are
secure, the above protocol is secure.

B. Case 2: Mixture of Gaussians

Let us now consider the case where each class is modeled as
a mixture of Gaussians. Let the mean vector and covariance ma-
trix of the jth Gaussian in class w; be p;; and X;;, respectively.
Hence, we have p(x|w;) = ijl aijN (pij, Lij), where J; is
the number of Gaussians describing class w;, and «;; are the
mixture coefficients. The log likelihood for the jth Gaussian in

the sth class is given by

lij(x) = x"Wijx + Wix + wj (11)
where
_ 1y ~ i
Wij = - 52” ’ Wij = Xy Mij
and
Wij = — _ll'zgzz] Hij — 1n|2w| +In Q.

Expressing x as a (d + 1)-dimensional vector and V_Vij, Wij,
w;; together as the (d 4 1) x (d 4 1) matrix W; as done in the
previous case, we can simplify (11) as

lij(X) = XTWin. (12)
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Hence, the discriminant function for the :th class can be
written as

gi(x) =logsum (11 (x), ..., lis,(x)) + In P(w;)

J;
=1In <Zel”(x)> + In P(w;).

i=1

(13)

1) Protocol MOG: Mixture of Gaussians:

Input: Alice has vector x, Bob has W;; and P(w;) for
i=1,2,....,N,andj = 1,2,...,J;.

Output: Alice learns I such that g7(x) > g;(x) forall j # I.
Bob learns nothing about x.

1) For: =1,2,...,N.

a) Alice and Bob engage in steps 1) and 2) of
Protocol SMG for the J; Gaussians in the 7th
mixture to obtain vectors A; = [A;1,..., Aiz,]
and B; = [Bj,..., Bis,]. Notice that
Aij + Bij = 1ij(%).

b) Alice and Bob engage in the secure logsum protocol

with vectors A; and B; to obtain u; and z;, i.e.,

2) Bob computes the vector v = [v1,...,vy] Where
v; = z; + In P(w;). Alice forms the vector
u = [ul, . ./UN].

3) Alice and Bob perform the secure maximum index
protocol between vectors u, and v and Alice obtains
I =SMAX(u,v).

Correctness: If one follows the protocol carefully, it is easy to
see that u; + v; is equal to g;(x).

Efficiency: For a given 4, there are (J;(d + 2) + 1) SIP calls.
Hence, in all, there are (d + 2) Zf\;l Ji + N SIP calls and
1 SMAX call.

Security: If Protocol SMG and the protocols for SIP, SVAL
and SMAX are secure, the above protocol is secure.

In case Alice and Bob want to compute additive shares of
the likelihood instead of the class label, they can use the SVAL
protocol instead of SMAX in the last step.

C. Training Gaussian Mixture From Data

We now focus on a related problem. Let us suppose Alice has
K d-component vectors X1, Xo, . . . , X . And she wants to learn
a mixture of ¢ Gaussians from the data. She can use the itera-
tive expectation-maximization (EM) algorithm to estimate the
parameters of the ¢ Gaussians and the mixture weights. Now,
consider the scenario when Bob wants to learn the parameters
but Alice does not want to disclose her data to Bob. One solution
is for Alice to estimate the parameters herself and then give them
to Bob. Another approach is for Alice and Bob to engage in a se-
cure protocol which lets Bob learn the parameters while Alice’s
data remain private. The latter approach becomes necessary in a
scenario where Bob wants to do data mining on combined data
from private databases owned by Alice and Charlie. Below, we
describe a secure protocol which lets two parties perform such
computations.
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1) EM Algorithm: We denote the estimate of a particular
parameter after the rth iteration by using a superscript. Thus, u},
¥7 and P"(w;) denote the mean vector, covariance matrix, and
the mixture weight for the sth Gaussian after the rth iteration.
For convenience, let us denote the entire parameter set after the
rth iteration by A". At any given iteration, Alice has access to
her data and Bob has access to the parameter X . Alice and Bob
have additive shares p},, i, and ¢; 4, ¢;g such that p}, +
uip = pl and 4,4 + ¢;p = In P"(w;). We can write the steps
of the EM algorithm as follows.

E Step:
p(Xg|wi, p7, X7 PT(w;)

le(xk|wj7 ll';, 2;)PT((“}J>
]:

P(wilxg, A") = (14)

Input: Alice has xj, p! 4 and ¢; 4; Bob has p!;, X7 and
fiB,i = 172,...76.

Output: Alice and Bob obtain w;; and v;; such that
Uik + Vi = In P(wi|xk, /\T)

1) Bob forms matrices W fori = 1,..., ¢ with p/p, X7
as described in Section IV-A and (9) (using (d/2) In 27
instead of In P(w;) to compute w;o). With (xj, — pl ) as
Alice’s input and W, forz = 1,..., c as Bob’s input and
N = ¢, Alice and Bob engage in steps 1) and 2) of Protocol
SMG (Section IV-A.I) to obtain vectors A}, and B}
 Log-likelihood In p(xy |w;, uf, E7) is given by (6).
Notice that using (x5 — ! ) in place of x;, and p 5
in place of p] in (6) yields the same result as using X
and p; .
* The sum of the ith elements, A’ + B/, is equal to
In p(xp|ws, pf, £7).
2) Alice and Bob obtain vectors A, and B, where for each
1, Ajp = A;k + 4;4 and By, = B:k + 4;B.
¢ Notice that A;; + Bjy, is the logarithm of the numerator
in (14).
3) Alice and Bob engage in the secure logsum protocol
with the vectors Ay and By to obtain ¥ and zj i.e.,
Y + 2k = SLOG(Ak, Bk).
* Notice that y, + 2, is the logarithm of the denominator
of (14) [follows from (4)].
4) Alice forms vector uy, where u;r = (A;x — yx). Bob
forms the vector vy, where v,y = (Bix — 2k )-
o wip + vip = In Pw;|xg, A7).

M Step: X
> Plwilxk, A")xp
ll'7"+1 _ k=1

M=

P(wqj|Xk, )\T)
1

™=

P(wi|xk7 /\T)

Il
-

Pr—l—l ;) = k
() =

Plwilxe, A7) (% — 1} ) (= )T

M=

27"—1—1 _ k=1

2

K
> Plwilxg, A7)
k=1 (15)
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Input: Alice has x;,k = 1,..., K. Alice and Bob have
K -vectors E and F such that Ey, + Fy, = In P(w;|xg, A"™).

Output Alice obtains p/ 11, £; 4; Bob obtains g/, £/ +! and

Ci QU+ Tt = gt and £y + i = In PP (w;)).

1) Alice and Bob engage in the secure logsum protocol
with vectors E and F to obtain e and f i.e.,
e+ f=SLOG(E,F).

2) Alice computes /;4 = e — In K, and Bob computes
lip = f.

3) Forj =1,2,...,d:

Let h; be the K-vector formed by the jth elements

of X1,...,Xk. Alice and Bob engage in the secure

logsum protocol with vectors E 4+ Inh; and F to

obtain ¢’ and f’ i.e., ¢’ + f' = SLOG(E + lnh;,F).

» Notice that (¢/ —e) + (f' — f) =In /f“ the jth
element of p,;"'l

Alice and Bob obtain the jth elements of

pi Tt and pitt, respectively, as a result of

SIP(exp(e’ —e), exp(f’ = [)).

4) Consider the evaluation of ¢,,,,,, the mnth element of
the matrix E;'H We first consider evaluating the mnth
element of (xj, — p} 1) (xx — u/ )T, As mentioned
earlier, this is equivalent to evaluating the mnth term of
(%X — ;) (X — ;)7 where x;, = (x5 — ') and
L, = u;’gl. Let the jth elements of X;, and p; be Z;; and
itij, respectively. Notice that Alice has access to X; and
Bob had access to ;.

e For k = ., K, Alice and Bob engage
in the secure inner product protocol with
vectors exp(Vi ) [ZkmTrns —Tkm, Tkn, 1] and
[1, M, — [Lim, Bim fin], Where g is a random scalar
chosen by Alice. Let Bob obtain the result ¢y.
¢ Alice forms the K-vector ¥ = [y1,...,7x] and Bob
forms the vector ¢ = [¢1,..., K]
Alice and Bob engage in the secure logsum protocol with
vectors (E — 4) and (F + In ¢) to obtain € and f, i.e.,
e+ f=SLOG((E~7),(F+Ing)).
* Notice that (¢ — €) + (f — f) = In0.n, the mnth
element of £} *
Alice sends (€ — e) to Bob so that he can calculate 7.
At the end of all iterations, Alice sends her shares p; 4 and
£; 4 to Bob so that he can calculate the mean p; and the mixture
weight P(w;) fori =1,2,...,c.

Efficiency: We only consider the cost of computations that
occur between Alice and Bob. In the E-step, for a given xy
and for all classes w;, there are ¢(d + 2) STP calls with

(d 4+ 1)-dimensional vectors and one SIP call involving a
c-vector. In the M-step, to compute a mixture weight, there is
a SIP call involving a K -vector. To calculate a single mean
vector, there are d SIP calls involving K-vectors and d SIP
calls with scalars. To calculate each element of the covariance
matrix for a given class, there are K STP calls involving
4-dimensional vectors and one SIP call with a K -vector.

Security: We assume that & > d and d > c. Until the end of
the last iteration, Bob does not learn values of the means or the
mixture weights. He does not learn the values of likelihoods or
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posterior probabilities during the iterations. He does learn the
value of the covariance matrix with every iteration. This does
leak some information about the distribution of Alice’s data
vectors but Bob’s aim is to learn the distributions. The goal

of Alice is to prevent Bob from knowing her individual data
vectors and without the mean, Bob cannot gain any knowledge
about the data vectors. Another important constraint is that
Alice does not learn the values of the parameters, and following
the protocol closely shows that this holds true.

V. HIDDEN MARKOV MODELSs

A. Forward-Backward Procedure

Consider the forward variable oy (¢) defined as

Olt(Z')

We can solve for oy () inductively and calculate P(X|\) as
follows.
1) Initialization:

:P(X1X27---7Xt7Qt = SL|)‘) (16)

Oll(i):’/'ribi(X1>7 1§L§N
Input: Bob has the Gaussian mixture distribution that de-
fines b; (x) and the initial state distribution m = {mr; }; Alice
has an observation x7.
Output: Alice and Bob obtain vectors Q and R such that
Q: + R, = lnay(i).

a) Bob forms the matrices W;; as mentioned in
Section IV-B. With matrices W;; and mixture
weights c¢;,, as Bob’s inputs and x; as Alice’s input,
they perform steps 1) and 2) of the protocol MoG of
Section IV-B. Alice and Bob obtain vectors U and
V. Notice that U; + V; = lnb;(x1).

b) Alice forms the vector Q = U. Bob forms vector R,
where for each i, R; = V; + In ;. Thus, Q; + R; =
In bi(Xl) +Inm; =1In O(1(L)

2) Induction:

Mz

at+1 ( at au) Xt+1)
=1

where 1<t<T-1,1<j53<N.
Input: Alice and Bob have vectors Q and R such that
Qi + R; = In (i) Alice and Bob have U, and V; such

that U; + V; = Inb;(x441). Bob has the vector a; =

[alj,agj,...,a]\rj]. B B B _
Output: Alice and Bob obtain () and R such that Q + R =
In o 41 ().

a) Alice and Bob engage in the secure logsum protocol
with vectors Q and (R + Ina;) to obtain ¢ and 2’
ie,y +2 = SLOG(Q,R+Inaj).

b) Alice obtains Q = v’ + U; and Bob obtains R =
Z 4+ V.

3) Termination:

P(X]\) =

> i)
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Input: Alice and Bob have vectors Q and R such that
Q; + Ri = lnar(i).
Qutput: Alice and Bob obtain y and z such that y + z =
In P(X|A).
a) Alice and Bob engage in the secure logsum protocol
with vectors Q and R to obtain y and z i.e., y + z =
SLOG(Q,R).

Efficiency: In the initialization step, there are

(d+2)MN + N SIP callsand N SMAX/SV AL calls
involving d-dimensional vectors. In the induction step, for
every j and for every ¢, there is one SIP call with an N-vector.
In the termination step, there is one SIP call with an N-vector.

Security: Bob does not learn any x;, and Alice does not learn
any of Bob’s parameters. Hence, if the primitives SIP, SMAX,
and SVAL are secure, the protocol is secure.

We can obtain a similar procedure for a backward variable
B¢(1) defined as

Be(i) = P(Xt41Xe42, ..., X7|qe = Si, A). (17)
We can solve for (;(¢) inductively as follows.
1) Initialization:
Br(i)=1, 1<i<N.
2) Induction:
N
Bili) = aijbj(xe41)Br41(4);
j=1
where t=T-1,T-2,...,1, 1<j<N.

Input: Alice and Bob have vectors Y and Z such that
Y; + Z; = Inpi41(j). Alice and Bob have U and V
such that U; + V; = Inb;(x¢y1). Bob has the vector

a§ = [ail;aiQ;---;aiN]' _ ~ -
Output: Alice and Bob obtain Y and Z suchthatY + 7 =
In B4 (7).

a) Alice and Bob engage in the secure logsum protocol
with vectors Y + U and (Z +V + In a}) to obtain Y’
and Z,ie.,Y+7 = SLOG(Y+U,Z+V +1na)).

B. Viterbi Algorithm
Consider the quantity

6:(1) =

max
q1,925--9t—1

/Xf|)\]

(18)

6:(4) is the best score (highest probability) along a single path,

at time ¢, which accounts for the first ¢ observations and ends in

state S;. The procedure for finding the best state sequence can

be stated as follows.

1) Initialization:
51(i):7ribi(X1>7 g[zl(b):O 1 SLSN

The procedure is evaluating 61(7) is analogous to the

initialization step of the forward backward procedure.
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After this step, Alice and Bob will have additive shares of
Iné 1 (’L) .
2) Recursion:
0(5) = (

Pi(j) =arg max)<;<n [01—1()ai;]

e [Br1(d)ag] )by (x1)

where
2<t<T,1<j<N.

Input: Alice and Bob have vectors Q and R such that
Q; + R; = Ind;—1(¢). Alice and Bob have U and V
such that U + V' = Inb;(x¢). Bob has the vector a; =
[alj,a2j7...,a1\rj]. B B B B
Output: Alice and Bob obtain () and R such that Q + R =
In 6;(4). Alice obtains (7).

a) Alice and Bob engage in the secure maximum value
protocol with vectors Q and (R + Ina;) to obtain y
and z. They also perform S M A X on the same vectors
and Alice obtains the result which is equal to (7).

b) Alice computes Q = y + U and Bob computes R =
z+ V.

3) Termination:

P* = max [67(7)]

" .
= argmax; ;< nOor(%).
1958 dr g 1<i<N ( )

Alice and Bob will use SV AL on their additive shares of
In 6 (2) for all 7 to evaluate In P*. Similarly, they engage
in SM AX on their shares and Alice obtains the result ¢7..
4) Path backtracking:
q::’l/)t+1(q;<+1) t:T—l,T—2,/1
Alice, who has access to ¢; and 1), can evaluate the path
sequence. Notice that Bob could be made to get this result
instead of Alice if we let Bob learn the values of v); and ¢,
in steps 2) and 3) instead of Alice.
Security and efficiency considerations for this protocol are sim-
ilar to what was discussed with regard to the forward—backward
procedure (Section V-A).

C. HMM Training

In the above formulation, we assumed that Bob had already
trained his HMMs. Let us consider the case when Alice has all
the training data, and Bob wants to train an HMM using her data.
Below, we show how Bob can securely reestimate parameters of
his HMM.

Consider the variables

(i) = Pla: = SilX, A) = %

&(1,7) = Plge = Sis qee1 = Sj1X, )
_ (u(#)aijbj(Xe11)Bi41(5))
P(X]A) '

In the previous subsections, we have shown how Alice and
Bob can obtain additive shares of In a(4) (Q; and R;), In B:(7)
Y and 2), Inbj(xs4+1) (U; and V}), In Bi41(j) (Y5, and Z;)
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and In P(X]\) (y and z). It is easy to see that using these shares,
Alice and Bob can compute additive shares e;, g; and f;, hy such
that e; + f; = In & (7, j) and g¢ + ht = ln . (4). Alice computes
g =Q;+Y —yande; = Q; + U; +Y; — y. Bob computes
h¢ :RH—Z—zandft :Ri—}—lnaij—}—Vj—}—Zj—z.

The variables 7; and a;; can then be reestimated as follows:

7?1:’710)
-1
Et(lmy)

_ t=1

®ij = "p_1
’Yt(i)

t=1

Input: Alice and Bob have (T — 1)-vectors e and f such that
er + fir = In& (7, 7). They also have vectors g and h such
that gt + ht =1In ’Yt(l)

Output: Bob obtains In a;.

1) Alice and Bob engage in secure logsum protocol with
vectors e and f to obtain z and f. They also engage in the
secure logsum protocol with vectors g and h to obtain
g and h, respectively.

2) Alice sends (¢— g) to Bob. Bob computes (¢ —g)+ (f —h)
to obtain In a;;.

Notice that instead of Bob obtaining the final result, Alice
and Bob can have additive shares of Ina;;. Protocols for
forward—backward and viterbi algorithms will then have to
modified so that Alice and Bob have additive shares of the
vector In a;.

As for the Gaussian mixture distributions b;(x), Bob can
learn them from Alice’s data securely as we have shown in
Section IV-C. We emphasize here that Bob does not learn all
the parameters in every iteration. He learns the mean vector for
every component Gaussian only after the last iteration. He does
learn the covariance matrix in every iteration but quantities used
to calculate the covariance matrix are additive shares which
does not help him in inferring Alice’s data. The example shown
in Section IV-C uses two parties but it can be generalized to
the case where Bob learns from multiple parties. In that case,
learned statistics are averaged and provide an additional layer
of security for the data providers.

VI. DISCUSSION

In this section, we discuss the computational efficiency con-
siderations of protocols presented above. As mentioned earlier,
efficiency of the protocols was evaluated in terms of primitives
and absolute measures were not provided. This is due to the fact
that efficiency of the primitives themselves varies widely and
depends on how the primitives are implemented.

If one follows all the protocols carefully, efficiency mainly
depends on the computational complexity of the SIP primitive.
We shall focus on one particular implementation of this primi-
tive: secure inner product using homomorphic encryption pro-
posed by [9] (see Appendix I, the reference provides proof that
the protocol is correct and secure).

To validate the secure model, we ran experiments performing
learning and classification. The experiments were run using a
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MATLAB implementation and tested both the Gaussian mix-
ture models and the hidden Markov models. Simulations were
performed twice using the secure and the nonsecure (traditional)
methods. In all cases, the results from both the secure and non-
secure simulations were numerically identical as we have pre-
dicted. The secure versions were obviously less efficient due
to the increased computational cost of the cryptographic oper-
ations and the increased network traffic. We did not study the
communications complexity in these experiments and rather fo-
cused on the computational load, which is the primary bottle-
neck [18]. One simulation used a generalized version [19] of
the Paillier public-key scheme [20]. We used cryptographic keys
of 1024 bits and the cryptosystem was implemented in Java.
The computational load of this algorithm coupled with a nonop-
timal implementation resulted into a processing time per input
vector in the order of a few seconds. An alternative implemen-
tation using algebraic primitives, which leak some information
but are more computationally efficient, resulted into a signifi-
cant speedup of less than a second’s time processing per input
vector. As shown by the last experiment, the choice of imple-
mentation for a primitive (for example, SIP using algorithm in
Appendix I instead of SIP using algorithm in Appendix II) sig-
nificantly impacts performance, communication complexity and
security. A wise choice will have to balance tradeoffs such as
computational efficiency and network bandwidth as opposed to
security/privacy. A discussion of these issues is out of the scope
of this paper since it is a lengthy research project of its own and
amoving target given the continuous discoveries of increasingly
efficient protocols by the cryptography community.

The figures we have obtained were using nonoptimized im-
plementations, as noted by [18] careful implementation can pro-
duce significant speedups in computation. For practical imple-
mentations it is also possible (and recommended) that special-
ized hardware is used for the cryptography layer which can re-
sult into dramatic performance improvements.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an implementation of pri-
vacy preserving hidden Markov model and Gaussian mixtures
computations. We first proposed a simple privacy-preserving
protocol for computing logsums. Using primitives for com-
puting scalar products and maxima, we proposed secure
protocols for classification using Gaussian mixture models.
We then proposed secure protocols for the forward—backward
algorithm, the viterbi algorithm, and HMM training. The proto-
cols are defined modularly in terms of primitives so that future
advances in cryptography, which will hopefully provide more
robust and efficient protocols, can be readily employed in our
framework by straightforward replacement. The approach we
have taken also illustrates the process required to transform a
signal processing algorithm to its privacy preserving version.
Other data processing and classification algorithms can also be
described in terms of secure primitives and easily reformulated
for secure multiparty computations.

This paper is intended to be a starting point for secure audio
frameworks, and because of that it exposes a lot of new re-
search directions which warrant more attention. One of these
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directions includes the design of alternative classifiers and algo-
rithms using this process, and there is still ongoing work on the
building block primitives (SIP, SMAX, SVAL, etc) themselves.
These are all topics that present plenty of opportunities to ex-
plore efficiency and security and their tradeoffs. We expect these
to be fruitful areas of research in the near future. It is our hope
that a migration towards secure algorithms can help promote
a more open collaboration setting where parties can freely ex-
change data and algorithms without legal and privacy issues.

APPENDIX |
SECURE INNER PRODUCT USING HOMOMORPHIC ENCRYPTION

The following protocol is based on homomorphic encryp-
tion and was proposed by [9]. Let the triple (Ge,En,De)
denote a public-key homomorphic cryptosystem (probabilistic
polynomial time algorithms for key-generation, encryption,
and decryption). The key generation algorithm generates a
valid pair (sk,pk) of private and public keys for a secu-
rity parameter k. The encryption algorithm En takes as an
input a plaintext m, a random value r, and a public key
pk and outputs the corresponding ciphertext En(pk;m,r).
The decryption algorithm De takes as an input a ciphertext
c and a private key sk (corresponding to the public key
pk) and outputs a plaintext De(sk;c). It is required that
De(sk;En(pk;m,r)) = m. A public-key cryptosystem
is homomorphic if En(pk;mi,r1) - En(pk;ma,r2) =
En(pk;m1 + ma,71 + r2), where + is a group operation
and - is a groupoid operation.

Inputs: Private vectors x and y with Bob and Alice,
respectively.

Outputs: Shares a and b such that a + b = xTy.

1) Setup phase. Bob:
* generates a private and public key pair (sk, pk).
» sends pk to Alice.

2) Fori € {1,...,d}, Bob:
* generates a random new string ;.
* sends ¢; = En(pk; z;,7;) to Alice.

3) Alice:
o sets z — [[, Y
* generates a random plaintext b and a random nonce 7.
 sends z’ = z - En(pk; —b,7’) to Bob.

4) Bob computes a = De(sk; 2') = xTy — b.

See [9] for a proof that the protocol is correct and secure.

APPENDIX II
SECURE INNER PRODUCT FROM OBLIVIOUS
POLYNOMIAL EVALUATION

[8] proposes an elegant protocol for oblivious evaluation
of multivariate polynomials using oblivious transfer [21] as
a cryptographic primitive. It can be easily modified to se-
curely evaluate dot products. Let Alice represent each x; as
xr; = Zj aij2j_1 with ai; € {07 1}. Let Vij = 2j_1yi. Notice
that foreach 7, 1 < ¢ < d, Zj a;jvij = x;y;. The idea is to
have Bob prepare v;; and have Alice get those v;; with a;; = 1
in some secret way. This is achieved as follows: Bob prepares
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the pair (75, v;; + 7;) for randomly chosen r;; and Alice runs
independent oblivious transfer with Bob to get r;; if a;; = 0
and v;; + r;; otherwise. At the end of the protocol, Alice will
obtain >_, 3= (aivij + 7i7) = 32, Tayi + 3 ; 7ij- Bob will
have — ) i Tid- Thus, Alice and Bob will have additive shares
of the desired dot product.

[8] proves that this protocol is secure when the parties are
semi-honest. The efficiency of the protocol depends on the im-
plementation of oblivious transfer.

APPENDIX III
SECURE INNER PRODUCT USING LINEAR TRANSFORMATION

[11] proposes an algebraic approach which assumes that the
dimensionality is even. Let us define x; as the d/2 dimensional
vector consisting of the first d/2 elements of x and x5 as the
vector consisting of the last d/2 elements of x. We observe that
xly = xTy,; +x2y,. Alice and Bob jointly generate a random
invertible d x d matrix M. Alice computes x’ = x M, splits it
as x and x5, and sends x5 to Bob. Bob computes y’ = M1y,
splits it as y} and y5, and sends yj to Alice. Alice computes
x}y’, and Bob computes x5y% so that their sum is equal to the
desired result.

This protocol has little communication and computational
overhead compared to the cryptographic protocols, but it comes
at the cost of security. Alice and Bob learn d/2 linear equations
for the d unknowns that constitute the other party’s vector which
leaks a lot of information. Hence, it is important that the same
matrix M should be used when this protocol is used multiple
times with the same vector x (or y). [3] has analyzed this pro-
tocol which showed serious security flaws, and hence this is not
practical when security is crucially important.

APPENDIX IV
PERMUTE PROTOCOL

This protocol was proposed in [15].

Input: Alice and Bob have d-component vectors x and y. Bob
has a random permutation 7.

Qutput: Alice and Bob obtain q and s such that
qa+s = m(x) + 7(y).

1) Alice generates public and private keys for a homomorphic
cryptosystem and sends the public key to Bob. Let E()
denote encryption with Alice’s public key.

2) Alice encrypts each element of x and sends the resulting
vector X to Bob.

3) Bob generates a random vector r and computes a
new vector 8 where 0; = z;E(r;) = E(x; + r;), for
1=1,...,d.

4) Bob permutes 8 and sends 7(8) to Alice. Alice decrypts
the vector to obtain q.

5) Bob computes y — r and then permutes it using 7 to
obtains = w(y —r).

Alice and Bob engage in the above permute protocol twice,
the second time with their roles interchanged. After this is
done, Alice and Bob will have two vectors whose sum will be
a random permutation of the original sum but neither of them
will know what the permutation is.
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